1
|
Hkimi C, Kamoun S, Khamessi O, Ghedira K. Mycobacterium tuberculosis-THP-1 like macrophages protein-protein interaction map revealed through dual RNA-seq analysis and a computational approach. J Med Microbiol 2024; 73. [PMID: 38314675 DOI: 10.1099/jmm.0.001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Introduction. Infection caused by Mycobacterium tuberculosis (M. tb) is still a leading cause of mortality worldwide with estimated 1.4 million deaths annually.Hypothesis/Gap statement. Despite macrophages' ability to kill bacterium, M. tb can grow inside these innate immune cells and the exploration of the infection has traditionally been characterized by a one-sided relationship, concentrating solely on the host or examining the pathogen in isolation.Aim. Because of only a handful of M. tb-host interactions have been experimentally characterized, our main goal is to predict protein-protein interactions during the early phases of the infection.Methodology. In this work, we performed an integrative computational approach that exploits differentially expressed genes obtained from Dual RNA-seq analysis combined with known domain-domain interactions.Results. A total of 2381 and 7214 genes were identified as differentially expressed in M. tb and in THP-1-like macrophages, respectively, revealing different transcriptional profiles in response to infection. Over 48 h of infection, the host-pathogen network revealed 25 016 PPIs. Analysis of the resulting predicted network based on cellular localization information of M. tb proteins, indicated the implication of interacting nodes including the bacterial PE/PPE/PE_PGRS family. In addition, M. tb proteins interacted with host proteins involved in NF-kB signalling pathway as well as interfering with the host apoptosis ability via the potential interaction of M. tb TB16.3 with human TAB1 and M. tb GroEL2 with host protein kinase C delta, respectively.Conclusion. The prediction of the full range of interactions between M. tb and host will contribute to better understanding of the pathogenesis of this bacterium and may provide advanced approaches to explore new therapeutic targets against tuberculosis.
Collapse
Affiliation(s)
- Chaima Hkimi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana BP-66, Manouba 2010, Tunisia
| | - Selim Kamoun
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana BP-66, Manouba 2010, Tunisia
| | - Oussema Khamessi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana BP-66, Manouba 2010, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| |
Collapse
|
2
|
Immunoscreening of the M. tuberculosis F15/LAM4/KZN secretome library against TB patients' sera identifies unique active- and latent-TB specific biomarkers. Tuberculosis (Edinb) 2019; 115:161-170. [PMID: 30948172 DOI: 10.1016/j.tube.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/01/2019] [Accepted: 03/12/2019] [Indexed: 02/03/2023]
Abstract
Tuberculosis (TB) protein biomarkers are urgently needed for the development of point-of-care diagnostics, new drugs and vaccines. Mycobacterium tuberculosis extracellular and secreted proteins play an important role in host-pathogen interactions. Antibodies produced against M. tuberculosis proteins before the onset of clinical symptoms can be used in proteomic studies to identify their target proteins. In this study, M. tuberculosis F15/LAM4/KZN strain phage secretome library was screened against immobilized polyclonal sera from active TB patients (n = 20), TST positive individuals (n = 15) and M. tuberculosis uninfected individuals (n = 20) to select and identify proteins recognized by patients' antibodies. DNA sequence analysis from randomly selected latent TB and active TB specific phage clones revealed 118 and 96 ORFs, respectively. Proteins essential for growth, virulence and metabolic pathways were identified using different TB databases. The identified active TB specific biomarkers included five proteins, namely, TrpG, Alr, TreY, BfrA and EspR, with no human homologs, whilst latent TB specific biomarkers included NarG, PonA1, PonA2 and HspR. Future studies will assess potential applications of identified protein biomarkers as TB drug or vaccine candidates/targets and diagnostic markers with the ability to discriminate LTBI from active TB.
Collapse
|
3
|
Abstract
ORFeome phage display allows the efficient functional screening of entire proteomes or even metaproteomes to identify immunogenic proteins. For this purpose, randomly fragmented, whole genomes or metagenomes are cloned into a phage-display vector allowing positive selection for open reading frames (ORF) to improve the library quality. These libraries display all possible proteins encoded by a pathogen or a microbiome on the phage surface. Consequently, immunogenic proteins can be selected from these libraries using disease-related immunoglobulins from patient serum. ORFeome phage display in particular allows the identification of immunogenic proteins that are only expressed in the host-pathogen interaction but not in cultivation, as well as the detection of very low expressed and very small immunogens and immunogenic proteins of non-cultivable organisms. The identified immunogenic proteins are potential biomarkers for the development of diagnostic assays or vaccines. These articles will give an introduction to ORFeome phage-display technology and give detailed protocols to identify immunogenic proteins by phage display.
Collapse
Affiliation(s)
- Jonas Zantow
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
4
|
Mendes KR, Malone ML, Ndungu JM, Suponitsky-Kroyter I, Cavett VJ, McEnaney PJ, MacConnell AB, Doran TM, Ronacher K, Stanley K, Utset O, Walzl G, Paegel BM, Kodadek T. High-throughput Identification of DNA-Encoded IgG Ligands that Distinguish Active and Latent Mycobacterium tuberculosis Infections. ACS Chem Biol 2017; 12:234-243. [PMID: 27957856 DOI: 10.1021/acschembio.6b00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The circulating antibody repertoire encodes a patient's health status and pathogen exposure history, but identifying antibodies with diagnostic potential usually requires knowledge of the antigen(s). We previously circumvented this problem by screening libraries of bead-displayed small molecules against case and control serum samples to discover "epitope surrogates" (ligands of IgGs enriched in the case sample). Here, we describe an improved version of this technology that employs DNA-encoded libraries and high-throughput FACS-based screening to discover epitope surrogates that differentiate noninfectious/latent (LTB) patients from infectious/active TB (ATB) patients, which is imperative for proper treatment selection and antibiotic stewardship. Normal control/LTB (10 patients each, NCL) and ATB (10 patients) serum pools were screened against a library (5 × 106 beads, 448 000 unique compounds) using fluorescent antihuman IgG to label hit compound beads for FACS. Deep sequencing decoded all hit structures and each hit's occurrence frequencies. ATB hits were pruned of NCL hits and prioritized for resynthesis based on occurrence and homology. Several structurally homologous families were identified and 16/21 resynthesized representative hits validated as selective ligands of ATB serum IgGs (p < 0.005). The native secreted TB protein Ag85B (though not the E. coli recombinant form) competed with one of the validated ligands for binding to antibodies, suggesting that it mimics a native Ag85B epitope. The use of DNA-encoded libraries and FACS-based screening in epitope surrogate discovery reveals thousands of potential hit structures. Distilling this list down to several consensus chemical structures yielded a diagnostic panel for ATB composed of thermally stable and economically produced small molecule ligands in place of protein antigens.
Collapse
Affiliation(s)
- Kimberly R. Mendes
- Opko Health, Inc., 5353 Parkside
Drive Jupiter, Florida 33458, United States
| | | | - John Maina Ndungu
- Opko Health, Inc., 5353 Parkside
Drive Jupiter, Florida 33458, United States
| | | | | | | | | | | | - Katharina Ronacher
- Department
of Science and Technology/National Research Foundation Centre of Excellence
for Biomedical TB Research/Medical Research Council Centre for Molecular
and Cellular Biology, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Kim Stanley
- Department
of Science and Technology/National Research Foundation Centre of Excellence
for Biomedical TB Research/Medical Research Council Centre for Molecular
and Cellular Biology, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Ofelia Utset
- Opko Health, Inc., 5353 Parkside
Drive Jupiter, Florida 33458, United States
| | - Gerhard Walzl
- Department
of Science and Technology/National Research Foundation Centre of Excellence
for Biomedical TB Research/Medical Research Council Centre for Molecular
and Cellular Biology, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | | |
Collapse
|
5
|
Gagic D, Ciric M, Wen WX, Ng F, Rakonjac J. Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display. Front Microbiol 2016; 7:429. [PMID: 27092113 PMCID: PMC4823517 DOI: 10.3389/fmicb.2016.00429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/17/2016] [Indexed: 01/12/2023] Open
Abstract
Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to “bait” of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea.
Collapse
Affiliation(s)
- Dragana Gagic
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand; Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston NorthNew Zealand
| | - Milica Ciric
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand; Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston NorthNew Zealand
| | - Wesley X Wen
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| | - Filomena Ng
- Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston North New Zealand
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| |
Collapse
|
6
|
Huo T, Liu W, Guo Y, Yang C, Lin J, Rao Z. Prediction of host - pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs. BMC Bioinformatics 2015; 16:100. [PMID: 25887594 PMCID: PMC4456996 DOI: 10.1186/s12859-015-0535-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/13/2015] [Indexed: 12/28/2022] Open
Abstract
Background Emergence of multiple drug resistant strains of M. tuberculosis (MDR-TB) threatens to derail global efforts aimed at reigning in the pathogen. Co-infections of M. tuberculosis with HIV are difficult to treat. To counter these new challenges, it is essential to study the interactions between M. tuberculosis and the host to learn how these bacteria cause disease. Results We report a systematic flow to predict the host pathogen interactions (HPIs) between M. tuberculosis and Homo sapiens based on sequence motifs. First, protein sequences were used as initial input for identifying the HPIs by ‘interolog’ method. HPIs were further filtered by prediction of domain-domain interactions (DDIs). Functional annotations of protein and publicly available experimental results were applied to filter the remaining HPIs. Using such a strategy, 118 pairs of HPIs were identified, which involve 43 proteins from M. tuberculosis and 48 proteins from Homo sapiens. A biological interaction network between M. tuberculosis and Homo sapiens was then constructed using the predicted inter- and intra-species interactions based on the 118 pairs of HPIs. Finally, a web accessible database named PATH (Protein interactions of M. tuberculosis and Human) was constructed to store these predicted interactions and proteins. Conclusions This interaction network will facilitate the research on host-pathogen protein-protein interactions, and may throw light on how M. tuberculosis interacts with its host. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0535-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Huo
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Life Sciences, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| | - Wei Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Life Sciences, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Pharmacy, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Pharmacy, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Pharmacy, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,College of Life Sciences, Nankai University, Tianjin, 300071, China. .,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| |
Collapse
|
7
|
Mai-Prochnow A, Hui JGK, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015; 39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
This review synthesizes recent and past observations on filamentous phages and describes how these phages contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae encodes the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the emergence of new pathogenic strains. Other effects of filamentous phage include horizontal gene transfer, biofilm development, motility, metal resistance and the formation of host morphotypic variants, important for the biofilm stress resistance. These phages infect a wide range of Gram-negative bacteria, including deep-sea, pressure-adapted bacteria. Many filamentous phages integrate into the host genome as prophage. In some cases, filamentous phages encode their own integrase genes to facilitate this process, while others rely on host-encoded genes. These differences are mediated by different sets of 'core' and 'accessory' genes, with the latter group accounting for some of the mechanisms that alter the host behaviours in unique ways. It is increasingly clear that despite their relatively small genomes, these phages exert signficant influence on their hosts and ultimately alter the fitness and other behaviours of their hosts.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Janice Gee Kay Hui
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Diane McDougald
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Scott A Rice
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
8
|
Gan Y, Yao Y, Guo S. The dormant cells of Mycobacterium tuberculosis may be resuscitated by targeting-expression system of recombinant mycobacteriophage-Rpf: implication of shorter course of TB chemotherapy in the future. Med Hypotheses 2015; 84:477-80. [PMID: 25691378 DOI: 10.1016/j.mehy.2015.01.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 01/30/2015] [Indexed: 11/24/2022]
Abstract
Here we hypothesized that dormant cells of Mycobacterium tuberculosis (M. tuberculosis) may be resuscitated by a new expression system of recombinant mycobacteriophage-resuscitation-promoting factor (Rpf). In this system, gene of targeted Rpf was cloned into mycobacteriophage genome, since mycobacteriophages possess several characteristics, including automatic identification and specific infection of M. tuberculosis. Thus the targeted delivery and endogenous expression of Rpf to the infected area of M. tuberculosis can be realized, followed by resuscitating the dormant cells of M. tuberculosis. Finally, these resuscitated M. tuberculosis can be thoroughly killed by a strong short-term subsequent chemotherapy, which makes the course of TB chemotherapy much shorter in the future compared to simple chemotherapy. Early studies have confirmed that dormant cells of M. tuberculosis can be resuscitated by Rpf in vitro, but so far, there is no report that Rpf can succeed in resuscitating dormant cells of M. tuberculosis in vivo, the reason may be that it is difficult for purified Rpf to remain active in vivo, especially to achieve targeted delivery of exogenous Rpf to the infected area of dormant cells of M. tuberculosis. Mycobacteriophage is a virus, capable of specifically identifying and infecting mycobacterium, such as M. tuberculosis. Several studies show that motif 3-containing proteins have peptidoglycan-hydrolysing activity and that while this activity is not required for mycobacteriophage viability, it facilitates efficient infection and DNA injection of mycobacteriophage (including motif 3 protein) into stationary phase cells. Thus this expression system can achieve targeted delivery and endogenous expression of Rpf to infected area of dormant cells of M. tuberculosis. Finally, we discuss the implication of this recombinant expression system for shortening the course of TB chemotherapy.
Collapse
Affiliation(s)
- Yiling Gan
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yiyong Yao
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Shuliang Guo
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Ciric M, Moon CD, Leahy SC, Creevey CJ, Altermann E, Attwood GT, Rakonjac J, Gagic D. Metasecretome-selective phage display approach for mining the functional potential of a rumen microbial community. BMC Genomics 2014; 15:356. [PMID: 24886150 PMCID: PMC4035507 DOI: 10.1186/1471-2164-15-356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/29/2014] [Indexed: 11/22/2022] Open
Abstract
Background In silico, secretome proteins can be predicted from completely sequenced genomes using various available algorithms that identify membrane-targeting sequences. For metasecretome (collection of surface, secreted and transmembrane proteins from environmental microbial communities) this approach is impractical, considering that the metasecretome open reading frames (ORFs) comprise only 10% to 30% of total metagenome, and are poorly represented in the dataset due to overall low coverage of metagenomic gene pool, even in large-scale projects. Results By combining secretome-selective phage display and next-generation sequencing, we focused the sequence analysis of complex rumen microbial community on the metasecretome component of the metagenome. This approach achieved high enrichment (29 fold) of secreted fibrolytic enzymes from the plant-adherent microbial community of the bovine rumen. In particular, we identified hundreds of heretofore rare modules belonging to cellulosomes, cell-surface complexes specialised for recognition and degradation of the plant fibre. Conclusions As a method, metasecretome phage display combined with next-generation sequencing has a power to sample the diversity of low-abundance surface and secreted proteins that would otherwise require exceptionally large metagenomic sequencing projects. As a resource, metasecretome display library backed by the dataset obtained by next-generation sequencing is ready for i) affinity selection by standard phage display methodology and ii) easy purification of displayed proteins as part of the virion for individual functional analysis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-356) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jasna Rakonjac
- Animal Nutrition and Health, AgResearch Ltd, Palmerston North 4442, New Zealand.
| | | |
Collapse
|
10
|
Oligopeptide m13 phage display in pathogen research. Viruses 2013; 5:2531-45. [PMID: 24136040 PMCID: PMC3814601 DOI: 10.3390/v5102531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/19/2022] Open
Abstract
Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline.
Collapse
|
11
|
Bothamley G. Supporting health systems for tuberculosis through research. Tuberculosis (Edinb) 2012; 92:289; athor reply 290. [PMID: 22687424 DOI: 10.1016/j.tube.2012.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/13/2012] [Indexed: 11/18/2022]
|