1
|
Ashraf MS, Tuli K, Moiz S, Sharma SK, Sharma D, Adnan M. AMP kinase: A promising therapeutic drug target for post-COVID-19 complications. Life Sci 2024; 359:123202. [PMID: 39489398 DOI: 10.1016/j.lfs.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses. AMPK activation, through allosteric or kinase-dependent mechanisms, impacts cellular processes like glucose uptake, fatty acid oxidation, and autophagy. The tissue-specific distribution of AMPK emphasizes its role in maintaining metabolic homeostasis throughout the body. Intriguingly, SARS-CoV-2 infection inhibits AMPK, contributing to metabolic dysregulation and post-COVID-19 complications. AMPK activators like capsaicinoids, curcumin, phytoestrogens, cilostazol, and momordicosides have demonstrated the potential to regulate AMPK activity. Compounds from various sources improve fatty acid oxidation and insulin sensitivity, with metformin showing opposing effects on AMPK activation compared to the virus, suggesting potential therapeutic options. The diverse effects of AMPK activation extend to its role in countering viral infections, further highlighting its significance in COVID-19. This review explores AMPK activation mechanisms, its role in metabolic disorders, and the potential use of natural compounds to target AMPK for post-COVID-19 complications. Also, it aims to review the possible methods of activating AMPK to prevent post-COVID-19 diabetes and cardiovascular complications. It also explores the use of natural compounds for their therapeutic effects in targeting the AMPK pathways. Targeting AMPK activation emerges as a promising avenue to mitigate the long-term effects of COVID-19, offering hope for improved patient outcomes and a better quality of life.
Collapse
Affiliation(s)
- Mohammad Saquib Ashraf
- Department of Medical Laboratory Science College of Pharmacy, Nursing and Medical Science Riyadh ELM University, Riyadh, P.O. Box 12734, Saudi Arabia.
| | - Kanika Tuli
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur 144208, Punjab, India
| | - Shadman Moiz
- Department of Biotechnology, Lalit Narayan Mithila University, Darbhanga 846004, Bihar, India
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Deepa Sharma
- UMM Matrix Innovations Private Limited, Delhi 110044, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia; Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
2
|
Salindri AD, Gujabidze M, Kipiani M, Lomtadze N, Tukvadze N, Avaliani Z, Blumberg HM, Kornfeld H, Kempker RR, Magee MJ. Metformin reduces the risk of poor treatment outcomes among individuals with rifampicin-resistant tuberculosis and type-2 diabetes mellitus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.12.24310348. [PMID: 39040177 PMCID: PMC11261920 DOI: 10.1101/2024.07.12.24310348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
We conducted a retrospective cohort study among individuals with rifampicin-resistant tuberculosis and diabetes to determine the association between metformin use and tuberculosis treatment outcomes. We found that individuals with metformin use had a significantly lower risk of poor tuberculosis treatment outcomes (adjusted RR=0.25, 95%CI 0.06 - 0.95) compared to those without.
Collapse
Affiliation(s)
- Argita D. Salindri
- Department of Population Health Sciences, Georgia State University School of Public Health, Atlanta, GA, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, USA
| | - Mariam Gujabidze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Maia Kipiani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- David Tvildiani Medical University, Tbilisi, Georgia
- The University of Georgia, Tbilisi, Georgia
| | - Nino Lomtadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- David Tvildiani Medical University, Tbilisi, Georgia
| | - Nestani Tukvadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- European University, Tbilisi, Georgia
| | - Henry M. Blumberg
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Hardy Kornfeld
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Russell R. Kempker
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew J. Magee
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Sutter A, Landis D, Nugent K. Metformin has immunomodulatory effects which support its potential use as adjunctive therapy in tuberculosis. Indian J Tuberc 2024; 71:89-95. [PMID: 38296396 DOI: 10.1016/j.ijtb.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/30/2022] [Accepted: 05/15/2023] [Indexed: 02/08/2024]
Abstract
Metformin is the preferred oral medication for patients with type 2 diabetes mellitus, and this blood glucose-lowering and insulin-sensitizing drug has immunomodulatory effects that could contribute to the management of patients with various other autoimmune and infectious diseases. Tuberculosis is one such infection, and it remains prevalent worldwide, largely due to the successful evasion of the host's immune responses by the infecting pathogen, Mycobacterium tuberculosis. This review focuses on the possible mechanisms relevant to metformin's modulation of innate and adaptive immune responses to Mycobacterium tuberculosis and its potential use as an adjunctive drug in the treatment of tuberculosis. Current data suggest that metformin increases autophagy, phagocytosis, and mitochondrial reactive oxygen species production, while limiting excess inflammation and tissue destruction. This multifaceted drug also augments cell-mediated immune responses by maintaining CD8+ T cell metabolic homeostasis and improving immunological memory. Several murine models have demonstrated that metformin can reduce tuberculosis severity and tissue pathology, and two in vitro human studies confirmed enhanced immune responses in metformin-treated cells. These studies provide convincing evidence supporting the use of metformin to augment immune responses in patients with tuberculosis.
Collapse
Affiliation(s)
- Alex Sutter
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dylan Landis
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
4
|
Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol 2023; 65:101672. [PMID: 36469987 DOI: 10.1016/j.smim.2022.101672] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Treatment of tuberculosis (TB) involves the administration of anti-mycobacterial drugs for several months. The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb, the causative agent) together with increased disease severity in people with co-morbidities such as diabetes mellitus and HIV have hampered efforts to reduce case fatality. In severe disease, TB pathology is largely attributable to over-exuberant host immune responses targeted at controlling bacterial replication. Non-resolving inflammation driven by host pro-inflammatory mediators in response to high bacterial load leads to pulmonary pathology including cavitation and fibrosis. The need to improve clinical outcomes and reduce treatment times has led to a two-pronged approach involving the development of novel antimicrobials as well as host-directed therapies (HDT) that favourably modulate immune responses to Mtb. HDT strategies incorporate aspects of immune modulation aimed at downregulating non-productive inflammatory responses and augmenting antimicrobial effector mechanisms to minimise pulmonary pathology and accelerate symptom resolution. HDT in combination with existing antimycobacterial agents offers a potentially promising strategy to improve the long-term outcome for TB patients. In this review, we describe components of the host immune response that contribute to inflammation and tissue damage in pulmonary TB, including cytokines, matrix metalloproteinases, lipid mediators, and neutrophil extracellular traps. We then proceed to review HDT directed at these pathways.
Collapse
|
5
|
Wang Y, Zhou Y, Chen L, Cheng Y, Lai H, Lyu M, Zeng J, Zhang Y, Feng P, Ying B. Metformin promotes smear conversion in tuberculosis‐diabetes comorbidity and construction of prediction models. J Clin Lab Anal 2022; 36:e24755. [DOI: 10.1002/jcla.24755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yili Wang
- West China Hospital Sichuan University Chengdu China
- West China School of Medicine Sichuan University Chengdu China
| | - Yanbing Zhou
- West China Hospital Sichuan University Chengdu China
- West China School of Medicine Sichuan University Chengdu China
| | - Liyu Chen
- Center for Infectious Diseases West China Hospital, Sichuan University Chengdu China
| | - Yuhui Cheng
- West China Hospital Sichuan University Chengdu China
- West China School of Medicine Sichuan University Chengdu China
| | - Hongli Lai
- West China Hospital Sichuan University Chengdu China
- West China School of Medicine Sichuan University Chengdu China
| | - Mengyuan Lyu
- West China Hospital Sichuan University Chengdu China
- West China School of Medicine Sichuan University Chengdu China
| | | | - Yao Zhang
- Ganzi People’s Hospital Ganzi Prefecture China
| | - Ping Feng
- Center for Infectious Diseases West China Hospital, Sichuan University Chengdu China
| | - Binwu Ying
- West China Hospital Sichuan University Chengdu China
- West China School of Medicine Sichuan University Chengdu China
| |
Collapse
|
6
|
Zainal AA, Merkhan MM. IMPACT OF ANTIDIABETIC DRUGS ON RISK AND OUTCOME OF COVID-19 INFECTION: A REVIEW. MILITARY MEDICAL SCIENCE LETTERS 2022; 91:140-160. [DOI: 10.31482/mmsl.2022.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Sutter A, Landis D, Nugent K. The potential role for metformin in the prevention and treatment of tuberculosis. J Thorac Dis 2022; 14:1758-1765. [PMID: 35813707 PMCID: PMC9264069 DOI: 10.21037/jtd-22-39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Alex Sutter
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dylan Landis
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
8
|
Kamyshnyi O, Matskevych V, Lenchuk T, Strilbytska O, Storey K, Lushchak O. Metformin to decrease COVID-19 severity and mortality: Molecular mechanisms and therapeutic potential. Biomed Pharmacother 2021; 144:112230. [PMID: 34628168 PMCID: PMC8492612 DOI: 10.1016/j.biopha.2021.112230] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has become a serious challenge for medicine and science. Analysis of the molecular mechanisms associated with the clinical manifestations and severity of COVID-19 has identified several key points of immune dysregulation observed in SARS-CoV-2 infection. For diabetic patients, factors including higher binding affinity and virus penetration, decreased virus clearance and decreased T cell function, increased susceptibility to hyperinflammation, and cytokine storm may make these patients susceptible to a more severe course of COVID-19 disease. Metabolic changes induced by diabetes, especially hyperglycemia, can directly affect the immunometabolism of lymphocytes in part by affecting the activity of the mTOR protein kinase signaling pathway. High mTOR activity can enhance the progression of diabetes due to the activation of effector proinflammatory subpopulations of lymphocytes and, conversely, low activity promotes the differentiation of T-regulatory cells. Interestingly, metformin, an extensively used antidiabetic drug, inhibits mTOR by affecting the activity of AMPK. Therefore, activation of AMPK and/or inhibition of the mTOR-mediated signaling pathway may be an important new target for drug therapy in COVID-19 cases mostly by reducing the level of pro-inflammatory signaling and cytokine storm. These suggestions have been partially confirmed by several retrospective analyzes of patients with diabetes mellitus hospitalized for severe COVID-19.
Collapse
Affiliation(s)
- Olexandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Victoriya Matskevych
- Department of Radiology and Radiation Medicine, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Tetyana Lenchuk
- Department of Radiology and Radiation Medicine, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Kenneth Storey
- Department of Biology, Carleton University, Ottawa, Canada
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine; Research and Development University, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
9
|
Justice JN, Gubbi S, Kulkarni AS, Bartley JM, Kuchel GA, Barzilai N. A geroscience perspective on immune resilience and infectious diseases: a potential case for metformin. GeroScience 2021; 43:1093-1112. [PMID: 32902818 PMCID: PMC7479299 DOI: 10.1007/s11357-020-00261-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
We are in the midst of the global pandemic. Though acute respiratory coronavirus (SARS-COV2) that leads to COVID-19 infects people of all ages, severe symptoms and mortality occur disproportionately in older adults. Geroscience interventions that target biological aging could decrease risk across multiple age-related diseases and improve outcomes in response to infectious disease. This offers hope for a new host-directed therapeutic approach that could (i) improve outcomes following exposure or shorten treatment regimens; (ii) reduce the chronic pathology associated with the infectious disease and subsequent comorbidity, frailty, and disability; and (iii) promote development of immunological memory that protects against relapse or improves response to vaccination. We review the possibility of this approach by examining available evidence in metformin: a generic drug with a proven safety record that will be used in a large-scale multicenter clinical trial. Though rigorous translational research and clinical trials are needed to test this empirically, metformin may improve host immune defenses and confer protection against long-term health consequences of infectious disease, age-related chronic diseases, and geriatric syndromes.
Collapse
Affiliation(s)
- Jamie N Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Sriram Gubbi
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Ameya S Kulkarni
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jenna M Bartley
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
10
|
Mishra R, Krishan S, Siddiqui AN, Kapur P, Khayyam KU, Rai PK, Sharma M. Impact of metformin therapy on health-related quality of life outcomes in tuberculosis patients with diabetes mellitus in India: A prospective study. Int J Clin Pract 2021; 75:e13864. [PMID: 33236505 DOI: 10.1111/ijcp.13864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To assess the impact of metformin use on health-related quality of life (HRQoL) in tuberculosis (TB) patients who are presented with type 2 diabetes mellitus (T2DM). METHODOLOGY In this community-based prospective study, TB patients attending Hakeem Abdul Hameed Centenary Hospital, New Delhi (India) and had comorbidity of T2DM between April 2018 and July 2019 were enrolled. Patients were divided into metformin users and metformin non-users on the basis of the presence of metformin in their routine as antidiabetic drug(s). HRQoL was determined using a validated TB-specific tool (Dhingra and Rajpal-12 scale ie, DR-12) consists of symptom and socio-psychological and exercise adaptation domains. The HRQoL scores were compared at pretreatment (1st visit), end of intensive phase (2nd visit) and end of treatment (3rd visit) between the two groups. RESULTS A total of 120 patients were enrolled, of which 24 were excluded as they did not respond at follow-up visits. Among the metformin users (n = 48) the mean age of patients was 47.56 years and 62.50% was males. Among the metformin non-users (n = 48), the mean age of patients was 49.02 years and 54.10% was males. The baseline characteristics were similar in both groups except for the substance used history (P = .025), literacy level (P = .048) and BMI (P = .028). Metformin users demonstrated significant improvement in symptom scores (2nd visit: P < .001; 3rd visit: P = .001) and socio-psychological and exercise adaptation scores (2nd visit: P < .0001; 3rd visit: P < .0001) as compared with metformin non-users at 2nd visit and 3rd visit. Overall, scores were also found to be significantly improved in metformin users (2nd visit: P < .001; 3rd visit: P = .001). CONCLUSION Metformin therapy exerted favourable effects on HRQoL in patients with TB and T2DM and can be recommended as an adjuvant antitubercular drug in TB patients with co-morbidity of T2DM, unless contraindicated.
Collapse
Affiliation(s)
- Ritu Mishra
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shri Krishan
- Department of Drug Safety and Pharmacovigilance, Syneos Health, Gurgaon, India
| | - Ali Nasir Siddiqui
- Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Prem Kapur
- Department of Medicine, Hamdard Institute of Medical Sciences and Research & Hakeem Abdul Hameed Centenary Hospital, Jamia Hamdard, New Delhi, India
| | - Khalid Umer Khayyam
- Department of Epidemiology & Public Health, National Institute of Tuberculosis & Respiratory Diseases, New Delhi, India
| | | | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
11
|
Chauhan A, Kumar M, Kumar A, Kanchan K. Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs. Life Sci 2021; 274:119301. [PMID: 33675895 DOI: 10.1016/j.lfs.2021.119301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
Tuberculosis is one of the deadliest infectious diseases existing in the world since ancient times and still possesses serious threat across the globe. Each year the number of cases increases due to high drug resistance shown by Mycobacterium tuberculosis (Mtb). Available antimycobacterial drugs have been classified as First line, Second line and Third line antibiotics depending on the time of their discoveries and their effectiveness in the treatment. These antibiotics have a broad range of targets ranging from cell wall to metabolic processes and their non-judicious and uncontrolled usage in the treatment for years has created a significant problem called multi-drug resistant (MDR) tuberculosis. In this review, we have summarized the mechanism of action of all the classified antibiotics currently in use along with the resistance mechanisms acquired by Mtb. We have focused on the new drug candidates/repurposed drugs, and drug in combinations, which are in clinical trials for either treating the MDR tuberculosis more effectively or involved in reducing the time required for the chemotherapy of drug sensitive TB. This information is not discussed very adequately on a single platform. Additionally, we have discussed the recent technologies that are being used to discover novel resistance mechanisms acquired by Mtb and for exploring novel drugs. The story of intrinsic resistance mechanisms and evolution in Mtb is far from complete. Therefore, we have also discussed intrinsic resistance mechanisms of Mtb and their evolution with time, emphasizing the hope for the development of novel antimycobacterial drugs for effective therapy of tuberculosis.
Collapse
Affiliation(s)
- Aditi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India
| | - Manoj Kumar
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Awanish Kumar
- Department of Bio Technology, National Institute of Technology, Raipur, India
| | - Kajal Kanchan
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
12
|
Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021; 11:624607. [PMID: 33718271 PMCID: PMC7952876 DOI: 10.3389/fcimb.2021.624607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Collapse
Affiliation(s)
| | - Randall J. Basaraba
- Metabolism of Infectious Diseases Laboratory, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
13
|
Mbara KC, Mofo Mato PE, Driver C, Nzuza S, Mkhombo NT, Gcwensa SK, Mcobothi EN, Owira PM. Metformin turns 62 in pharmacotherapy: Emergence of non-glycaemic effects and potential novel therapeutic applications. Eur J Pharmacol 2021; 898:173934. [PMID: 33609563 DOI: 10.1016/j.ejphar.2021.173934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Metformin is the most commonly prescribed oral antidiabetic medication. Direct/indirect activation of Adenosine Monophosphate-activated protein kinase (AMPK) and non-AMPK pathways, amongst others, are deemed to explain the molecular mechanisms of action of metformin. Metformin is an established insulin receptor sensitising antihyperglycemic agent, is highly affordable, and has superior safety and efficacy profiles. Emerging experimental and clinical evidence suggests that metformin has pleiotropic non-glycemic effects. Metformin appears to have weight stabilising, renoprotective, neuroprotective, cardio-vascular protective, and antineoplastic effects and mitigates polycystic ovarian syndrome. Anti-inflammatory and antioxidant effects of metformin seem to qualify it as an adjunct therapy in treating infectious diseases such as tuberculosis, viral hepatitis, and the current novel Covid-19 infections. So far, metformin is the only prescription medicine relevant to the emerging field of senotherapeutics. Non-glycemic effects of metformin favourable to its repurposing in therapeutic use are hereby discussed.
Collapse
Affiliation(s)
- Kingsley C Mbara
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Pascale E Mofo Mato
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Christine Driver
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Sanelisiwe Nzuza
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Ntokozo T Mkhombo
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Senamile Kp Gcwensa
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Esethu N Mcobothi
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Peter Mo Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa.
| |
Collapse
|
14
|
Crilly NP, Ayeh SK, Karakousis PC. The New Frontier of Host-Directed Therapies for Mycobacterium avium Complex. Front Immunol 2021; 11:623119. [PMID: 33552087 PMCID: PMC7862709 DOI: 10.3389/fimmu.2020.623119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
Mycobacterium avium complex (MAC) is an increasingly important cause of morbidity and mortality, and is responsible for pulmonary infection in patients with underlying lung disease and disseminated disease in patients with AIDS. MAC has evolved various virulence strategies to subvert immune responses and persist in the infected host. Current treatment for MAC is challenging, requiring a combination of multiple antibiotics given over a long time period (for at least 12 months after negative sputum culture conversion). Moreover, even after eradication of infection, many patients are left with residual lung dysfunction. In order to address similar challenges facing the management of patients with tuberculosis, recent attention has focused on the development of novel adjunctive, host-directed therapies (HDTs), with the goal of accelerating the clearance of mycobacteria by immune defenses and reducing or reversing mycobacterial-induced lung damage. In this review, we will summarize the evidence supporting specific adjunctive, HDTs for MAC, with a focus on the repurposing of existing immune-modulatory agents targeting a variety of different cellular pathways. We also highlight areas meriting further investigation.
Collapse
Affiliation(s)
- Nathan P Crilly
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel K Ayeh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
15
|
Singh AK, Singh R, Saboo B, Misra A. Non-insulin anti-diabetic agents in patients with type 2 diabetes and COVID-19: A Critical Appraisal of Literature. Diabetes Metab Syndr 2021; 15:159-167. [PMID: 33352455 PMCID: PMC7832723 DOI: 10.1016/j.dsx.2020.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Several observational studies have recently reported the outcomes of non-insulin anti-diabetic agents (ADA) in patients with T2DM and coronavirus disease 2019 (COVID-19). We sought to review the literature to appraise the clinicians on these outcomes. METHODS A literature search using the specific keywords was carried out in the database of PubMed, MedRxiv and Google Scholar up till December 11, 2020 applying Boolean method. Full text of all the relevant articles that reported the outcomes of ADA in patients with T2DM and COVID-19 were retrieved. Subsequently, an appraisal of literature report was narratively presented. RESULTS Available studies that reported the outcomes of ADA are either case series or retrospective cohorts or prospective observational studies, in absence of the randomized controlled trials (RCTs). Results from these observational studies suggest that amongst all the non-insulin ADA, metformin users prior to the hospitalization had improved outcomes compared to the non-users. Data for dipeptidyl-peptidase-4 inhibitors (DPP-4i) are encouraging although inconsistent. No documentation of any harm or benefit has been observed for sulfonylureas (SUs), sodium glucose co-transporter-2 inhibitors (SGLT-2i) and glucagon-like peptide receptor agonists (GLP-1RAs). No data is yet available for pioglitazone. CONCLUSION Metformin and DPP-4i should be continued in patients with T2DM until hospitalization or unless contraindicated. No evidence of harm suggests that SUs, SGLT-2i or GLP-1RAs may not be stopped unless very sick, hospitalized or contraindicated. The results from RCTs are needed to claim any meaningful benefit with either metformin or DPP-4i in patients with T2DM and COVID-19.
Collapse
Affiliation(s)
| | - Ritu Singh
- G.D Hospital & Diabetes Institute, Kolkata, India
| | | | - Anoop Misra
- Fortis CDOC Hospital for Diabetes and Allied Science, Chirag Enclave, New Delhi, India; National Diabetes, Obesity and Cholesterol Foundation, New Delhi, India; Diabetes Foundation (India), New Delhi, India
| |
Collapse
|
16
|
Marcos-Carbajal P, Allca-Muñoz C, Urbano-Niño Á, Salazar-Granara A. Exploración de la actividad antibacteriana de Metformina frente a Escherichia coli, Staphylococcus aureus y Pseudomonas aeruginosa. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.04.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El objetivo del estudio es determinar la actividad antibacteriana de Metformina frente a Escherichia coli, Staphylococcus aureus y Pseudomonas aeruginosa. Se evaluó la actividad antibacteriana mediante la técnica de Kirby Bauer. Se utilizó cepas de Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923) y Pseudomonas aeruginosa (ATCC 27853), las cuales se expusieron a Metformina en concentraciones de 250 mg y 500 mg, Ciprofloxacino (CIP) 5 µg, Imipenem (IPM) 10 µg, y Cefoxitin (FOX) 30 µg. Frente a Escherichia coli, Staphylococcus aureus y Pseudomonas aeruginosa se presentó un halo de inhibición de 6 mm. para Metformina 250 mg, 6 mm. para Metformina 500 mg, y un halo de inhibición >25 mm. con el uso de Ciprofloxacino 5 µg, Cefoxitin 30 µg, e Imipenem 10 µg respectivamente. En conclusion, In vitro Metformina a dosis de 250 y 500 mg, no presentó efecto antibacteriano frente a Escherichia coli, Staphylococcus aureus y Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Pool Marcos-Carbajal
- 1. Universidad Peruana Unión, Escuela Profesional de Medicina Humana, Laboratorio de Investigación en Biología Molecular 2. Universidad San Martin de Porres, Facultad de Medicina Humana, Centro de Investigación de Medicina Tradicional y Farmacología. Peru
| | - Christian Allca-Muñoz
- Universidad San Martin de Porres, Facultad de Medicina Humana, Centro de Investigación de Medicina Tradicional y Farmacología. Peru
| | - Ángel Urbano-Niño
- Universidad San Martin de Porres, Facultad de Medicina Humana, Centro de Investigación de Medicina Tradicional y Farmacología. Peru
| | - Alberto Salazar-Granara
- 2. Universidad San Martin de Porres, Facultad de Medicina Humana, Centro de Investigación de Medicina Tradicional y Farmacología 3. Sociedad Peruana de Farmacología y. Peru Terapéutica Experimental - SOPFARTEX
| |
Collapse
|
17
|
Paik S, Jo EK. An Interplay Between Autophagy and Immunometabolism for Host Defense Against Mycobacterial Infection. Front Immunol 2020; 11:603951. [PMID: 33262773 PMCID: PMC7688515 DOI: 10.3389/fimmu.2020.603951] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy, an intracellular catabolic pathway featuring lysosomal degradation, is a central component of the host immune defense against various infections including Mycobacterium tuberculosis (Mtb), the pathogen that causes tuberculosis. Mtb can evade the autophagic defense and drive immunometabolic remodeling of host phagocytes. Co-regulation of the autophagic and metabolic pathways may play a pivotal role in shaping the innate immune defense and inflammation during Mtb infection. Two principal metabolic sensors, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) kinase, function together to control the autophagy and immunometabolism that coordinate the anti-mycobacterial immune defense. Here, we discuss our current understanding of the interplay between autophagy and immunometabolism in terms of combating intracellular Mtb, and how AMPK-mTOR signaling regulates antibacterial autophagy in terms of Mtb infection. We describe several autophagy-targeting agents that promote host antimicrobial defenses by regulating the AMPK-mTOR axis. A better understanding of the crosstalk between immunometabolism and autophagy, both of which are involved in host defense, is crucial for the development of innovative targeted therapies for tuberculosis.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
18
|
Singh AK, Singh R. Is metformin ahead in the race as a repurposed host-directed therapy for patients with diabetes and COVID-19? Diabetes Res Clin Pract 2020; 165:108268. [PMID: 32533990 PMCID: PMC7836896 DOI: 10.1016/j.diabres.2020.108268] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Awadhesh Kumar Singh
- Department of Diabetes & Endocrinology, G.D Hospital & Diabetes Institute, Kolkata, India.
| | - Ritu Singh
- Department of Diabetes & Endocrinology, G.D Hospital & Diabetes Institute, Kolkata, India
| |
Collapse
|
19
|
Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections - a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci 2020; 27:74. [PMID: 32552732 PMCID: PMC7297667 DOI: 10.1186/s12929-020-00667-6] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Pulmonary diseases due to mycobacteria cause significant morbidity and mortality to human health. In addition to tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), recent epidemiological studies have shown the emergence of non-tuberculous mycobacteria (NTM) species in causing lung diseases in humans. Although more than 170 NTM species are present in various environmental niches, only a handful, primarily Mycobacterium avium complex and M. abscessus, have been implicated in pulmonary disease. While TB is transmitted through inhalation of aerosol droplets containing Mtb, generated by patients with symptomatic disease, NTM disease is mostly disseminated through aerosols originated from the environment. However, following inhalation, both Mtb and NTM are phagocytosed by alveolar macrophages in the lungs. Subsequently, various immune cells are recruited from the circulation to the site of infection, which leads to granuloma formation. Although the pathophysiology of TB and NTM diseases share several fundamental cellular and molecular events, the host-susceptibility to Mtb and NTM infections are different. Striking differences also exist in the disease presentation between TB and NTM cases. While NTM disease is primarily associated with bronchiectasis, this condition is rarely a predisposing factor for TB. Similarly, in Human Immunodeficiency Virus (HIV)-infected individuals, NTM disease presents as disseminated, extrapulmonary form rather than as a miliary, pulmonary disease, which is seen in Mtb infection. The diagnostic modalities for TB, including molecular diagnosis and drug-susceptibility testing (DST), are more advanced and possess a higher rate of sensitivity and specificity, compared to the tools available for NTM infections. In general, drug-sensitive TB is effectively treated with a standard multi-drug regimen containing well-defined first- and second-line antibiotics. However, the treatment of drug-resistant TB requires the additional, newer class of antibiotics in combination with or without the first and second-line drugs. In contrast, the NTM species display significant heterogeneity in their susceptibility to standard anti-TB drugs. Thus, the treatment for NTM diseases usually involves the use of macrolides and injectable aminoglycosides. Although well-established international guidelines are available, treatment of NTM disease is mostly empirical and not entirely successful. In general, the treatment duration is much longer for NTM diseases, compared to TB, and resection surgery of affected organ(s) is part of treatment for patients with NTM diseases that do not respond to the antibiotics treatment. Here, we discuss the epidemiology, diagnosis, and treatment modalities available for TB and NTM diseases of humans.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Sivakumar Shanmugam
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Rajesh Mondal
- Department of Bacteriology, National Institute for Research in Tuberculosis, Chennai, India
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States.
| |
Collapse
|
20
|
Luo P, Qiu L, Liu Y, Liu XL, Zheng JL, Xue HY, Liu WH, Liu D, Li J. Metformin Treatment Was Associated with Decreased Mortality in COVID-19 Patients with Diabetes in a Retrospective Analysis. Am J Trop Med Hyg 2020; 103:69-72. [PMID: 32446312 PMCID: PMC7356425 DOI: 10.4269/ajtmh.20-0375] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metformin was proposed to be a candidate for host-directed therapy for COVID-19. However, its efficacy remains to be validated. In this study, we compared the outcome of metformin users and nonusers in hospitalized COVID-19 patients with diabetes. Hospitalized diabetic patients with confirmed COVID-19 in the Tongji Hospital of Wuhan, China, from January 27, 2020 to March 24, 2020, were grouped into metformin and no-metformin groups according to the diabetic medications used. The demographics, characteristics, laboratory parameters, treatments, and clinical outcome in these patients were retrospectively assessed. A total of 283 patients (104 in the metformin and 179 in the no-metformin group) were included in this study. There were no significant differences between the two groups in gender, age, underlying diseases, clinical severity, and oxygen-support category at admission. The fasting blood glucose level of the metformin group was higher than that of the no-metformin group at admission and was under effective control in both groups after admission. Other laboratory parameters at admission and treatments after admission were not different between the two groups. The length of hospital stay did not differ between the two groups (21.0 days for metformin versus 19.5 days for no metformin, P = 0.74). However, in-hospital mortality was significantly lower in the metformin group (3/104 (2.9%) versus 22/179 (12.3%), P = 0.01). Antidiabetic treatment with metformin was associated with decreased mortality compared with diabetics not receiving metformin. This retrospective analysis suggests that metformin may offer benefits in patients with COVID-19 and that further study is indicated.
Collapse
Affiliation(s)
- Pan Luo
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Qiu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu-Lan Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Ling Zheng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Ying Xue
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Hua Liu
- Clinical Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Giraud-Gatineau A, Coya JM, Maure A, Biton A, Thomson M, Bernard EM, Marrec J, Gutierrez MG, Larrouy-Maumus G, Brosch R, Gicquel B, Tailleux L. The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection. eLife 2020; 9:e55692. [PMID: 32369020 PMCID: PMC7200153 DOI: 10.7554/elife.55692] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are widely used in the treatment of bacterial infections. Although known for their microbicidal activity, antibiotics may also interfere with the host's immune system. Here, we analyzed the effects of bedaquiline (BDQ), an inhibitor of the mycobacterial ATP synthase, on human macrophages. Genome-wide gene expression analysis revealed that BDQ reprogramed cells into potent bactericidal phagocytes. We found that 579 and 1,495 genes were respectively differentially expressed in naive- and M. tuberculosis-infected macrophages incubated with the drug, with an over-representation of lysosome-associated genes. BDQ treatment triggered a variety of antimicrobial defense mechanisms, including phagosome-lysosome fusion, and autophagy. These effects were associated with activation of transcription factor EB, involved in the transcription of lysosomal genes, resulting in enhanced intracellular killing of different bacterial species that were naturally insensitive to BDQ. Thus, BDQ could be used as a host-directed therapy against a wide range of bacterial infections.
Collapse
Affiliation(s)
- Alexandre Giraud-Gatineau
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
- Université Paris Diderot, Sorbonne Paris Cité, Cellule PasteurParisFrance
| | | | - Alexandra Maure
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
- Université Paris Diderot, Sorbonne Paris Cité, Cellule PasteurParisFrance
| | - Anne Biton
- Bioinformatics and Biostatistics, Department of Computational Biology, USR 3756 CNRS, Institut PasteurParisFrance
| | - Michael Thomson
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUnited Kingdom
| | - Elliott M Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Jade Marrec
- Mycobacterial Genetics Unit, Institut PasteurParisFrance
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Gérald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUnited Kingdom
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
| | - Brigitte Gicquel
- Mycobacterial Genetics Unit, Institut PasteurParisFrance
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease ControlShenzhenChina
| | - Ludovic Tailleux
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
- Mycobacterial Genetics Unit, Institut PasteurParisFrance
| |
Collapse
|
22
|
Host-Directed Therapies and Anti-Virulence Compounds to Address Anti-Microbial Resistant Tuberculosis Infection. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite global efforts to contain tuberculosis (TB), the disease remains a leading cause of morbidity and mortality worldwide, further exacerbated by the increased resistance to antibiotics displayed by the tubercle bacillus Mycobacterium tuberculosis. In order to treat drug-resistant TB, alternative or complementary approaches to standard anti-TB regimens are being explored. An area of active research is represented by host-directed therapies which aim to modulate the host immune response by mitigating inflammation and by promoting the antimicrobial activity of immune cells. Additionally, compounds that reduce the virulence of M. tuberculosis, for instance by targeting the major virulence factor ESX-1, are being given increased attention by the TB research community. This review article summarizes the current state of the art in the development of these emerging therapies against TB.
Collapse
|
23
|
Häfner S. One drug to cure them all. Microbes Infect 2020; 22:290-293. [PMID: 32173571 DOI: 10.1016/j.micinf.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Sophia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Lund Group, 2200, Copenhagen, Denmark.
| |
Collapse
|
24
|
Yew WW, Chan DP, Chang KC, Zhang Y. How does metformin act as a host-directed agent in tuberculosis associated with diabetes mellitus? J Thorac Dis 2020; 12:1124-1126. [PMID: 32274183 PMCID: PMC7139070 DOI: 10.21037/jtd.2020.01.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wing-Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Denise P Chan
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Chiu Chang
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Zhang M, He JQ. Impacts of metformin on tuberculosis incidence and clinical outcomes in patients with diabetes: a systematic review and meta-analysis. Eur J Clin Pharmacol 2019; 76:149-159. [PMID: 31786617 DOI: 10.1007/s00228-019-02786-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Accumulating evidence suggested that the use of metformin had more benefits for both prevention and treatment of tuberculosis (TB) than non-metformin use in patients with diabetes mellitus (DM); however, it remains to be fully elucidated on this topic. Thus, we conducted a systematic review and meta-analysis of published studies to determine the association between metformin use and TB in patients with diabetes. METHODS The MEDLINE, EMBASE, Information Sciences Institute (ISI) Web of Science, and Cochrane CENTRAL databases were searched from their inception to 15 April 2019. Studies that evaluated the use of metformin and TB disease were included. The quality of each study was evaluated through the Newcastle-Ottawa Scale (NOS). For pooled data, the relative risk (RR) and 95% confidence intervals (CIs) were calculated; otherwise, a systematic review. RESULTS Seventeen observational studies were included, all of which indicated a low risk of bias according to the NOS. The pooled analysis showed that metformin use was associated with a significantly lower active TB incidence and mortality among individuals with DM (RR = 0.51; 95% CI, 0.38-0.69, P ⩽ 0.001) and with TB-DM (RR = 0.34; 95% CI, 0.20-0.57, P ⩽ 0.001), respectively. CONCLUSIONS This meta-analysis indicated metformin use is related to benefits in both prevention and treatment outcomes of tuberculosis among patients with diabetes. Prospective clinical trials are needed to confirm these associations.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37,Guo Xue Alley, Chengdu, 610041, China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37,Guo Xue Alley, Chengdu, 610041, China.
| |
Collapse
|