1
|
Sury A, Maex M, Baulard A, Bhattacharyya RP, Depickère S, Hung DT, Cos P, Sayes F, Frigui W, Brosch R, Mathys V, Streicher EM, De Keersmaeker F, Rigouts L, Ceyssens PJ, Van den Bossche A. Speeding up drug susceptibility testing in Mycobacterium tuberculosis using RNA biomarkers. EBioMedicine 2025; 113:105611. [PMID: 40010155 PMCID: PMC11905850 DOI: 10.1016/j.ebiom.2025.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Efficient management of drug-resistant tuberculosis relies on fast diagnostics. To accelerate phenotypic drug susceptibility testing [pDST] for Mycobacterium tuberculosis [TB], we introduce TRACeR-TB, a test that infers drug resistance from antibiotic-specific mRNA biomarkers. METHODS To develop TRACeR-TB, target genes were first identified through RNA sequencing experiments conducted on two drug-exposed, susceptible strains for four antitubercular drugs. Based on these findings, we designed drug-specific multiplex Quantigene panels to quantify mRNA levels of 8-9 biomarkers per drug (class), directly from crude cell lysates. The performance of TRACeR-TB was compared to the widely used Mycobacteria Growth Indicator Tube [MGIT] pDST by subjecting 238 strains with diverse drug resistance profiles to both methods, and aligning results to genotypic data. Furthermore, we explored TRACeR-TB's potential for evaluating molecules that enhance antibiotic efficacy, and investigated its applicability in macrophage models to assess Mtb's intracellular stress responses to drugs. FINDINGS Antituberculosis drugs trigger distinct transcriptional stress responses in susceptible, but not resistant bacilli, enabling a differentiation of the antibiotic phenotype in only 6 h. Validation on 238 strains showed TRACeR-TB had 100% (95% CI: 93·1-100%) sensitivity and 89·5% (95% CI: 74·7-97·2%) specificity compared to, respectively, 82·3% (95% CI: 69·2%-91·5%) and 94·8% (95% CI: 81·9%-99·4%) for MGIT pDST. TRACeR-TB specificity is likely underestimated due to the inclusion of isolates harbouring uncharacterised mutations. TRACeR-TB demonstrated 100% concordance with MGIT for drugs with reliable MGIT outcomes (moxifloxacin and isoniazid). Additionally, its sensitivity outperformed current rifampicin testing, detecting resistance in all borderline-resistant strains that MGIT missed, and bedaquiline testing. Furthermore, the assay detected the predicted effect of a novel drug booster and the intracellular drug-induced stress in macrophage models, highlighting its potential for drug optimisation. INTERPRETATION TRACeR-TB is a complementary addition to current DSTs and can have a substantial impact on the TB diagnostics field. This tool can also play a vital role in identifying resistance mutations, thereby closing gaps in genotypic knowledge, and contribute to drug discovery and development. FUNDING Institut Pasteur, Agence Nationale de la Recherche.
Collapse
Affiliation(s)
- Amandine Sury
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Margo Maex
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Alain Baulard
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, 59000, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, 59000, France
| | - Roby P Bhattacharyya
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA; Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Stéphanie Depickère
- Platform for Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Rue Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Deborah T Hung
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsbaan 212, Antwerp, 2610, Belgium
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, 75015, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, 75015, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, 75015, France
| | - Vanessa Mathys
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Elizabeth M Streicher
- Division of Molecular Biology and Human Genetics, SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Frederik De Keersmaeker
- Department of Epidemiology and Public Health, Sciensano, Juliette Wytsmanstraat 14, Brussel, 1050, Belgium
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, 2000, Belgium; Mycobacteria Culture Collection of the Belgian Belgian Coordinated Collections of Microorganisms, Nationalestraat 155, Antwerp, 2000, Belgium
| | - Pieter-Jan Ceyssens
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - An Van den Bossche
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium.
| |
Collapse
|
2
|
Eke IE, Abramovitch RB. Functions of nitroreductases in mycobacterial physiology and drug susceptibility. J Bacteriol 2025; 207:e0032624. [PMID: 39772630 PMCID: PMC11841060 DOI: 10.1128/jb.00326-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis is a respiratory infection that is caused by members of the Mycobacterium tuberculosis complex, with M. tuberculosis (Mtb) being the predominant cause of the disease in humans. The approval of pretomanid and delamanid, two nitroimidazole-based compounds, for the treatment of tuberculosis encourages the development of more nitro-containing drugs that target Mtb. Similar to the nitroimidazoles, many antimycobacterial nitro-containing scaffolds are prodrugs that require reductive activation into metabolites that inhibit the growth of the pathogen. This reductive activation is mediated by mycobacterial nitroreductases, leading to the hypothesis that these nitroreductases contribute to the specificity of the nitro prodrugs for mycobacteria. In addition to their prodrug-activating activities, these nitroreductases have different native activities that support the growth of the bacteria. This review summarizes the activities of different mycobacterial nitroreductases with respect to their activation of different nitro prodrugs and highlights their physiological functions in the bacteria.
Collapse
Affiliation(s)
- Ifeanyichukwu E. Eke
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Robert B. Abramovitch
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Adolph C, Hards K, Williams ZC, Cheung CY, Keighley LM, Jowsey WJ, Kyte M, Inaoka DK, Kita K, Mackenzie JS, Steyn AJC, Li Z, Yan M, Tian GB, Zhang T, Ding X, Furkert DP, Brimble MA, Hickey AJR, McNeil MB, Cook GM. Identification of Chemical Scaffolds That Inhibit the Mycobacterium tuberculosis Respiratory Complex Succinate Dehydrogenase. ACS Infect Dis 2024; 10:3496-3515. [PMID: 39268963 DOI: 10.1021/acsinfecdis.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Drug-resistant Mycobacterium tuberculosis is a significant cause of infectious disease morbidity and mortality for which new antimicrobials are urgently needed. Inhibitors of mycobacterial respiratory energy metabolism have emerged as promising next-generation antimicrobials, but a number of targets remain unexplored. Succinate dehydrogenase (SDH), a focal point in mycobacterial central carbon metabolism and respiratory energy production, is required for growth and survival in M. tuberculosis under a number of conditions, highlighting the potential of inhibitors targeting mycobacterial SDH enzymes. To advance SDH as a novel drug target in M. tuberculosis, we utilized a combination of biochemical screening and in-silico deep learning technologies to identify multiple chemical scaffolds capable of inhibiting mycobacterial SDH activity. Antimicrobial susceptibility assays show that lead inhibitors are bacteriostatic agents with activity against wild-type and drug-resistant strains of M. tuberculosis. Mode of action studies on lead compounds demonstrate that the specific inhibition of SDH activity dysregulates mycobacterial metabolism and respiration and results in the secretion of intracellular succinate. Interaction assays demonstrate that the chemical inhibition of SDH activity potentiates the activity of other bioenergetic inhibitors and prevents the emergence of resistance to a variety of drugs. Overall, this study shows that SDH inhibitors are promising next-generation antimicrobials against M. tuberculosis.
Collapse
Affiliation(s)
- Cara Adolph
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Zoe C Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Africa Health Research Institute, University of KwaZulu Natal, Durban 4001, South Africa
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Laura M Keighley
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Matson Kyte
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Host-Defence Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Jared S Mackenzie
- Africa Health Research Institute, University of KwaZulu Natal, Durban 4001, South Africa
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu Natal, Durban 4001, South Africa
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Centres for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ming Yan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guo-Bao Tian
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
- Advanced Medical Technology Centre, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaobo Ding
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Daniel P Furkert
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Margaret A Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Anthony J R Hickey
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
4
|
Yan M, Li H, Qu Y, Li S, Zheng D, Guo X, Wu Z, Lu J, Pang Y, Li W, Yang J, Zhan L, Sun Y. CRISPR Screening and Comparative LC-MS Analysis Identify Genes Mediating Efficacy of Delamanid and Pretomanid against Mycobacterium tuberculosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400176. [PMID: 39162029 PMCID: PMC11497083 DOI: 10.1002/advs.202400176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/23/2024] [Indexed: 08/21/2024]
Abstract
Tuberculosis (TB), the leading cause of death from bacterial infections worldwide, results from infection with Mycobacterium tuberculosis (Mtb). The antitubercular agents delamanid (DLM) and pretomanid (PMD) are nitroimidazole prodrugs that require activation by an enzyme intrinsic to Mtb; however, the mechanism(s) of action and the associated metabolic pathways are largely unclear. Profiling of the chemical-genetic interactions of PMD and DLM in Mtb using combined CRISPR screening reveals that the mutation of rv2073c increases susceptibility of Mtb to these nitroimidazole drugs both in vitro and in infected mice, whereas mutation of rv0078 increases drug resistance. Further assays show that Rv2073c might confer intrinsic resistance to DLM/PMD by interfering with inhibition of the drug target, decaprenylphophoryl-2-keto-b-D-erythro-pentose reductase (DprE2), by active nicotinamide adenine dinucleotide (NAD) adducts. Characterization of the metabolic pathways of DLM/PMD in Mtb using a combination of chemical genetics and comparative liquid chromatography-mass spectrometry (LC-MS) analysis of DLM/PMD metabolites reveals that Rv0077c, which is negatively regulated by Rv0078, mediates drug resistance by metabolizing activated DLM/PMD. These results might guide development of new nitroimidazole prodrugs and new regimens for TB treatment.
Collapse
Affiliation(s)
- Mei‐Yi Yan
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and MultimorbidityNational Institute of Pathogen Biology and Center for Tuberculosis ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Haifeng Li
- NHC Key Laboratory of Human Disease Comparative Medicine, and National Center of Technology Innovation for Animal ModelInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100021P. R. China
| | - Yun‐Mo Qu
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and MultimorbidityNational Institute of Pathogen Biology and Center for Tuberculosis ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Si‐Shang Li
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and MultimorbidityNational Institute of Pathogen Biology and Center for Tuberculosis ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Dandan Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and MultimorbidityNational Institute of Pathogen Biology and Center for Tuberculosis ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Xiao‐Peng Guo
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and MultimorbidityNational Institute of Pathogen Biology and Center for Tuberculosis ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Zhaojun Wu
- Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing Chest HospitalCapital Medical UniversityBeijingP. R. China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck SurgeryBeijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingP. R. China
| | - Yu Pang
- Department of Bacteriology and ImmunologyBeijing Chest HospitalCapital Medical UniversityBeijingP. R. China
| | - Weimin Li
- Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijing Chest HospitalCapital Medical UniversityBeijingP. R. China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and MultimorbidityNational Institute of Pathogen Biology and Center for Tuberculosis ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Lingjun Zhan
- NHC Key Laboratory of Human Disease Comparative Medicine, and National Center of Technology Innovation for Animal ModelInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100021P. R. China
| | - Yi‐Cheng Sun
- NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and MultimorbidityNational Institute of Pathogen Biology and Center for Tuberculosis ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| |
Collapse
|
5
|
Poonawala H, Zhang Y, Kuchibhotla S, Green AG, Cirillo DM, Di Marco F, Spitlaeri A, Miotto P, Farhat MR. Transcriptomic responses to antibiotic exposure in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0118523. [PMID: 38587412 PMCID: PMC11064486 DOI: 10.1128/aac.01185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Transcriptional responses in bacteria following antibiotic exposure offer insights into antibiotic mechanism of action, bacterial responses, and characterization of antimicrobial resistance. We aimed to define the transcriptional antibiotic response (TAR) in Mycobacterium tuberculosis (Mtb) isolates for clinically relevant drugs by pooling and analyzing Mtb microarray and RNA-seq data sets. We generated 99 antibiotic transcription profiles across 17 antibiotics, with 76% of profiles generated using 3-24 hours of antibiotic exposure and 49% within one doubling of the WHO antibiotic critical concentration. TAR genes were time-dependent, and largely specific to the antibiotic mechanism of action. TAR signatures performed well at predicting antibiotic exposure, with the area under the receiver operating curve (AUC) ranging from 0.84-1.00 (TAR <6 hours of antibiotic exposure) and 0.76-1.00 (>6 hours of antibiotic exposure) for upregulated genes and 0.57-0.90 and 0.87-1.00, respectfully, for downregulated genes. This work desmonstrates that transcriptomics allows for the assessment of antibiotic activity in Mtb within 6 hours of exposure.
Collapse
Affiliation(s)
- Husain Poonawala
- Department of Medicine and Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts, USA
- Department of Medicine and Department of Anatomic and Clinical Pathology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yu Zhang
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Anna G. Green
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Di Marco
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Spitlaeri
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maha R. Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Adolph C, Cheung CY, McNeil MB, Jowsey WJ, Williams ZC, Hards K, Harold LK, Aboelela A, Bujaroski RS, Buckley BJ, Tyndall JDA, Li Z, Langer JD, Preiss L, Meier T, Steyn AJC, Rhee KY, Berney M, Kelso MJ, Cook GM. A dual-targeting succinate dehydrogenase and F 1F o-ATP synthase inhibitor rapidly sterilizes replicating and non-replicating Mycobacterium tuberculosis. Cell Chem Biol 2024; 31:683-698.e7. [PMID: 38151019 DOI: 10.1016/j.chembiol.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.
Collapse
Affiliation(s)
- Cara Adolph
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - William J Jowsey
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Zoe C Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Liam K Harold
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ashraf Aboelela
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Richard S Bujaroski
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Laura Preiss
- Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Life Sciences, Imperial College London, Exhibition Road, London SW7 2AZ, UK; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu Natal, Durban, KwaZulu, Natal, South Africa; Department of Microbiology, Centers for AIDs Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael J Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1042, New Zealand.
| |
Collapse
|
7
|
Verma A, Naik B, Kumar V, Mishra S, Choudhary M, Khan JM, Gupta AK, Pandey P, Rustagi S, Kakati B, Gupta S. Revolutionizing Tuberculosis Treatment: Uncovering New Drugs and Breakthrough Inhibitors to Combat Drug-Resistant Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2369-2385. [PMID: 37944023 DOI: 10.1021/acsinfecdis.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Tuberculosis (TB) is a global health threat that causes significant mortality. This review explores chemotherapeutics that target essential processes in Mycobacterium tuberculosis, such as DNA replication, protein synthesis, cell wall formation, energy metabolism, and proteolysis. We emphasize the need for new drugs to treat drug-resistant strains and shorten the treatment duration. Emerging targets and promising inhibitors were identified by examining the intricate biology of TB. This review provides an overview of recent developments in the search for anti-TB drugs with a focus on newly validated targets and inhibitors. We aimed to contribute to efforts to combat TB and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, UP, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchur 788011, Assam, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCALS, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Barnali Kakati
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, U.K., India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| |
Collapse
|
8
|
Shahin AI, Zaraei SO, Alzuraiqi S, Abdulateef Z, Abbas NE, Al-Tel TH, El-Gamal MI. Evaluation of 2,3-dihydroimidazo[2,1- b]oxazole and imidazo[2,1- b]oxazole derivatives as chemotherapeutic agents. Future Med Chem 2023; 15:1885-1901. [PMID: 37814826 DOI: 10.4155/fmc-2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Imidazo[2,1-b]oxazole and 2,3-dihydroimidazo[2,1-b]oxazole ring systems are commonly employed in therapeutically active molecules. In this article, the authors review the utilization of these core scaffolds as chemotherapeutic agents from 2018 to 2022. These scaffolds possess many important biological activities including antimicrobial and anticancer, among others. This review covers their biological activities and structure-activity relationships. One of the most important drugs in this class of compounds is the antitubercular agent delamanid. In this paper, the compounds structure-activity relationship and preclinical and clinical trial data are thoroughly presented.
Collapse
Affiliation(s)
- Afnan I Shahin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shahed Alzuraiqi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Zahaa Abdulateef
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Noora E Abbas
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
9
|
Eke IE, Williams JT, Haiderer ER, Albrecht VJ, Murdoch HM, Abdalla BJ, Abramovitch RB. Discovery and characterization of antimycobacterial nitro-containing compounds with distinct mechanisms of action and in vivo efficacy. Antimicrob Agents Chemother 2023; 67:e0047423. [PMID: 37610224 PMCID: PMC10508139 DOI: 10.1128/aac.00474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Nitro-containing compounds have emerged as important agents in the control of tuberculosis (TB). From a whole-cell high-throughput screen for Mycobacterium tuberculosis (Mtb) growth inhibitors, 10 nitro-containing compounds were prioritized for characterization and mechanism of action studies. HC2209, HC2210, and HC2211 are nitrofuran-based prodrugs that need the cofactor F420 machinery for activation. Unlike pretomanid which depends only on deazaflavin-dependent nitroreductase (Ddn), these nitrofurans depend on Ddn and possibly another F420-dependent reductase for activation. These nitrofurans also differ from pretomanid in their potent activity against Mycobacterium abscessus. Four dinitrobenzamides (HC2217, HC2226, HC2238, and HC2239) and a nitrofuran (HC2250) are proposed to be inhibitors of decaprenyl-phosphoryl-ribose 2'-epimerase 1 (DprE1), based on isolation of resistant mutations in dprE1. Unlike other DprE1 inhibitors, HC2250 was found to be potent against non-replicating persistent bacteria, suggesting additional targets. Two of the compounds, HC2233 and HC2234, were found to have potent, sterilizing activity against replicating and non-replicating Mtb in vitro, but a proposed mechanism of action could not be defined. In a pilot in vivo efficacy study, HC2210 was orally bioavailable and efficacious in reducing bacterial load by ~1 log in a chronic murine TB infection model.
Collapse
Affiliation(s)
- Ifeanyichukwu E. Eke
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - John T. Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Elizabeth R. Haiderer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Veronica J. Albrecht
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Heather M. Murdoch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Bassel J. Abdalla
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Abrahams KA, Batt SM, Gurcha SS, Veerapen N, Bashiri G, Besra GS. DprE2 is a molecular target of the anti-tubercular nitroimidazole compounds pretomanid and delamanid. Nat Commun 2023; 14:3828. [PMID: 37380634 DOI: 10.1038/s41467-023-39300-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/30/2023] Open
Abstract
Mycobacterium tuberculosis is one of the global leading causes of death due to a single infectious agent. Pretomanid and delamanid are new antitubercular agents that have progressed through the drug discovery pipeline. These compounds are bicyclic nitroimidazoles that act as pro-drugs, requiring activation by a mycobacterial enzyme; however, the precise mechanisms of action of the active metabolite(s) are unclear. Here, we identify a molecular target of activated pretomanid and delamanid: the DprE2 subunit of decaprenylphosphoribose-2'-epimerase, an enzyme required for the synthesis of cell wall arabinogalactan. We also provide evidence for an NAD-adduct as the active metabolite of pretomanid. Our results highlight DprE2 as a potential antimycobacterial target and provide a foundation for future exploration into the active metabolites and clinical development of pretomanid and delamanid.
Collapse
Affiliation(s)
- Katherine A Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sudagar S Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Natacha Veerapen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ghader Bashiri
- Laboratory of Molecular and Microbial Biochemistry, School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
11
|
Fernandes GFS, Manieri KF, Bonjorno AF, Campos DL, Ribeiro CM, Demarqui FM, Ruiz DAG, Nascimento-Junior NM, Denny WA, Thompson AM, Pavan FR, Dos Santos JL. Synthesis and Anti-Mycobacterium tuberculosis Activity of Imidazo[2,1-b][1,3]oxazine Derivatives against Multidrug-Resistant Strains. ChemMedChem 2023; 18:e202300015. [PMID: 37002895 DOI: 10.1002/cmdc.202300015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
The emergence of multidrug-resistant strains of M. tuberculosis has raised concerns due to the greater difficulties in patient treatment and higher mortality rates. Herein, we revisited the 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine scaffold and identified potent new carbamate derivatives having MIC90 values of 0.18-1.63 μM against Mtb H37Rv. Compounds 47-49, 51-53, and 55 exhibited remarkable activity against a panel of clinical isolates, displaying MIC90 values below 0.5 μM. In Mtb-infected macrophages, several compounds demonstrated a 1-log greater reduction in mycobacterial burden than rifampicin and pretomanid. The compounds tested did not exhibit significant cytotoxicity against three cell lines or any toxicity to Galleria mellonella. Furthermore, the imidazo[2,1-b][1,3]oxazine derivatives did not show substantial activity against other bacteria or fungi. Finally, molecular docking studies revealed that the new compounds could interact with the deazaflavin-dependent nitroreductase (Ddn) in a similar manner to pretomanid. Collectively, our findings highlight the chemical universe of imidazo[2,1-b][1,3]oxazines and their promising potential against MDR-TB.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Present address: Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Karyn F Manieri
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Andressa F Bonjorno
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Debora L Campos
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Camila M Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Fernanda M Demarqui
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Daniel A G Ruiz
- Institute of Chemistry, São Paulo State University, Rua Professor Francisco Degni, 55, Araraquara, 14800060, Brazil
| | - Nailton M Nascimento-Junior
- Institute of Chemistry, São Paulo State University, Rua Professor Francisco Degni, 55, Araraquara, 14800060, Brazil
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Fernando R Pavan
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University, Rod. Araraquara-Jaú, Araraquara, 14800903, Brazil
| |
Collapse
|
12
|
Li X, Yang Y, Lu N, Luo F, Fan R, Peng N. NOS2/miR-493-5p Signaling Regulates in the LPS-Induced Inflammatory Response in the RAW264.7 Cells. Biochem Genet 2023; 61:1097-1112. [PMID: 36449151 DOI: 10.1007/s10528-022-10297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022]
Abstract
Tuberculosis (TB) is a fatal infectious disease; however, the molecular mechanisms underlying the pathogenicity of TB remain elusive. The present study aims to identify potential biomarkers associated with Mycobacterium tuberculosis (M.tb) infection by using integrated bioinformatics and in vitro validation studies. GSE50050, GSE78706, and GSE108844 data from the gene expression omnibus (GEO) database were downloaded to identify differentially expressed genes (DEGs). The functions of DEGs were further subjected to gene ontology (GO) and KEGG pathway analysis. The hub genes from the DEGs were determined based on the protein-protein interaction (PPI) network analysis. Finally, the hub genes were experimentally validated using the in vitro functional studies. A total of 26 common DEGs were identified among GSE50050, GSE78706, and GSE108844. The functional enrichment analysis showed that the common DEGs were associated with cytokines response and TB pathways. The PPI network analysis identified nine hub genes. Further in vitro studies showed that nitric oxide synthase 2 (NOS2) was up-regulated in RAW264.7 cells upon lipopolysaccharides (LPS) stimulation, which was accompanied by increased inflammatory cytokines release. Furthermore, NOS2 was found to be a target of miR-493-5p, which was confirmed by luciferase reporter assay. NOS2 was repressed by miR-493-5p overexpression and was up-regulated after miR-493-5p inhibition in RAW264.7 cells. The rescue experiments showed that LPS-induced increase in the inflammatory cytokines of the RAW264.7 cells was significantly attenuated by NOS2 knockdown and miR-493-5p overexpression. Collectively, our results for the first time demonstrated that NOS2/miR-493-5p signaling pathway may potentially involve in the inflammatory response during bacterial infection such as M. tb infection.
Collapse
Affiliation(s)
- Xiaofei Li
- Clinical Laboratory, The Third People's Hospital of Kunming, Kunming, China
| | - Yongrui Yang
- Department of Hepatology, The Third People's Hospital of Kunming, Kunming, China
| | - Nihong Lu
- Department of Respiratory Medicine, The Third People's Hospital of Kunming, Kunming, China
| | - Feng Luo
- Clinical Laboratory, The Third People's Hospital of Kunming, Kunming, China
| | - Ru Fan
- School of Public Health, Dali University, Dali, China
| | - Niancai Peng
- School of Life Science and Technology and School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
13
|
Pais JP, Antoniuk O, Freire R, Pires D, Valente E, Anes E, Constantino L. Nitrobenzoates and Nitrothiobenzoates with Activity against M. tuberculosis. Microorganisms 2023; 11:microorganisms11040969. [PMID: 37110393 PMCID: PMC10142844 DOI: 10.3390/microorganisms11040969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Esters of weak acids have shown improved antimycobacterial activity over the corresponding free acids and nitro benzoates in particular have previously shown to have a very intriguing activity. To expand the potential of nitro-derivatives of benzoic acid as antimycobacterial drugs and explore the effects of various structural features on the activity of these compounds, we have obtained a library of 64 derivatives containing esters and thioesters of benzoates and studied their activity against M. tuberculosis, the stability of the compounds, their activation by mycobacterial enzymes and the potential cytotoxicity against human monocytic THP-1 cell line. Our results showed that the most active compounds are those with an aromatic nitro substitution, with the 3,5-dinitro esters series being the most active. Also, the greater antitubercular activity for the nitro derivatives was shown to be unrelated to their pKa values or hydrolysis rates. Given the conventional relationship between nitro-containing substances and toxicity, one might anticipate that the great antimicrobial activity of nitro compounds would be associated with high toxicity; yet, we have not found such a relationship. The nitrobenzoate scaffold, particularly the 3,5-dinitrobenzoate scaffold, merits further investigation, because it has the potential to generate future antimycobacterial agents with improved activity.
Collapse
Affiliation(s)
- João P Pais
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Olha Antoniuk
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Raquel Freire
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - David Pires
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Emília Valente
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Anes
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Luis Constantino
- Research Institute for Medicines (iMed.UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
14
|
Impaired Succinate Oxidation Prevents Growth and Influences Drug Susceptibility in Mycobacterium tuberculosis. mBio 2022; 13:e0167222. [PMID: 35856639 PMCID: PMC9426501 DOI: 10.1128/mbio.01672-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Succinate is a major focal point in mycobacterial metabolism and respiration, serving as both an intermediate of the tricarboxylic acid (TCA) cycle and a direct electron donor for the respiratory chain. Mycobacterium tuberculosis encodes multiple enzymes predicted to be capable of catalyzing the oxidation of succinate to fumarate, including two different succinate dehydrogenases (Sdh1 and Sdh2) and a separate fumarate reductase (Frd) with possible bidirectional behavior. Previous attempts to investigate the essentiality of succinate oxidation in M. tuberculosis have relied on the use of single-gene deletion mutants, raising the possibility that the remaining enzymes could catalyze succinate oxidation in the absence of the other. To address this, we report on the use of mycobacterial CRISPR interference (CRISPRi) to construct single, double, and triple transcriptional knockdowns of sdhA1, sdhA2, and frdA in M. tuberculosis. We show that the simultaneous knockdown of sdhA1 and sdhA2 is required to prevent succinate oxidation and overcome the functional redundancy within these enzymes. Succinate oxidation was demonstrated to be essential for the optimal growth of M. tuberculosis, with the combined knockdown of sdhA1 and sdhA2 significantly impairing the activity of the respiratory chain and preventing growth on a range of carbon sources. Moreover, impaired succinate oxidation was shown to influence the activity of cell wall-targeting antibiotics and bioenergetic inhibitors against M. tuberculosis. Together, these data provide fundamental insights into mycobacterial physiology, energy metabolism, and antimicrobial susceptibility. IMPORTANCE New drugs are urgently required to combat the tuberculosis epidemic that claims 1.5 million lives annually. Inhibitors of mycobacterial energy metabolism have shown significant promise clinically; however, further advancing this nascent target space requires a more fundamental understanding of the respiratory enzymes and pathways used by Mycobacterium tuberculosis. Succinate is a major focal point in mycobacterial metabolism and respiration; yet, the essentiality of succinate oxidation and the consequences of inhibiting this process are poorly defined. In this study, we demonstrate that impaired succinate oxidation prevents the optimal growth of M. tuberculosis on a range of carbon sources and significantly reduces the activity of the electron transport chain. Moreover, we show that impaired succinate oxidation both positively and negatively influences the activity of a variety of antituberculosis drugs. Combined, these findings provide fundamental insights into mycobacterial physiology and drug susceptibility that will be useful in the continued development of bioenergetic inhibitors.
Collapse
|
15
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
16
|
Cardoso NC, Chibale K, Singh V. Implications of Mycobacterium tuberculosis Metabolic Adaptability on Drug Discovery and Development. ACS Infect Dis 2022; 8:414-421. [PMID: 35175727 DOI: 10.1021/acsinfecdis.1c00627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberculosis remains a global health threat that is being exacerbated by the increase in infections attributed to drug resistant Mycobacterium tuberculosis. To combat this, there has been a surge in drug discovery programs to develop new, potent compounds and identify promising drug targets in the pathogen. Two areas of M. tuberculosis biology that have emerged as rich sources of potential novel drug targets are cell wall biosynthesis and energy metabolism. Both processes are important for survival of M. tuberculosis under replicating and nonreplicating conditions. However, both processes are also inherently adaptable under different conditions. Furthermore, cell wall biosynthesis is energy intensive and, thus, reliant on an efficiently functioning energy production system. This Perspective focuses on the interplay between cell wall biosynthesis and energy metabolism in M. tuberculosis, how adaptations in one pathway may affect the other, and what consequences this could have for drug discovery and development and the identification of novel drug targets.
Collapse
Affiliation(s)
- Nicole C. Cardoso
- Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
17
|
Abstract
Given the low treatment success rates of drug-resistant tuberculosis (TB), novel TB drugs are urgently needed. The landscape of TB treatment has changed considerably over the last decade with the approval of three new compounds: bedaquiline, delamanid and pretomanid. Of these, delamanid and pretomanid belong to the same class of drugs, the nitroimidazoles. In order to close the knowledge gap on how delamanid and pretomanid compare with each other, we summarize the main findings from preclinical research on these two compounds. We discuss the compound identification, mechanism of action, drug resistance, in vitro activity, in vivo pharmacokinetic profiles, and preclinical in vivo activity and efficacy. Although delamanid and pretomanid share many similarities, several differences could be identified. One finding of particular interest is that certain Mycobacterium tuberculosis isolates have been described that are resistant to either delamanid or pretomanid, but with preserved susceptibility to the other compound. This might imply that delamanid and pretomanid could replace one another in certain regimens. Regarding bactericidal activity, based on in vitro and preclinical in vivo activity, delamanid has lower MICs and higher mycobacterial load reductions at lower drug concentrations and doses compared with pretomanid. However, when comparing in vivo preclinical bactericidal activity at dose levels equivalent to currently approved clinical doses based on drug exposure, this difference in activity between the two compounds fades. However, it is important to interpret these comparative results with caution knowing the variability inherent in preclinical in vitro and in vivo models.
Collapse
Affiliation(s)
- Saskia E. Mudde
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Corresponding author. E-mail:
| | | | - Anne Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Hannelore I. Bax
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurriaan E. M. De Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Nitric Oxide-Dependent Electron Transport Chain Inhibition by the Cytochrome bc1 Inhibitor and Pretomanid Combination Kills Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0095621. [PMID: 34152815 DOI: 10.1128/aac.00956-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis, harbors a branched electron transport chain, preventing the bactericidal action of cytochrome bc1 inhibitors (e.g., TB47). Here, we investigated, using luminescent mycobacterial strains, the in vitro combination activity of cytochrome bc1 inhibitors and nitric oxide (NO) donors including pretomanid (PMD) and explored the mechanisms of combination activity. The TB47 and PMD combination quickly abolished the light emission of luminescent bacilli, as was the case for the combination of TB47 and aurachin D, a putative cytochrome bd inhibitor. The TB47 and PMD combination inhibited M. tuberculosis oxygen consumption, decreased ATP levels, and had a delayed bactericidal effect. The NO scavenger carboxy-PTIO prevented the bactericidal activity of the drug combination, suggesting the requirement for NO. In addition, cytochrome bc1 inhibitors were largely bactericidal when administered with DETA NONOate, another NO donor. Proteomic analysis revealed that the cotreated bacilli had a compromised expression of the dormancy regulon proteins, PE/PPE proteins, and proteins required for the biosynthesis of several cofactors, including mycofactocin. Some of these proteomic changes, e.g., the impaired dormancy regulon induction, were attributed to PMD. In conclusion, combination of cytochrome bc1 inhibitors with PMD inhibited M. tuberculosis respiration and killed the bacilli. The activity of cytochrome bc1 inhibitors can be greatly enhanced by NO donors. Monitoring of luminescence may be further exploited to screen cytochrome bd inhibitors.
Collapse
|
19
|
Anand K, Tripathi A, Shukla K, Malhotra N, Jamithireddy AK, Jha RK, Chaudhury SN, Rajmani RS, Ramesh A, Nagaraja V, Gopal B, Nagaraju G, Narain Seshayee AS, Singh A. Mycobacterium tuberculosis SufR responds to nitric oxide via its 4Fe-4S cluster and regulates Fe-S cluster biogenesis for persistence in mice. Redox Biol 2021; 46:102062. [PMID: 34392160 PMCID: PMC8371249 DOI: 10.1016/j.redox.2021.102062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
The persistence of Mycobacterium tuberculosis (Mtb) is a major problem in managing tuberculosis (TB). Host-generated nitric oxide (NO) is perceived as one of the signals by Mtb to reprogram metabolism and respiration for persistence. However, the mechanisms involved in NO sensing and reorganizing Mtb's physiology are not fully understood. Since NO damages iron-sulfur (Fe-S) clusters of essential enzymes, the mechanism(s) involved in regulating Fe-S cluster biogenesis could help Mtb persist in host tissues. Here, we show that a transcription factor SufR (Rv1460) senses NO via its 4Fe-4S cluster and promotes persistence of Mtb by mobilizing the Fe-S cluster biogenesis system; suf operon (Rv1460-Rv1466). Analysis of anaerobically purified SufR by UV-visible spectroscopy, circular dichroism, and iron-sulfide estimation confirms the presence of a 4Fe-4S cluster. Atmospheric O2 and H2O2 gradually degrade the 4Fe-4S cluster of SufR. Furthermore, electron paramagnetic resonance (EPR) analysis demonstrates that NO directly targets SufR 4Fe-4S cluster by forming a protein-bound dinitrosyl-iron-dithiol complex. DNase I footprinting, gel-shift, and in vitro transcription assays confirm that SufR directly regulates the expression of the suf operon in response to NO. Consistent with this, RNA-sequencing of MtbΔsufR demonstrates deregulation of the suf operon under NO stress. Strikingly, NO inflicted irreversible damage upon Fe-S clusters to exhaust respiratory and redox buffering capacity of MtbΔsufR. Lastly, MtbΔsufR failed to recover from a NO-induced non-growing state and displayed persistence defect inside immune-activated macrophages and murine lungs in a NO-dependent manner. Data suggest that SufR is a sensor of NO that supports persistence by reprogramming Fe-S cluster metabolism and bioenergetics.
Collapse
Affiliation(s)
- Kushi Anand
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Ashutosh Tripathi
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Kaustubh Shukla
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Nitish Malhotra
- National Centre for Biological Science, Bangalore, 560065, India
| | | | - Rajiv Kumar Jha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | - Raju S Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India
| | - Arati Ramesh
- National Centre for Biological Science, Bangalore, 560065, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | - Amit Singh
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, 560012, India; Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
20
|
Abstract
Mycobacterium tuberculosis is the causative pathogen of the pulmonary disease tuberculosis. Despite the availability of effective treatment programs, there is a global pursuit of new anti-tubercular agents to respond to the developing threat of drug resistance, in addition to reducing the extensive duration of chemotherapy and any associated toxicity. The route to mycobacterial drug discovery can be considered from two directions: target-to-drug and drug-to-target. The former approach uses conventional methods including biochemical assays along with innovative computational screens, but is yet to yield any drug candidates to the clinic, with a high attrition rate owing to lack of whole cell activity. In the latter approach, compound libraries are screened for efficacy against the bacilli or model organisms, ensuring whole cell activity, but here subsequent target identification is the rate-limiting step. Advances in a variety of scientific fields have enabled the amalgamation of aspects of both approaches in the development of novel drug discovery tools, which are now primed to accelerate the discovery of novel hits and leads with known targets and whole cell activity. This review discusses these traditional and innovative techniques, which are widely used in the quest for new anti-tubercular compounds. Innovations in mycobacterial drug discovery to accelerate the identification of new drug candidates with confirmed targets and whole cell activity.![]()
Collapse
Affiliation(s)
- Katherine A Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham Edgbaston Birmingham B15 2TT UK +44 (0)121 41 45925 +44 (0)121 41 58125
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham Edgbaston Birmingham B15 2TT UK +44 (0)121 41 45925 +44 (0)121 41 58125
| |
Collapse
|
21
|
Reichmuth ML, Hömke R, Zürcher K, Sander P, Avihingsanon A, Collantes J, Loiseau C, Borrell S, Reinhard M, Wilkinson RJ, Yotebieng M, Fenner L, Böttger EC, Gagneux S, Egger M, Keller PM. Natural Polymorphisms in Mycobacterium tuberculosis Conferring Resistance to Delamanid in Drug-Naive Patients. Antimicrob Agents Chemother 2020; 64:e00513-20. [PMID: 32868333 PMCID: PMC7577131 DOI: 10.1128/aac.00513-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mutations in the genes of the F420 signaling pathway of Mycobacterium tuberculosis complex, including dnn, fgd1, fbiA, fbiB, fbiC, and fbiD, can lead to delamanid resistance. We searched for such mutations among 129 M. tuberculosis strains from Asia, South America, and Africa using whole-genome sequencing; 70 (54%) strains had at least one mutation in one of the genes. For 10 strains with mutations, we determined the MIC of delamanid. We found one strain from a delamanid-naive patient carrying the natural polymorphism Tyr29del (ddn) that was associated with a critical delamanid MIC.
Collapse
Affiliation(s)
- Martina L Reichmuth
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Rico Hömke
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Swiss National Center for Mycobacteria, Zurich, Switzerland
| | - Kathrin Zürcher
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Swiss National Center for Mycobacteria, Zurich, Switzerland
| | - Anchalee Avihingsanon
- The HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Centre and Tuberculosis Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jimena Collantes
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Chloé Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, Republic of South Africa
- Department of Infectious Diseases, Imperial College, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Marcel Yotebieng
- National TB Lab, Kinshasa, Democratic Republic of the Congo
- Albert Einstein College of Medicine, New York, New York, USA
| | - Lukas Fenner
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Swiss National Center for Mycobacteria, Zurich, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Centre for Infectious Disease Epidemiology and Research, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Peter M Keller
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Swiss National Center for Mycobacteria, Zurich, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Peters JS, Ismail N, Dippenaar A, Ma S, Sherman DR, Warren RM, Kana BD. Genetic Diversity in Mycobacterium tuberculosis Clinical Isolates and Resulting Outcomes of Tuberculosis Infection and Disease. Annu Rev Genet 2020; 54:511-537. [PMID: 32926793 DOI: 10.1146/annurev-genet-022820-085940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberculosis claims more human lives than any other bacterial infectious disease and represents a clear and present danger to global health as new tools for vaccination, treatment, and interruption of transmission have been slow to emerge. Additionally, tuberculosis presents with notable clinical heterogeneity, which complicates diagnosis, treatment, and the establishment of nonrelapsing cure. How this heterogeneity is driven by the diversity ofclinical isolates of the causative agent, Mycobacterium tuberculosis, has recently garnered attention. Herein, we review advances in the understanding of how naturally occurring variation in clinical isolates affects transmissibility, pathogenesis, immune modulation, and drug resistance. We also summarize how specific changes in transcriptional responses can modulate infection or disease outcome, together with strain-specific effects on gene essentiality. Further understanding of how this diversity of M. tuberculosis isolates affects disease and treatment outcomes will enable the development of more effective therapeutic options and vaccines for this dreaded disease.
Collapse
Affiliation(s)
- Julian S Peters
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| | - Nabila Ismail
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Anzaan Dippenaar
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; , .,Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, 2000, Belgium;
| | - Shuyi Ma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - David R Sherman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Robin M Warren
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa; ,
| | - Bavesh D Kana
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa; ,
| |
Collapse
|
23
|
Anand K, Tripathi A, Shukla K, Malhotra N, Jamithireddy A, Jha RK, Chaudhury SN, Rajmani RS, Ramesh A, Nagaraja V, Gopal B, Nagaraju G, Seshasayee ASN, Singh A. Mycobacterium tuberculosis SufR Responds to Nitric oxide via its 4Fe-4S cluster and Regulates Fe-S cluster Biogenesis for Persistence in Mice.. [DOI: 10.1101/2020.08.10.245365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
The persistence of Mycobacterium tuberculosis (Mtb) is a major problem in managing tuberculosis. Host–generated nitric oxide (NO) is perceived as one of the signals by Mtb to reprogram metabolism and respiration for persistence. However, the mechanisms involved in NO sensing and reorganizing Mtb′s physiology are not fully understood. Since NO damages iron–sulfur (Fe–S) clusters of essential enzymes, the mechanism(s) involved in regulating Fe–S cluster biogenesis could help Mtb persist in host tissues. Here, we show that a transcription factor SufR (Rv1460) senses NO via its 4Fe–4S cluster and promotes persistence of Mtb by mobilizing the Fe-S cluster biogenesis system; suf operon (Rv1460–Rv1466). Analysis of anaerobically purified SufR by UV-visible spectroscopy, circular dichroism, and iron-sulfide estimation confirms the presence of a 4Fe–4S cluster. Atmospheric O2 and H2O2 gradually degrade the 4Fe–4S cluster of SufR. Furthermore, electron paramagnetic resonance (EPR) analysis demonstrates that NO directly targets SufR 4Fe–4S cluster by forming a protein-bound dinitrosyl–iron–dithiol complex. DNase I footprinting, gel–shift, and in vitro transcription assays confirm that SufR directly regulates the expression of the suf operon in response to NO. Consistent with this, RNA–sequencing of Mtb ΔsufR demonstrates deregulation of the suf operon under NO stress. Strikingly, NO inflicted irreversible damage upon Fe–S clusters to exhaust respiratory and redox buffering capacity of MtbΔsufR. Lastly, Mtb ΔsufR failed to recover from a NO-induced non-growing state and displayed persistence defect inside immune–activated macrophages and murine lungs in a NO–dependent manner. Data suggest that SufR is a sensor of NO that supports persistence by reprogramming Fe–S cluster metabolism and bioenergetics.
Collapse
|
24
|
Abstract
Multi-omics strategies are indispensable tools in the search for new anti-tuberculosis drugs. Omics methodologies, where the ensemble of a class of biological molecules are measured and evaluated together, enable drug discovery programs to answer two fundamental questions. Firstly, in a discovery biology approach, to find new targets in druggable pathways for target-based investigation, advancing from target to lead compound. Secondly, in a discovery chemistry approach, to identify the mode of action of lead compounds derived from high-throughput screens, progressing from compound to target. The advantage of multi-omics methodologies in both of these settings is that omics approaches are unsupervised and unbiased to a priori hypotheses, making omics useful tools to confirm drug action, reveal new insights into compound activity, and discover new avenues for inquiry. This review summarizes the application of Mycobacterium tuberculosis omics technologies to the early stages of tuberculosis antimicrobial drug discovery.
Collapse
|
25
|
Tang J, Liu Z, Shi Y, Zhan L, Qin C. Whole Genome and Transcriptome Sequencing of Two Multi-Drug Resistant Mycobacterium tuberculosis Strains to Facilitate Illustrating Their Virulence in vivo. Front Cell Infect Microbiol 2020; 10:219. [PMID: 32500039 PMCID: PMC7242654 DOI: 10.3389/fcimb.2020.00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/21/2020] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis clinical strains usually possess traits different from the laboratory strains like H37Rv, especially those clinical drug resistant strains. With whole genome and transcriptome sequencing, we depicted the feature of two multi-drug resistant Mtb strains in resistance and virulence. Compared with H37Rv, the differential expressed genes (DEGs) of the MDR strains showed featured enrichment in arginine biosynthesis, fatty acid biosynthesis, and metabolism pathway. In the subset of virulence genes, the overlapping DEGs of the MDR strains exhibited downregulation of the cluster in type VII secretion system. In the mice experiment, the MDR strains showed attenuated but distinct virulence, both in survival rate and pathology. Taken together, the whole genome and transcriptome analysis could help understand the unique feature of the MDR strains both in resistance and virulence.
Collapse
Affiliation(s)
- Jun Tang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Zhihao Liu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Ya'nan Shi
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Lingjun Zhan
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing, China.,Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|
26
|
Oxidative Phosphorylation—an Update on a New, Essential Target Space for Drug Discovery in Mycobacterium tuberculosis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072339] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New drugs with new mechanisms of action are urgently required to tackle the global tuberculosis epidemic. Following the FDA-approval of the ATP synthase inhibitor bedaquiline (Sirturo®), energy metabolism has become the subject of intense focus as a novel pathway to exploit for tuberculosis drug development. This enthusiasm stems from the fact that oxidative phosphorylation (OxPhos) and the maintenance of the transmembrane electrochemical gradient are essential for the viability of replicating and non-replicating Mycobacterium tuberculosis (M. tb), the etiological agent of human tuberculosis (TB). Therefore, new drugs targeting this pathway have the potential to shorten TB treatment, which is one of the major goals of TB drug discovery. This review summarises the latest and key findings regarding the OxPhos pathway in M. tb and provides an overview of the inhibitors targeting various components. We also discuss the potential of new regimens containing these inhibitors, the flexibility of this pathway and, consequently, the complexity in targeting it. Lastly, we discuss opportunities and future directions of this drug target space.
Collapse
|