1
|
Pan H, Zhu M, Banyas E, Alaerts L, Acharya M, Zhang H, Kim J, Chen X, Huang X, Xu M, Harris I, Tian Z, Ricci F, Hanrahan B, Spanier JE, Hautier G, LeBeau JM, Neaton JB, Martin LW. Clamping enables enhanced electromechanical responses in antiferroelectric thin films. NATURE MATERIALS 2024; 23:944-950. [PMID: 38783106 DOI: 10.1038/s41563-024-01907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Thin-film materials with large electromechanical responses are fundamental enablers of next-generation micro-/nano-electromechanical applications. Conventional electromechanical materials (for example, ferroelectrics and relaxors), however, exhibit severely degraded responses when scaled down to submicrometre-thick films due to substrate constraints (clamping). This limitation is overcome, and substantial electromechanical responses in antiferroelectric thin films are achieved through an unconventional coupling of the field-induced antiferroelectric-to-ferroelectric phase transition and the substrate constraints. A detilting of the oxygen octahedra and lattice-volume expansion in all dimensions are observed commensurate with the phase transition using operando electron microscopy, such that the in-plane clamping further enhances the out-of-plane expansion, as rationalized using first-principles calculations. In turn, a non-traditional thickness scaling is realized wherein an electromechanical strain (1.7%) is produced from a model antiferroelectric PbZrO3 film that is just 100 nm thick. The high performance and understanding of the mechanism provide a promising pathway to develop high-performance micro-/nano-electromechanical systems.
Collapse
Affiliation(s)
- Hao Pan
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Menglin Zhu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ella Banyas
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Louis Alaerts
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Megha Acharya
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jiyeob Kim
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Xianzhe Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Michael Xu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Isaac Harris
- Department of Physics, University of California, Berkeley, CA, USA
| | - Zishen Tian
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Francesco Ricci
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | | | - Jonathan E Spanier
- Department of Mechanical Engineering and Mechanics, Materials Science and Engineering, and Physics, Drexel University, Philadelphia, PA, USA
| | - Geoffroy Hautier
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - James M LeBeau
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey B Neaton
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Kavli Energy Nanosciences Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Departments of Materials Science and NanoEngineering, Chemistry, and Physics and Astronomy, Rice University, Houston, TX, USA.
- Rice Advanced Materials Institute, Rice University, Houston, TX, USA.
| |
Collapse
|
2
|
Wang H, He Q, Gao X, Shang Y, Zhu W, Zhao W, Chen Z, Gong H, Yang Y. Multifunctional High Entropy Alloys Enabled by Severe Lattice Distortion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305453. [PMID: 37561587 DOI: 10.1002/adma.202305453] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Since 2004, the design of high entropy alloys (HEAs) has generated significant interest within the materials science community due to their exceptional structural and functional properties. By incorporating multiple principal elements into a common lattice, it is possible to create a single-phase crystal with a highly distorted lattice. This unique feature enables HEAs to offer a promising combination of mechanical and physical properties that are not typically observed in conventional alloys. In this article, an extensive overview of multifunctional HEAs that exhibit severe lattice distortion is provided, covering the theoretical models that are developed to understand lattice distortion, the experimental and computational methods employ to characterize lattice distortion, and most importantly, the impact of severe lattice distortion on the mechanical, physical and electrochemical properties of HEAs. Through this review, it is hoped to stimulate further research into the study of distorted lattices in crystalline solids.
Collapse
Affiliation(s)
- Hang Wang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, 999077, China
| | - Quanfeng He
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, 999077, China
- Institute of Materials Modification and Modeling, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Gao
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, 999077, China
| | - Yinghui Shang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong (Dongguan), Dongguan, Guangdong, 523000, China
| | - Wenqing Zhu
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Weijiang Zhao
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, 999077, China
- Powder Metallurgy Research Institute, Central South University, Changsha, Hunan, 410083, China
| | - Zhaoqi Chen
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, 999077, China
| | - Hao Gong
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, 999077, China
| | - Yong Yang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, 999077, China
- Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
3
|
Yin K, Hsiao HW, Feng R, Liaw PK, Zuo JM. Deformation Defects Characterization in Short-range Ordered CrCoNi using Fast Electron Detectors and 4D-STEM. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:251-253. [PMID: 37613546 DOI: 10.1093/micmic/ozad067.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Kaijun Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Haw-Wen Hsiao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rui Feng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Peter K Liaw
- Department of Materials Science and Engineering, The University of Tennessee Knoxville, Knoxville, TN, United States
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
4
|
Pidaparthy S, Ni H, Hou H, Abraham DP, Zuo JM. Fluctuation cepstral scanning transmission electron microscopy of mixed-phase amorphous materials. Ultramicroscopy 2023; 248:113718. [PMID: 36934483 DOI: 10.1016/j.ultramic.2023.113718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Four-dimensional scanning transmission electron microscopy (4D-STEM) is a versatile analytical tool for characterizing materials structural properties. However, extending such analysis to disordered materials is challenging, especially in technologically important samples with mixed ordered and disordered phases. Here, we present a new 4D-STEM method, called fluctuation cepstral STEM (FC-STEM), based on the fluctuation analysis of cepstral transform of diffraction patterns. The peaks in the associated transformation relate to inter-atomic distances in a thin sample. By varying the real-space range over which fluctuations are calculated, distinct ordered and disordered phases can be mapped in a diffractive image reconstruction. We demonstrate the principles of FC-STEM by characterizing a silicon anode, harvested from a cycled lithium-ion battery. A mixture of amorphous and nanocrystalline silicon, graphitic carbon, and electrolyte by-products is identified and mapped. Comparisons with conventional electron imaging and energy-dispersive X-ray spectroscopy show that FC-STEM is highly effective for the structure determination of mixed-phase amorphous materials.
Collapse
Affiliation(s)
- Saran Pidaparthy
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Haoyang Ni
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Hanyu Hou
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Daniel P Abraham
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
5
|
Chen W, Zhan X, Yuan R, Pidaparthy S, Yong AXB, An H, Tang Z, Yin K, Patra A, Jeong H, Zhang C, Ta K, Riedel ZW, Stephens RM, Shoemaker DP, Yang H, Gewirth AA, Braun PV, Ertekin E, Zuo JM, Chen Q. Formation and impact of nanoscopic oriented phase domains in electrochemical crystalline electrodes. NATURE MATERIALS 2023; 22:92-99. [PMID: 36280702 DOI: 10.1038/s41563-022-01381-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical phase transformation in ion-insertion crystalline electrodes is accompanied by compositional and structural changes, including the microstructural development of oriented phase domains. Previous studies have identified prevailingly transformation heterogeneities associated with diffusion- or reaction-limited mechanisms. In comparison, transformation-induced domains and their microstructure resulting from the loss of symmetry elements remain unexplored, despite their general importance in alloys and ceramics. Here, we map the formation of oriented phase domains and the development of strain gradient quantitatively during the electrochemical ion-insertion process. A collocated four-dimensional scanning transmission electron microscopy and electron energy loss spectroscopy approach, coupled with data mining, enables the study. Results show that in our model system of cubic spinel MnO2 nanoparticles their phase transformation upon Mg2+ insertion leads to the formation of domains of similar chemical identity but different orientations at nanometre length scale, following the nucleation, growth and coalescence process. Electrolytes have a substantial impact on the transformation microstructure ('island' versus 'archipelago'). Further, large strain gradients build up from the development of phase domains across their boundaries with high impact on the chemical diffusion coefficient by a factor of ten or more. Our findings thus provide critical insights into the microstructure formation mechanism and its impact on the ion-insertion process, suggesting new rules of transformation structure control for energy storage materials.
Collapse
Affiliation(s)
- Wenxiang Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
| | - Xun Zhan
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
| | - Renliang Yuan
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Saran Pidaparthy
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Adrian Xiao Bin Yong
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
| | - Hyosung An
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
| | - Zhichu Tang
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Kaijun Yin
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Arghya Patra
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
| | - Heonjae Jeong
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, USA
| | - Kim Ta
- Department of Chemistry, University of Illinois, Urbana, IL, USA
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL, USA
| | - Zachary W Riedel
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
| | - Ryan M Stephens
- Shell International Exploration and Production Inc., Houston, TX, USA
| | - Daniel P Shoemaker
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
| | - Hong Yang
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, USA
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Andrew A Gewirth
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
- Department of Chemistry, University of Illinois, Urbana, IL, USA
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL, USA
| | - Paul V Braun
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, USA
- Department of Chemistry, University of Illinois, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA
| | - Elif Ertekin
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL, USA
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA.
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, USA.
- Department of Chemistry, University of Illinois, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
6
|
Data-driven electron-diffraction approach reveals local short-range ordering in CrCoNi with ordering effects. Nat Commun 2022; 13:6651. [PMID: 36333312 PMCID: PMC9636235 DOI: 10.1038/s41467-022-34335-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The exceptional mechanical strength of medium/high-entropy alloys has been attributed to hardening in random solid solutions. Here, we evidence non-random chemical mixing in a CrCoNi alloy, resulting from short-range ordering. A data-mining approach of electron nanodiffraction enabled the study, which is assisted by neutron scattering, atom probe tomography, and diffraction simulation using first-principles theory models. Two samples, one homogenized and one heat-treated, are observed. In both samples, results reveal two types of short-range-order inside nanoclusters that minimize the Cr–Cr nearest neighbors (L12) or segregate Cr on alternating close-packed planes (L11). The L11 is predominant in the homogenized sample, while the L12 formation is promoted by heat-treatment, with the latter being accompanied by a dramatic change in dislocation-slip behavior. These findings uncover short-range order and the resulted chemical heterogeneities behind the mechanical strength in CrCoNi, providing general opportunities for atomistic-structure study in concentrated alloys for the design of strong and ductile materials. Non-random chemical mixings that are intrinsic to medium- and high-entropy alloys are difficult to detect and quantify. Here the authors perform a diffraction data-mining analysis, revealing nanoclusters of short-range orders in a CrCoNi alloy, and their impacts on chemical homogeneity and dislocations slip.
Collapse
|
7
|
Wardini JL, Vahidi H, Guo H, Bowman WJ. Probing Multiscale Disorder in Pyrochlore and Related Complex Oxides in the Transmission Electron Microscope: A Review. Front Chem 2021; 9:743025. [PMID: 34917587 PMCID: PMC8668443 DOI: 10.3389/fchem.2021.743025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Transmission electron microscopy (TEM), and its counterpart, scanning TEM (STEM), are powerful materials characterization tools capable of probing crystal structure, composition, charge distribution, electronic structure, and bonding down to the atomic scale. Recent (S)TEM instrumentation developments such as electron beam aberration-correction as well as faster and more efficient signal detection systems have given rise to new and more powerful experimental methods, some of which (e.g., 4D-STEM, spectrum-imaging, in situ/operando (S)TEM)) facilitate the capture of high-dimensional datasets that contain spatially-resolved structural, spectroscopic, time- and/or stimulus-dependent information across the sub-angstrom to several micrometer length scale. Thus, through the variety of analysis methods available in the modern (S)TEM and its continual development towards high-dimensional data capture, it is well-suited to the challenge of characterizing isometric mixed-metal oxides such as pyrochlores, fluorites, and other complex oxides that reside on a continuum of chemical and spatial ordering. In this review, we present a suite of imaging and diffraction (S)TEM techniques that are uniquely suited to probe the many types, length-scales, and degrees of disorder in complex oxides, with a focus on disorder common to pyrochlores, fluorites and the expansive library of intermediate structures they may adopt. The application of these techniques to various complex oxides will be reviewed to demonstrate their capabilities and limitations in resolving the continuum of structural and chemical ordering in these systems.
Collapse
Affiliation(s)
- Jenna L. Wardini
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
| | - Hasti Vahidi
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
| | - Huiming Guo
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
| | - William J. Bowman
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
- Irvine Materials Research Institute, Irvine, CA, United States
| |
Collapse
|