1
|
Vega Ibáñez F, Verbeeck J. Retrieval of Phase Information from Low-Dose Electron Microscopy Experiments: Are We at the Limit Yet? MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae125. [PMID: 39804730 DOI: 10.1093/mam/ozae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
The challenge of imaging low-density objects in an electron microscope without causing beam damage is significant in modern transmission electron microscopy. This is especially true for life science imaging, where the sample, rather than the instrument, still determines the resolution limit. Here, we explore whether we have to accept this or can progress further in this area. To do this, we use numerical simulations to see how much information we can obtain from a weak phase object at different electron doses. Starting from a model with four phase values, we compare Zernike phase contrast with measuring diffracted intensity under multiple random phase illuminations to solve the inverse problem. Our simulations have shown that diffraction-based methods perform better than the Zernike method, as we have found and addressed a normalization issue that, in some other studies, led to an overly optimistic representation of the Zernike setup. We further validated this using more realistic 2D objects and found that random phase illuminated diffraction can be up to five times more efficient than an ideal Zernike implementation. These findings suggest that diffraction-based methods could be a promising approach for imaging beam-sensitive materials and that current low-dose imaging methods are not yet at the quantum limit.
Collapse
Affiliation(s)
- Francisco Vega Ibáñez
- EMAT, University of Antwerp, Groenenborgerlaan 171 2020, Antwerp, Belgium
- Nanocenter of excellence, University of Antwerp, Groenenborgerlaan 171 2020, Antwerp, Belgium
| | - Jo Verbeeck
- EMAT, University of Antwerp, Groenenborgerlaan 171 2020, Antwerp, Belgium
- Nanocenter of excellence, University of Antwerp, Groenenborgerlaan 171 2020, Antwerp, Belgium
| |
Collapse
|
2
|
Tamaki H, Saitoh K. Near-field electron ptychography using full-field structured illumination. Microscopy (Oxf) 2025; 74:10-19. [PMID: 39049512 PMCID: PMC11781274 DOI: 10.1093/jmicro/dfae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
A new configuration for near-field ptychography using a full-field illumination with a structured electron beam is proposed. A structured electron beam illuminating the entire field of view is scanned over the specimen, and a series of in-line holograms formed in the near-field region below the specimen are collected. The structured beam is generated by a conductive film with random openings, which ensures high stability and coherence of the beam. Observation in the near-field region reduces the beam concentration that occurs in the far-field region, which contributes to accurate recording of the beam intensity with a finite dynamic range of the detectors. The use of full-field illumination prevents the accumulation of errors caused by concatenating the local structures, which is the method used in conventional reconstruction. Since all holograms are obtained from the entire field of view, they have uniform multiplicity in terms of specimen information within the field of view. This contributes to robust and efficient reconstruction for a large field of view. The proposed method was tested using both simulated and experimental holograms. For the simulated holograms, the reconstruction of the specimen transmission function was achieved with an error less than 1/3485 of the wavelength. The method was further validated using experimental holograms obtained from MgO particles. The reconstructed phase transmission function of the specimen was consistent with the specimen structure and was equivalent to a mean inner potential of 13.53±0.16 V on the MgO particle, which is in close agreement with previously reported values.
Collapse
Affiliation(s)
- Hirokazu Tamaki
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Research & Development Group, Hitachi Ltd., 1-280, Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | - Koh Saitoh
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
3
|
Çelik H, Fuchs R, Gaebel S, Günther CM, Lehmann M, Wagner T. A simple and intuitive model for long-range 3D potential distributions of in-operando TEM-samples: Comparison with electron holographic tomography. Ultramicroscopy 2024; 267:114057. [PMID: 39357240 DOI: 10.1016/j.ultramic.2024.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/19/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Electron holography is a powerful tool to investigate the properties of micro- and nanostructured electronic devices. A meaningful interpretation of the holographic data, however, requires an understanding of the 3D potential distribution inside and outside the sample. Standard approaches to resolve these potential distributions involve projective tilt series and their tomographic reconstruction, in addition to extensive simulations. Here, a simple and intuitive model for the approximation of such long-range potential distributions surrounding a nanostructured coplanar capacitor is presented. The model uses only independent convolutions of an initial potential distribution with a Gaussian kernel, allowing the reconstruction of the entire potential distribution from only one measured projection. By this, a significant reduction of the required computational power as well as a drastically simplified measurement process is achieved, paving the way towards quantitative electron holographic investigation of electrically biased nanostructures.
Collapse
Affiliation(s)
- Hüseyin Çelik
- Technische Universität Berlin, Institute of Optics and Atomic Physics, Straße des 17. Juni 135, Berlin 10623, Germany.
| | - Robert Fuchs
- Technische Universität Berlin, Institute of Theoretical Physics, Hardenbergstraße 36, Berlin 10623, Germany
| | - Simon Gaebel
- Technische Universität Berlin, Institute of Optics and Atomic Physics, Straße des 17. Juni 135, Berlin 10623, Germany
| | - Christian M Günther
- Technische Universität Berlin, Center for Electron Microscopy, Straße des 17. Juni 135, Berlin 10623, Germany
| | - Michael Lehmann
- Technische Universität Berlin, Institute of Optics and Atomic Physics, Straße des 17. Juni 135, Berlin 10623, Germany
| | - Tolga Wagner
- Technische Universität Berlin, Institute of Optics and Atomic Physics, Straße des 17. Juni 135, Berlin 10623, Germany
| |
Collapse
|
4
|
Matveevskii K, Nikolaev KV, Fallica R, Beckers D, Gateshki M, Kharchenko A, Spanjer B, Rogachev A, Yakunin S, Ackermann M, Makhotkin IA. Laboratory-based 3D X-ray standing-wave analysis of nanometre-scale gratings. J Appl Crystallogr 2024; 57:1288-1298. [PMID: 39387070 PMCID: PMC11460397 DOI: 10.1107/s1600576724007179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/19/2024] [Indexed: 10/12/2024] Open
Abstract
The increasing structural complexity and downscaling of modern nanodevices require continuous development of structural characterization techniques that support R&D and manufacturing processes. This work explores the capability of laboratory characterization of periodic planar nanostructures using 3D X-ray standing waves as a promising method for reconstructing atomic profiles of planar nanostructures. The non-destructive nature of this metrology technique makes it highly versatile and particularly suitable for studying various types of samples. Moreover, it eliminates the need for additional sample preparation before use and can achieve sub-nanometre reconstruction resolution using widely available laboratory setups, as demonstrated on a diffractometer equipped with a microfocus X-ray tube with a copper anode.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bart Spanjer
- University of TwenteDrienerlolaan 5Enschde7522 NBThe Netherlands
| | | | | | | | | |
Collapse
|
5
|
Hofer C, Gao C, Chennit T, Yuan B, Pennycook TJ. Phase offset method of ptychographic contrast reversal correction. Ultramicroscopy 2024; 258:113922. [PMID: 38217895 DOI: 10.1016/j.ultramic.2024.113922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
The contrast transfer function of direct ptychography methods such as the single side band (SSB) method are single signed, yet these methods still sometimes exhibit contrast reversals, most often where the projected potentials are strong. In thicker samples central focusing often provides the best ptychographic contrast as this leads to defocus variations within the sample canceling out. However focusing away from the entrance surface is often undesirable as this degrades the annular dark field (ADF) signal. Here we discuss how phase wrap asymptotes in the frequency response of SSB ptychography give rise to contrast reversals, without the need for dynamical scattering, and how these can be counteracted by manipulating the phases such that the asymptotes are either shifted to higher frequencies or damped via amplitude modulation. This is what enables post collection defocus correction of contrast reversals. However, the phase offset method of counteracting contrast reversals we introduce here is generally found to be superior to post collection application of defocus, with greater reliability and generally stronger contrast. Importantly, the phase offset method also works for thin and thick samples where central focusing does not. Finally, the independence of the method from focus is useful for optical sectioning involving ptychography, improving interpretability by better disentangling the effects of strong potentials and focus.
Collapse
Affiliation(s)
- Christoph Hofer
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Chuang Gao
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Tamazouzt Chennit
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Biao Yuan
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Timothy J Pennycook
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
6
|
Ribet SM, Zeltmann SE, Bustillo KC, Dhall R, Denes P, Minor AM, Dos Reis R, Dravid VP, Ophus C. Design of Electrostatic Aberration Correctors for Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1950-1960. [PMID: 37851063 DOI: 10.1093/micmic/ozad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023]
Abstract
In a scanning transmission electron microscope (STEM), producing a high-resolution image generally requires an electron beam focused to the smallest point possible. However, the magnetic lenses used to focus the beam are unavoidably imperfect, introducing aberrations that limit resolution. Modern STEMs overcome this by using hardware aberration correctors comprised of many multipole elements, but these devices are complex, expensive, and can be difficult to tune. We demonstrate a design for an electrostatic phase plate that can act as an aberration corrector. The corrector is comprised of annular segments, each of which is an independent two-terminal device that can apply a constant or ramped phase shift to a portion of the electron beam. We show the improvement in image resolution using an electrostatic corrector. Engineering criteria impose that much of the beam within the probe-forming aperture be blocked by support bars, leading to large probe tails for the corrected probe that sample the specimen beyond the central lobe. We also show how this device can be used to create other STEM beam profiles such as vortex beams and probes with a high degree of phase diversity, which improve information transfer in ptychographic reconstructions.
Collapse
Affiliation(s)
- Stephanie M Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven E Zeltmann
- Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, NY 14853, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rohan Dhall
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter Denes
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrew M Minor
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- The NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Hu Z, Zhang Y, Li P, Batey D, Maiden A. Near-field multi-slice ptychography: quantitative phase imaging of optically thick samples with visible light and X-rays. OPTICS EXPRESS 2023; 31:15791-15809. [PMID: 37157672 DOI: 10.1364/oe.487002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ptychography is a form of lens-free coherent diffractive imaging now used extensively in electron and synchrotron-based X-ray microscopy. In its near-field implementation, it offers a route to quantitative phase imaging at an accuracy and resolution competitive with holography, with the added advantages of extended field of view and blind deconvolution of the illumination beam profile from the sample image. In this paper we show how near-field ptychography can be combined with a multi-slice model, adding to this list of advantages the unique ability to recover high-resolution phase images of larger samples, whose thickness places them beyond the depth of field of alternative methods.
Collapse
|
8
|
Wang T, Song P, Jiang S, Wang R, Yang L, Guo C, Zhang Z, Zheng G. Remote referencing strategy for high-resolution coded ptychographic imaging. OPTICS LETTERS 2023; 48:485-488. [PMID: 36638490 DOI: 10.1364/ol.481395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The applications of conventional ptychography are limited by its relatively low resolution and throughput in the visible light regime. The new development of coded ptychography (CP) has addressed these issues and achieved the highest numerical aperture for large-area optical imaging in a lensless configuration. A high-quality reconstruction of CP relies on precise tracking of the coded sensor's positional shifts. The coded layer on the sensor, however, prevents the use of cross correlation analysis for motion tracking. Here we derive and analyze the motion tracking model of CP. A novel, to the best of our knowledge, remote referencing scheme and its subsequent refinement pipeline are developed for blind image acquisition. By using this approach, we can suppress the correlation peak caused by the coded surface and recover the positional shifts with deep sub-pixel accuracy. In contrast with common positional refinement methods, the reported approach can be disentangled from the iterative phase retrieval process and is computationally efficient. It allows blind image acquisition without motion feedback from the scanning process. It also provides a robust and reliable solution for implementing ptychography with high imaging throughput. We validate this approach by performing high-resolution whole slide imaging of bio-specimens.
Collapse
|
9
|
Lv W, Zhang J, Chen H, Yang D, Ruan T, Zhu Y, Tao Y, Shi Y. Resolution-enhanced ptychography framework with an equivalent upsampling and precise position. APPLIED OPTICS 2022; 61:2903-2909. [PMID: 35471368 DOI: 10.1364/ao.451431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
As a lensless imaging technique, ptychography provides a new way to resolve the conflict between the spatial resolution and the field of view. However, due to the pixel size limit of the sensor, a compromise has to be reached between the spatial resolution and the signal-to-noise ratio. Here, we propose a resolution-enhanced ptychography framework with equivalent upsampling and subpixel accuracy in position to further improve the resolution of ptychography. According to the theory of pixel superresolved techniques, the inherent shift illumination scheme in ptychography can additionally enhance the resolution with the redundant data. An additional layer of pooling is used to simulate the downsampling of a digital record, and the pixel superresolved problem is transformed into an automatic optimization problem. The proposed framework is verified by optical experiments, both in biological samples and the resolution targets. Compared to the traditional algorithm, the spatial lateral resolution is twice as large using the same data set.
Collapse
|
10
|
Roitman D, Shiloh R, Lu PH, Dunin-Borkowski RE, Arie A. Shaping of Electron Beams Using Sculpted Thin Films. ACS PHOTONICS 2021; 8:3394-3405. [PMID: 34938823 PMCID: PMC8679091 DOI: 10.1021/acsphotonics.1c00951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 05/04/2023]
Abstract
Electron beam shaping by sculpted thin films relies on electron-matter interactions and the wave nature of electrons. It can be used to study physical phenomena of special electron beams and to develop technological applications in electron microscopy that offer new and improved measurement techniques and increased resolution in different imaging modes. In this Perspective, we review recent applications of sculpted thin films for electron orbital angular momentum sorting, improvements in phase contrast transmission electron microscopy, and aberration correction. For the latter, we also present new results of our work toward correction of the spherical aberration of Lorentz scanning transmission electron microscopes and suggest a method to correct chromatic aberration using thin films. This review provides practical insight for researchers in the field and motivates future progress in electron microscopy.
Collapse
Affiliation(s)
- Dolev Roitman
- School
of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roy Shiloh
- Physics
Department, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Peng-Han Lu
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, Jülich 52428, Germany
- RWTH
Aachen University, Aachen 52062, Germany
| | - Rafal E. Dunin-Borkowski
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum
Jülich, Jülich 52428, Germany
| | - Ady Arie
- School
of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
11
|
Zhang Y, Lu PH, Rotunno E, Troiani F, van Schayck JP, Tavabi AH, Dunin-Borkowski RE, Grillo V, Peters PJ, Ravelli RBG. Single-particle cryo-EM: alternative schemes to improve dose efficiency. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1343-1356. [PMID: 34475283 PMCID: PMC8415325 DOI: 10.1107/s1600577521007931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Imaging of biomolecules by ionizing radiation, such as electrons, causes radiation damage which introduces structural and compositional changes of the specimen. The total number of high-energy electrons per surface area that can be used for imaging in cryogenic electron microscopy (cryo-EM) is severely restricted due to radiation damage, resulting in low signal-to-noise ratios (SNR). High resolution details are dampened by the transfer function of the microscope and detector, and are the first to be lost as radiation damage alters the individual molecules which are presumed to be identical during averaging. As a consequence, radiation damage puts a limit on the particle size and sample heterogeneity with which electron microscopy (EM) can deal. Since a transmission EM (TEM) image is formed from the scattering process of the electron by the specimen interaction potential, radiation damage is inevitable. However, we can aim to maximize the information transfer for a given dose and increase the SNR by finding alternatives to the conventional phase-contrast cryo-EM techniques. Here some alternative transmission electron microscopy techniques are reviewed, including phase plate, multi-pass transmission electron microscopy, off-axis holography, ptychography and a quantum sorter. Their prospects for providing more or complementary structural information within the limited lifetime of the sample are discussed.
Collapse
Affiliation(s)
- Yue Zhang
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Peng-Han Lu
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Enzo Rotunno
- CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/A, I-41125 Modena, Italy
| | - Filippo Troiani
- CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/A, I-41125 Modena, Italy
| | - J. Paul van Schayck
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Amir H. Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Rafal E. Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Vincenzo Grillo
- CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/A, I-41125 Modena, Italy
| | - Peter J. Peters
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Raimond B. G. Ravelli
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| |
Collapse
|
12
|
Findlay SD, Brown HG, Pelz PM, Ophus C, Ciston J, Allen LJ. Scattering Matrix Determination in Crystalline Materials from 4D Scanning Transmission Electron Microscopy at a Single Defocus Value. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:744-757. [PMID: 34311809 DOI: 10.1017/s1431927621000490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent work has revived interest in the scattering matrix formulation of electron scattering in transmission electron microscopy as a stepping stone toward atomic-resolution structure determination in the presence of multiple scattering. We discuss ways of visualizing the scattering matrix that make its properties clear. Through a simulation-based case study incorporating shot noise, we shown how regularizing on this continuity enables the scattering matrix to be reconstructed from 4D scanning transmission electron microscopy (STEM) measurements from a single defocus value. Intriguingly, for crystalline samples, this process also yields the sample thickness to nanometer accuracy with no a priori knowledge about the sample structure. The reconstruction quality is gauged by using the reconstructed scattering matrix to simulate STEM images at defocus values different from that of the data from which it was reconstructed.
Collapse
Affiliation(s)
- Scott D Findlay
- School of Physics and Astronomy, Monash University, Clayton, VIC3800, Australia
| | - Hamish G Brown
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
- Ian Holmes Imaging Center, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC3052, Australia
| | - Philipp M Pelz
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA94720, USA
| | - Colin Ophus
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
| | - Jim Ciston
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
| | - Leslie J Allen
- School of Physics, University of Melbourne, Parkville, VIC3010, Australia
| |
Collapse
|