1
|
George S, Serpe L. Exploring the redox potential induced by low-intensity focused ultrasound on tumor masses. Life Sci 2023; 332:122040. [PMID: 37633418 DOI: 10.1016/j.lfs.2023.122040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Cancer is still a major health problem worldwide despite huge efforts being spent on its biomedical research. Beyond the mainstream therapeutic interventions (i.e., surgery, chemotherapy, immunotherapy and radiotherapy), further significant progresses in anticancer therapy could rely on the development of novel treatment paradigms. To this end, one emerging approach consists in the use of non-thermal low-intensity focused ultrasound (LIFU) for conditioning cancer molecules and/or cancer-targeted compounds, thereby leading to cancer cell death with least side-effects. Cellular redox homeostasis manifested as the generation of reactive oxygen species (ROS) during energy metabolism as well as the antioxidant capacity is interwoven to the composition, size and anatomical location of the tumor masses. The higher content of "oxide free radicals" in cancers makes them vulnerable to disruption of redox homeostasis than in the healthy cells and therefore, one of the best options for preferentially eradicating them is increasing their oxidative stress, excessively. A little is known about the modulation of cellular redox homeostasis by LIFU, and so it will be of great interest and utility to understand the effects of LIFU on the energy metabolism of cancer cells. This review is intended to improve our knowledge on the effect of LIFU on cancer cells with particular reference to its redox metabolism for ultrasound-based therapies. Thereby, it could pave the way for exploring novel methodologies and designing combined anti-cancer therapies, especially, for faster and safer eradication of drug resistant and metastasizing solid tumors.
Collapse
Affiliation(s)
- Sajan George
- School of Bio Sciences & Technology, Vellore Institute of Technology, TN 632 014, India; Laser Research Centre, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Loredana Serpe
- Department of Drug Science & Technology, University of Turin, Turin 10125, Italy
| |
Collapse
|
2
|
Pourhajibagher M, Etemad-Moghadam S, Alaeddini M, Bahador A. Modulation of the triggered apoptosis by nano emodin transfersome-mediated sonodynamic therapy on head and neck squamous cell carcinoma cell lines. Photodiagnosis Photodyn Ther 2021; 34:102253. [PMID: 33711532 DOI: 10.1016/j.pdpdt.2021.102253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/14/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Non-invasive sonodynamic therapy (SDT) is a new treatment modality that uses low-intensity ultrasound to activate a non-toxic sensitizing chemical agent for cancer therapy in a site-directed manner. This study aimed to investigate the anti-cancer effects of ultrasound combined with nano emodin transfersome (NET) on head and neck squamous cell carcinoma (HNSCC) cell lines. MATERIALS AND METHODS A transfersome form of nano emodin as a novel sono-responsive nanomaterial was synthesized to enhance the accumulation and penetration of nanoparticles. iIn vitro experiments including hemolytic activity, cell proliferation, intracellular reactive oxygen species (ROS) generation, apoptosis induction, DNA fragmentation, and mRNA expressions of caspase 3 and 9 were conducted to explore the anti-cancer effects of NET-SDT on FaDu and CAL-27 cell lines. RESULTS Characterization tests showed the round and uniform morphology of NET with transfersome structure, resulting in a high drug-loading content and encapsulation efficiency. No significant hemolytic activity was observed (P > 0.05). Cytotoxicity gradually increased with increasing concentrations of NET, so that 10 × 10-4 g/L of NET plus 5 min ultrasound irradiation at a frequency of 1 MHz and ultrasonic intensity of 2 W/cm2 effectively killed 98.2 % and 97.3 % of FaDu and CAL-27 cell lines, respectively (P < 0.05). We found that ROS generation in NET-SDT was dose-dependent and the triggered apoptosis and caspase-3/9 gene expression levels were significantly enhanced as the concentration of NET increased (P < 0.05). No significant difference was found in the rate of apoptosis induction and gene expression between two cell lines. CONCLUSIONS Our data demonstrated that SDT with NET as a sonosensitizer can induce apoptosis and significantly decrease cell viability of HNSCC cell lines, which represents the role of NET-SDT as a potent anti-cancer modality.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhu JX, Zhu WT, Hu JH, Yang W, Liu P, Liu QH, Bai YX, Xie R. Curcumin-Loaded Poly(L-lactide-co-glycolide) Microbubble-Mediated Sono-photodynamic Therapy in Liver Cancer Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2030-2043. [PMID: 32475714 DOI: 10.1016/j.ultrasmedbio.2020.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 03/07/2020] [Accepted: 03/27/2020] [Indexed: 05/08/2023]
Abstract
Sono-photodynamic therapy (SPDT) activates the same photo-/sonosensitizer and exerts more marked antitumor effects than sonodynamic therapy or photodynamic therapy. We aimed to explore the utilization of curcumin (CUR)-loaded poly(L-lactide-co-glycolide) microbubble (MB)-mediated SPDT (CUR-PLGA-MB-SPDT) in HepG2 liver cancer cells. The cytotoxicity and intracellular accumulation of CUR were determined. We used 40 µM CUR as the photo-/sonosensitizer for 3 h. In a comparison of CUR-SDT or CUR-PDT, HepG2 cell viability decreased and apoptotic rate increased in CUR-SPDT. The CUR-PLGA MBs had round spheres with smooth surfaces and an average size of 3.7 µm. In CUR-PLGA MBs, drug entrapment efficiency and drug-loading capacity were 74.29 ± 2.60% and 17.14 ± 0.60%, respectively. CUR-loaded PLGA MBs (CUR-PLGA MBs) had good biocompatibility with normal L02 cells and were almost non-cytotoxic to HepG2 cells. Among CUR-SDT, CUR-PDT, CUR-SPDT or CUR-PLGA-MB-SDT, the cell CUR-PLGA-MB-SPDT had the lowest viability. Transmission electron microscopy revealed pyroptosis and apoptosis in the CUR-PLGA-MB-SPDT group; the potential mechanism was related to the mitochondrial membrane potential loss and increased production of intracellular reactive oxygen species. These findings suggested that CUR-PLGA-MB-SPDT may be a promising treatment for liver cancer.
Collapse
Affiliation(s)
- Jiu-Xin Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wen-Ting Zhu
- Harbin Medical University Cancer Hospital, Harbin, China; Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia-He Hu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Yang
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Ping Liu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Qing-Hao Liu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu-Xian Bai
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Rui Xie
- Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
4
|
Shen Z, Shao J, Zhang J, Qu W. Ultrasound cavitation enhanced chemotherapy: In vivo research and clinical application. Exp Biol Med (Maywood) 2020; 245:1200-1212. [PMID: 32567346 PMCID: PMC7437381 DOI: 10.1177/1535370220936150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
Abstract
The novelty of this research is that we used ultrasound cavitation to enhance the effects of chemotherapy in the subcutaneous and orthotopic hepatic carcinomas in nude mice. Case reports of the effects of the targeting ultrasound cavitation and chemotherapy on malignant tumors in clinical patients were also examined. We found that low-frequency ultrasound cavitation combined with chemotherapy is effective in the inhibition of tumor growth to some extent.
Collapse
Affiliation(s)
- Zhiyong Shen
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Jiangsu 226361, PR China
| | - Jingjing Shao
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Jiangsu 226361, PR China
| | - Jianquan Zhang
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Jiangsu 226361, PR China
| | - Weixing Qu
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Jiangsu 226361, PR China
| |
Collapse
|
5
|
Yang Y, Tu J, Yang D, Raymond JL, Roy RA, Zhang D. Photo- and Sono-Dynamic Therapy: A Review of Mechanisms and Considerations for Pharmacological Agents Used in Therapy Incorporating Light and Sound. Curr Pharm Des 2020; 25:401-412. [PMID: 30674248 DOI: 10.2174/1381612825666190123114107] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
Abstract
As irreplaceable energy sources of minimally invasive treatment, light and sound have, separately, laid solid foundations in their clinic applications. Constrained by the relatively shallow penetration depth of light, photodynamic therapy (PDT) typically involves involves superficial targets such as shallow seated skin conditions, head and neck cancers, eye disorders, early-stage cancer of esophagus, etc. For ultrasound-driven sonodynamic therapy (SDT), however, to various organs is facilitated by the superior... transmission and focusing ability of ultrasound in biological tissues, enabling multiple therapeutic applications including treating glioma, breast cancer, hematologic tumor and opening blood-brain-barrier (BBB). Considering the emergence of theranostics and precision therapy, these two classic energy sources and corresponding sensitizers are worth reevaluating. In this review, three typical therapies using light and sound as a trigger, PDT, SDT, and combined PDT and SDT are introduced. The therapeutic dynamics and current designs of pharmacological sensitizers involved in these therapies are presented. By introducing both the history of the field and the most up-to-date design strategies, this review provides a systemic summary on the development of PDT and SDT and fosters inspiration for researchers working on 'multi-modal' therapies involving light and sound.
Collapse
Affiliation(s)
- Yanye Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Dongxin Yang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Jason L Raymond
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Ronald A Roy
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.,Department of Engineering Science, University of Oxford, Oxford, United Kingdom.,Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. SCIENCE CHINA-LIFE SCIENCES 2018; 61:415-426. [PMID: 29666990 DOI: 10.1007/s11427-017-9262-x] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 12/14/2022]
Abstract
Sonodynamic therapy (SDT) is a promising non-invasive therapeutic modality. Compared to photo-inspired therapy, SDT provides many opportunities and benefits, including deeper tissue penetration, high precision, less side effects, and good patient compliance. Thanks to the facile engineerable nature of nanotechnology, nanoparticles-based sonosensitizers exhibit predominant advantages, such as increased SDT efficacy, binding avidity, and targeting specificity. This review aims to summarize the possible mechanisms of SDT, which can be expected to provide the theoretical basis for SDT development in the future. We also extensively discuss nanoparticle-assisted sonosensitizers to enhance the outcome of SDT. Additionally, we focus on the potential strategy of combinational SDT with other therapeutic modalities and discuss the limitations and challenges of SDT toward clinical applications.
Collapse
|
7
|
Foglietta F, Duchi S, Canaparo R, Varchi G, Lucarelli E, Dozza B, Serpe L. Selective sensitiveness of mesenchymal stem cells to shock waves leads to anticancer effect in human cancer cell co-cultures. Life Sci 2017; 173:28-35. [PMID: 28131762 DOI: 10.1016/j.lfs.2017.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
AIM Mesenchymal stem cells (MSC) possess the distinctive feature of homing in on and engrafting into the tumor stroma making their therapeutic applications in cancer treatment very promising. Research into new effectors and external stimuli, which can selectively trigger the release of cytotoxic species from MSC toward the cancer cells, significantly raises their potential. MAIN METHODS Shock waves (SW) have recently gained recognition for their ability to induce specific biological effects, such as the local generation of cytotoxic reactive oxygen species (ROS) in a non-invasive and tunable manner. We thus investigate whether MSC are able to generate ROS and, in turn, affect cancer cell growth when in co-culture with human glioblastoma (U87) or osteosarcoma (U2OS) cells and exposed to SW. KEY FINDINGS MSC were found to be the cell line that was most sensitive to SW treatment as shown by SW-induced ROS production and cytotoxicity. Notably, U87 and U2OS cancer cell growth was unaffected by SW exposure. However, significant decreases in cancer cell growth, 1.8 fold for U87 and 2.3 fold for U2OS, were observed 24h after the SW treatment of MSC co-cultures with cancer cells. The ROS production induced in MSC by SW exposure was then responsible for lipid peroxidation and cell death in U87 and U2OS cells co-cultured with MSC. SIGNIFICANCE This experiment highlights the unique ability of MSC to generate ROS upon SW treatment and induce the cell death of co-cultured cancer cells. SW might therefore be proposed as an innovative tool for MSC-mediated cancer treatment.
Collapse
Affiliation(s)
| | - Serena Duchi
- Osteoarticular Regeneration Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Italy.
| | - Greta Varchi
- National Research Council, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | - Enrico Lucarelli
- Osteoarticular Regeneration Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Barbara Dozza
- Osteoarticular Regeneration Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Italy
| |
Collapse
|
8
|
Liao P, Sun G, Zhang C, Wang M, Sun Y, Zhou Y, Sun X, Jian J. Bauhinia championii Flavone Attenuates Hypoxia-Reoxygenation Induced Apoptosis in H9c2 Cardiomyocytes by Improving Mitochondrial Dysfunction. Molecules 2016; 21:molecules21111469. [PMID: 27827932 PMCID: PMC6273835 DOI: 10.3390/molecules21111469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022] Open
Abstract
This study aimed to determine the effects of Bauhinia championii flavone (BCF) on hypoxia-reoxygenation (H/R) induced apoptosis in H9c2 cardiomyocytes and to explore potential mechanisms. The H/R model in H9c2 cardiomyocytes was established by 6 h of hypoxia and 12 h of reoxygenation. Cell viability was detected by CCK-8 assay. Apoptotic rate was measured by Annexin V/PI staining. Levels of mitochondria-associated ROS, mitochondrial transmembrane potential (∆Ψm) and mitochondrial permeability transition pores (MPTP) opening were assessed by fluorescent probes. ATP production was measured by ATP assay kit. The release of cytochrome c, translocation of Bax, and related proteins were measured by western blotting. Our results showed that pretreatment with BCF significantly improved cell viability and attenuated the cardiomyocyte apoptosis caused by H/R. Furthermore, BCF increased ATP production and inhibited ROS-generating mitochondria, depolarization of ΔΨm, and MPTP opening. Moreover, BCF pretreatment decreased Bax mitochondrial translocation, cytochrome c release, and activation of caspase-3, as well as increased the expression of p-PI3K, p-Akt, and the ratio of Bcl-2 to Bax. Interestingly, a specific inhibitor of phosphatidylinositol 3-kinase, LY294002, partly reversed the anti-apoptotic effect of BCF. These observations indicated that BCF pretreatment attenuates H/R-induced myocardial apoptosis strength by improving mitochondrial dysfunction via PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Ping Liao
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Chan Zhang
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Yao Sun
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Yuehan Zhou
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Jie Jian
- Department of Pharmacology, Guilin Medical University, Huan Cheng North 2nd Road, Guilin 541004, Guangxi, China.
| |
Collapse
|
9
|
Abstract
Sonodynamic therapy (SDT) is an emerging approach that involves a combination of low-intensity ultrasound and specialized chemical agents known as sonosensitizers. Ultrasound can penetrate deeply into tissues and can be focused into a small region of a tumor to activate a sonosensitizer which offers the possibility of non-invasively eradicating solid tumors in a site-directed manner. In this article, we critically reviewed the currently accepted mechanisms of sonodynamic action and summarized the classification of sonosensitizers. At the same time, the breath of evidence from SDT-based studies suggests that SDT is promising for cancer treatment.
Collapse
Affiliation(s)
- Guo-Yun Wan
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yang Liu
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China; Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Bo-Wei Chen
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yuan-Yuan Liu
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yin-Song Wang
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Ning Zhang
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China; Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
10
|
Apoptosis-Promoting Effects of Hematoporphyrin Monomethyl Ether-Sonodynamic Therapy (HMME-SDT) on Endometrial Cancer. PLoS One 2015; 10:e0137980. [PMID: 26367393 PMCID: PMC4569302 DOI: 10.1371/journal.pone.0137980] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/29/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of the present study was to examine the apoptosis-promoting effects and mechanisms of hematoporphyrin monomethyl ether (HMME)-sonodynamic therapy (SDT) on endometrial cancer cells in vitro. METHODS Endometrial cancer cell samples were divided into four groups: 1) untreated control group, 2) HMME group, 3) pure ultrasound group, and 4) HMME combined with ultrasound, i.e. SDT group. CCK-8 method was utilized to assess the inhibiting effect of SDT on the proliferation of endometrial cancer cells. Optical microscope and field emission transmission electron microscopy were used to characterize the morphology changes of the cancer cells induced by the treatments. Apoptosis rate, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were examined by flow cytometer. Fluorescence intensity measured by laser scanning confocal microscopy was used to explore the variation of intracellular calcium ion (Ca2+) concentration. Apoptosis-related proteins involved in both intrinsic and extrinsic apoptosis signallings were analyzed by western blot. RESULTS SDT can effectively induce the apoptosis of endometrial cancer cells. Compared with ultrasound which is known as an effective anti-tumor method, SDT leads to a significant improvement on suppression of cell viability and induction of apoptosis, together with more remarkable modifications on the morphology and substructure in both ultrasound sensitive and resistant endometrial cancer cells. Further studies reveals that SDT promotes ROS production, induces loss of MMP and increases intracellular Ca2+ concentration more efficiently than HMME or ultrasound alone. SDT groups also show a rather high expression of apoptosis-promoting proteins, including Bax, Fas and Fas-L, and a significant low expression of apoptosis-suspending proteins including Bcl-2 and Survivin. Meanwhile, both cleaved caspse-3 and caspase-8 are dramatically enhanced in SDT groups. Multiple pathways has been proposed in the process, including the intrinsic activation by excessive ROS and overloaded Ca2+, silencing survivin gene, and the extrinsic pathway mediated by the death receptor. CONCLUSION Given its considerable effectivity in both ultrasound sensitive and resistant cells, SDT may therefore be a promising therapeutic method for treating endometrial cancers.
Collapse
|
11
|
Li Y, Zhou Q, Hu Z, Yang B, Li Q, Wang J, Zheng J, Cao W. 5-Aminolevulinic Acid-Based Sonodynamic Therapy Induces the Apoptosis of Osteosarcoma in Mice. PLoS One 2015; 10:e0132074. [PMID: 26161801 PMCID: PMC4498784 DOI: 10.1371/journal.pone.0132074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/09/2015] [Indexed: 01/03/2023] Open
Abstract
Objective Sonodynamic therapy (SDT) is promising for treatment of cancer, but its effect on osteosarcoma is unclear. This study examined the effect of 5-Aminolevulinic Acid (5-ALA)-based SDT on the growth of implanted osteosarcoma and their potential mechanisms in vivo and in vitro. Methods The dose and metabolism of 5-ALA and ultrasound periods were optimized in a mouse model of induced osteosarcoma and in UMR-106 cells. The effects of ALA-SDT on the proliferation and apoptosis of UMR-106 cells and the growth of implanted osteosarcoma were examined. The levels of mitochondrial membrane potential (ΔψM), ROS production, BcL-2, Bax, p53 and caspase 3 expression in UMR-106 cells were determined. Results Treatment with 5-ALA for eight hours was optimal for ALA-SDT in the mouse tumor model and treatment with 2 mM 5-ALA for 6 hours and ultrasound (1.0 MHz 2.0 W/cm2) for 7 min were optimal for UMR-106 cells. SDT, but not 5-ALA, alone inhibited the growth of implanted osteosarcoma in mice (P<0.01) and reduced the viability of UMR-106 cells (p<0.05). ALA-SDT further reduced the tumor volumes and viability of UMR-106 cells (p<0.01 for both). Pre-treatment with 5-ALA significantly enhanced the SDT-mediated apoptosis (p<0.01) and morphological changes. Furthermore, ALA-SDT significantly reduced the levels of ΔψM, but increased levels of ROS in UMR-106 cells (p<0.05 or p<0.01 vs. the Control or the Ultrasound). Moreover, ALA-SDT inhibited the proliferation of osteosarcoma cells and BcL-2 expression, but increased levels of Bax, p53 and caspase 3 expression in the implanted osteosarcoma tissues (p<0.05 or p<0.01 vs. the Control or the Ultrasound). Conclusions The ALA-SDT significantly inhibited osteosarcoma growth in vivo and reduced UMR-106 cell survival by inducing osteosarcoma cell apoptosis through the ROS-related mitochondrial pathway.
Collapse
Affiliation(s)
- Yongning Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Qi Zhou
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150080, China
| | - Zheng Hu
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150080, China
| | - Bin Yang
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150080, China
| | - Qingsong Li
- Cardiovascular Institute, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jianhua Wang
- Department of Anatomy, College of Basic Medical Sciences, Harbin Medical University, Harbin, 150080, China
| | - Jinhua Zheng
- Department of Anatomy, College of Basic Medical Sciences, Harbin Medical University, Harbin, 150080, China
| | - Wenwu Cao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
- Materials Research Institute, the Pennsylvania State University, University Park, PA, 16802, United States of America
- * E-mail:
| |
Collapse
|
12
|
Liu X, Li W, Geng S, Meng QG, Bi ZG. Apoptosis induced by sonodynamic therapy in human osteosarcoma cells in vitro. Mol Med Rep 2015; 12:1183-8. [PMID: 25778820 DOI: 10.3892/mmr.2015.3479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/17/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the potential effect of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on MG-63 osteosarcoma cells. The HMME concentration was kept constant at 20 µg/ml and the MG-63 osteosarcoma cell line was exposed to ultrasound with an intensity of 1.0 W/cm2 for 30 sec. Cell cytotoxicity was quantified using an MTT assay 6 h after HMME-SDT. The intracellular localization of HMME was imaged using inverted confocal laser scanning microscopy. Apoptosis was investigated using flow cytometry with Annexin V-fluorescein isothiocyanate and propidium iodine staining. The cytotoxicity of HMME-mediated sonodynamic action on MG-63 cells was significantly higher than that of other treatments, including ultrasound alone, HMME alone and sham treatment. Flow cytometry demonstrated that HMME‑SDT action markedly enhanced the apoptotic rate of MG-63 cells. The mechanisms of apoptosis were analyzed by measuring the protein expression of poly ADP-ribose polymerase (PARP), cleaved PARP, procaspase-3, cleaved caspase-3 and cleaved caspase-9. The data demonstrated that HMME-SDT action markedly induced the apoptosis of MG-63 cells.
Collapse
Affiliation(s)
- Xing Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuo Geng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qing-Gang Meng
- Department of Orthopedic Surgery, The First Hospital of Harbin City, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zheng-Gang Bi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
13
|
Li X, Gao L, Zheng L, Kou J, Zhu X, Jiang Y, Zhong Z, Dan J, Xu H, Yang Y, Li H, Shi S, Cao W, Zhao Y, Tian Y, Yang L. The efficacy and mechanism of apoptosis induction by hypericin-mediated sonodynamic therapy in THP-1 macrophages. Int J Nanomedicine 2015; 10:821-38. [PMID: 25653524 PMCID: PMC4309797 DOI: 10.2147/ijn.s75398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To investigate the sonoactivity of hypericin (HY), together with its sonodynamic effect on THP-1 macrophages and the underlying mechanism. Materials and methods CCK-8 was used to examine cell viability. Confocal laser scanning microscopy was performed to assess the localization of HY in cells, reactive oxygen species (ROS) generation, and opening of the mitochondrial permeability transition pore (mPTP) after different treatments. Apoptosis was analyzed using Hoechst–propidium iodide and transmission electron microscopy. Mitochondrial membrane potential (ΔΨm) collapse was detected via fluorescence microscopy. Lipoprotein oxidation was determined in malondialdehyde (MDA) assays. Western blotting was conducted to determine the translocation of BAX and cytochrome C and the expression of apoptosis-related proteins. Results HY was sublocalized among the nuclei and the mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosome in the cytosol of THP-1 macrophages. Under low-intensity ultrasound irradiation, HY significantly decreased cell viability and induced apoptosis. Furthermore, greater ROS generation, higher MDA levels, and greater ΔΨm loss were observed in the sonodynamic therapy (SDT) group. Both ROS generation and MDA levels were significantly reduced by the ROS scavenger N-acetyl cysteine (NAC) and the singlet oxygen scavenger sodium azide. Most of the loss of ΔΨm was inhibited by pretreatment with NAC, sodium azide, and the mPTP inhibitor cyclosporin A (CsA). mPTP opening was induced upon SDT but was reduced by pretreatment with bongkrekic acid, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid disodium, CsA, and NAC. Western blot analyses revealed translocation of BAX and cytochrome C, downregulated expression of Bcl-2, and upregulated expression of cleaved caspase-9, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase in the SDT group, which were reversed by NAC. Conclusion HY mediated SDT-induced apoptosis in THP-1 macrophages via ROS generation. Then, the proapoptotic factor BAX translocated from the cytosol to the mitochondria, increasing the ratio of BAX/Bcl-2, and the mPTP opened to release cytochrome C. This study demonstrated the great potential of HY-mediated SDT for treating atherosclerosis.
Collapse
Affiliation(s)
- Xuesong Li
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China
| | - Lei Gao
- Electron Microscopy Centre, Harbin Medical University, Harbin, People's Republic of China
| | - Longbin Zheng
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China
| | - Jiayuan Kou
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China
| | - Xing Zhu
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China
| | - Yueqing Jiang
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China
| | - Zhaoyu Zhong
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China
| | - Juhua Dan
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China
| | - Haobo Xu
- Division of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yang Yang
- Division of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Hong Li
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China
| | - Sa Shi
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China
| | - Wenwu Cao
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, People's Republic of China ; Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China
| | - Ye Tian
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China ; Division of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
14
|
Li YJ, Huang P, Jiang CL, Jia DX, Du XX, Zhou JH, Han Y, Sui H, Wei XL, Liu L, Yuan HH, Zhang TT, Zhang WJ, Xie R, Lang XH, Wang LY, Liu T, Bai YX, Tian Y. Sonodynamically induced anti-tumor effect of 5-aminolevulinic acid on pancreatic cancer cells. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2671-2679. [PMID: 25220273 DOI: 10.1016/j.ultrasmedbio.2014.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Sonodynamic therapy (SDT), a promising modality for cancer treatment, involves the synergistic interaction of ultrasound and some chemical compounds termed sonosensitizers. However, its effect on pancreatic cancer cells remains unclear. In our study, we sought to identify the cytotoxic effects of ultrasound-activated 5-aminolevulinic acid on human pancreatic cancer Capan-1 cells. Cell viability was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) analysis; mitochondrial membrane potential was assessed using the fluorescent probe jc-1; apoptosis was evaluated by flow cytometry; cell morphology was investigated by scanning electron microscopy; apoptosis-related protein expression was analyzed by Western blot assay. We found that SDT significantly decreased the survival rate of cells, and this effect increased with 5-aminolevulinic acid concentration and ultrasound exposure time. The mechanism underlying the effect of SDT involves, in part, the induction of a conspicuous loss in mitochondrial membrane potential and, in part, the induction of apoptosis through upregulation of Bax expression, downregulation of Bcl-2 and increased activation of procaspase-3. These results indicate that the ultrasonically induced cell killing effect could be enhanced by 5-ALA and that the mitochondrial pathway might be involved in the cell damage process. We conclude that SDT is a promising new methodology for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yan Jing Li
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Peng Huang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Cai Ling Jiang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - De Xin Jia
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiao Xue Du
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jian Hua Zhou
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Han
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Sui
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiao Li Wei
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lei Liu
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Heng Heng Yuan
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ting Ting Zhang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wen Jie Zhang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rui Xie
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiao Hui Lang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Ying Wang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tao Liu
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Xian Bai
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ye Tian
- Division of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China.
| |
Collapse
|
15
|
Wei C, Bai WK, Wang Y, Hu B. Combined treatment of PC-3 cells with ultrasound and microbubbles suppresses invasion and migration. Oncol Lett 2014; 8:1372-1376. [PMID: 25120726 PMCID: PMC4114620 DOI: 10.3892/ol.2014.2310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 06/12/2014] [Indexed: 01/25/2023] Open
Abstract
The aim of the present study was to investigate whether ultrasound treatment combined with microbubbles inhibits cell invasion and migration in androgen-independent prostate cancer (PCa) cells and to identify the probable mechanism. Ultrasound was used in continuous wave mode at a frequency of 21 kHz and with a spatial-average temporal-average intensity of 46 mW/cm2. Ultrasound combined with microbubbles (200 μl; SonoVue) was administered to androgen-independent human PCa PC-3 cells for 30 sec. The PC-3 cells were divided into three groups: The control group, the ultrasound group (US) and the ultrasound combined with microbubbles group (US + MB). Following treatment for 12, 24, 48 and 72 h, cell counting kit-8 was used to assess cell viability. Cell invasion and migration was measured 12 h after treatment using Transwell migration assays. Quantitative polymerase chain reaction and western blot analysis were used to evaluate the expression of the migration-associated proteins, matrix metalloproteinase (MMP)-2 and MMP-9. Cell reproduction levels in the US and US + MB groups were significantly suppressed when compared with the control group (P<0.01) following 24 h of treatment and this suppression was significantly higher in the US + MB group than in the US group (P<0.01). However, no significant differences in cell reproduction levels between the three groups were identified at 12 h (P>0.05). Ultrasound combined with microbubbles significantly suppressed the level of invasion and migration in the PC-3 cells compared with the control group (190.83±14.63 vs. 509.67±18.62, P<0.01; and 86.67±10.60 vs. 271.33±65.14; P<0.01, respectively). Furthermore, combined treatment with ultrasound and microbubbles suppressed the expression of MMP-2 and MMP-9. In conclusion, it was found that ultrasound combined with microbubbles suppressed invasion and migration in human PCa PC-3 cells via downregulation of MMP-2 and MMP-9.
Collapse
Affiliation(s)
- Cong Wei
- Department of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Wen-Kun Bai
- Department of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Yu Wang
- Department of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| |
Collapse
|
16
|
Li Y, Wang P, Wang X, Su X, Liu Q. Involvement of mitochondrial and reactive oxygen species in the sonodynamic toxicity of chlorin e6 in human leukemia K562 cells. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:990-1000. [PMID: 24462156 DOI: 10.1016/j.ultrasmedbio.2013.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 11/06/2013] [Accepted: 11/16/2013] [Indexed: 06/03/2023]
Abstract
It is well accepted that sonodynamic therapy (SDT) exerts cytotoxicity and anti-tumor activity in many human tumors through the induction of cell apoptosis. The aim of the work described here was to study the effect of chlorin e6 (Ce6)-mediated SDT on human chronic myelogenous leukemia K562 cells. Our results indicate that Ce6-mediated SDT can suppress the viability of K562 cells. SDT caused apoptosis as analyzed by annexin V-phycoerythrin/7-amino-actinomycin D staining as well as cleavage of caspase 3 and the polypeptide poly(ADP-ribose) polymerase. After SDT exposure, loss of mitochondrial membrane potential, translocation of Bax from cytoplasm to mitochondria and activation of caspase 9 indicated that the mitochondrial-related apoptotic pathway might be activated. This process was accompanied by rapid generation of reactive oxygen species (ROS). Scavenging of ROS significantly blocked caspase-3 expression and the killing effect of SDT on K562 cells. Stress-activated protein kinases c-jun NH2-terminal kinase (JNK) and the p38 mitogen-activated protein kinase were activated after SDT treatment. Together, these findings indicate that Ce6-mediated SDT triggers mitochondria- and caspase-dependent apoptosis; oxidative injury may play a vital role in apoptotic signaling cascades.
Collapse
Affiliation(s)
- Yixiang Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China.
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Xiaomin Su
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China.
| |
Collapse
|
17
|
Apoptosis of THP-1 derived macrophages induced by sonodynamic therapy using a new sonosensitizer hydroxyl acetylated curcumin. PLoS One 2014; 9:e93133. [PMID: 24676101 PMCID: PMC3968056 DOI: 10.1371/journal.pone.0093133] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 03/02/2014] [Indexed: 12/31/2022] Open
Abstract
Curcumin is extracted from the rhizomes of the traditional Chinese herb Curcuma longa. Our previous study indicated curcumin was able to function as a sonosensitizer. Hydroxyl acylated curcumin was synthesized from curcumin to eliminate the unstable hydroxy perssad in our group. The potential use of Hydroxyl acylated curcumin as a sonosensitizer for sonodynamic therapy (SDT) requires further exploration. This study investigated the sonodynamic effect of Hydroxyl acylated curcumin on THP-1 macrophage. THP-1 macrophages were cultured with Hydroxyl acylated curcumin at a concentration of 5.0 μg/mL for 4 hours and then exposed to pulse ultrasound irradiation (0.5 W/cm2 with 1.0 MHz ) for 5 min, 10 min and 15 min. Six hours later, cell viability decreased significantly by CCK-8 assay. After ultrasound irradiation, the ratio of apoptosis and necrosis in SDT group was higher than that in control, Hydroxyl acylated curcumin alone and ultrasound alone. Moreover, the apoptotic rate was higher than necrotic rate with the flow cytometry analysis. Furthermore, Hydroxyl acylated curcumin-SDT induced reactive oxygen species (ROS) generation in THP-1 macrophages immediately after the ultrasound treatment while ROS generation was reduced significantly with the scavenger of singlet oxygen Sodium azide (NaN3). Hydroxyl acylated curcumin-SDT led to a conspicuous loss of mitochondrial membrane potential (MMP) compared with other groups, while MMP was increased significantly with the scavenger of singlet oxygen Sodium azide (NaN3), ROS inhibitor N-acetyl cysteine (NAC) and Mitochondrial Permeability Transition Pore (MPTP) inhibitor Cyclosporin A (CsA). The cytochrome C, cleaved-Caspase-9, cleaved-Caspase-3 and cleaved-PARP upregulated after SDT through Western blotting. These findings suggested that Hydroxyl acylated curcumin under low-intensity ultrasound had sonodynamic effect on THP-1 macrophages via generation of intracellular singlet oxygen and mitochondria-caspase signaling pathway, indicating that Hydroxyl acylated curcumin could be used as a novel sonosensitizer in SDT for atherosclerosis.
Collapse
|
18
|
Bai W, Yang S, Shen E, Zhang J, Shen Z, Hu B. Treatment of PC-3 cells with ultrasound combined with microbubbles induces distinct alterations in the expression of Bcl-2 and Bax. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-5753-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Su X, Wang P, Wang X, Guo L, Li S, Liu Q. Involvement of MAPK activation and ROS generation in human leukemia U937 cells undergoing apoptosis in response to sonodynamic therapy. Int J Radiat Biol 2013; 89:915-27. [DOI: 10.3109/09553002.2013.817700] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Targeted manipulation of apoptotic pathways by using High Intensity Focused Ultrasound in cancer treatment. Cancer Lett 2013; 338:204-8. [PMID: 23612069 DOI: 10.1016/j.canlet.2013.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/15/2013] [Indexed: 11/23/2022]
Abstract
Apoptosis, or programmed cell death, is a mechanism of cell death, which has been exploited for the treatment of cancers over the past few years. The understanding of apoptosis pathways (intrinsic and extrinsic) has led to discovery of treatment strategies which selectively target the cancer cells and spare the normal ones. This article reviews the current understanding of the apoptotic pathways which are utilized for targeting cancer cells using High Intensity Focused Ultrasound (HIFU).
Collapse
|
21
|
Bai WK, Shen E, Hu B. Induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chin J Cancer Res 2013. [DOI: 10.1007/s11670-012-0277-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Su X, Wang P, Wang X, Cao B, Li L, Liu Q. Apoptosis of U937 cells induced by hematoporphyrin monomethyl ether-mediated sonodynamic action. Cancer Biother Radiopharm 2013; 28:207-17. [PMID: 23506428 DOI: 10.1089/cbr.2012.1190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE The present study aims to investigate apoptosis of U937 cells induced by hematoporphyrin monomethyl ether (HMME)-mediated sonodynamic therapy (SDT). MATERIALS HMME concentration was kept constant at 10 μg/mL. Tumor cells suspended in serum-free RPM1640 were exposed to ultrasound at 1.1 MHz for up to 60 seconds with an intensity of 1 W/cm(2) in the presence and absence of HMME. The viability of cells was determined by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltertrazolium bromide tetrazolium (MTT) test. Apoptosis was analyzed using a flow cytometer with Annexin V-PE/7-ADD staining as well as fluorescence microscopy with 4'-6-diamidino-2-phenylindole (DAPI) staining. The DNA damage of U937 cells, intracellular reactive oxygen species (ROS), and mitochondria membrane potential (MMP) were also analyzed by a flow cytometer after exposures. Western blotting and reverse transcriptase-polymerase chain reaction were used to analyze the protein and mRNA expression level of caspase-3 and poly(ADP-ribose) polymerase (PARP). RESULTS Fluorescent imaging revealed that HMME mainly localized in the mitochondria. MTT assay showed 55.6% of cell survival at 4 hours post-SDT. Flow cytometric analysis displayed a significant increase in the early- and late-apoptotic cell populations (35.6%) of U937 cells by HMME-mediated SDT. Compared with the control, ultrasound-alone, and HMME-alone groups, the intracellular ROS and the MMP loss were greatly increased in the combined SDT group. Obvious nuclear condensation was also found with DAPI staining, and the DNA fragment increased to 33.9% at 2 hours post-SDT treatment. Immunofluorescent staining indicated obvious Bax translocation after SDT. Western blot showed visible enhancement of caspase-3 and PARP cleavage. In addition, caspase-3 and PARP mRNA expression of U937 cells increased remarkably after SDT treatment. CONCLUSIONS The findings demonstrated that HMME-mediated sonodynamic action (HMME-SDT) significantly induced apoptosis of U937 cells, suggesting that HMME may be a good sonosensitizer, and HMME-SDT might be a potential therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Xiaomin Su
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
23
|
Chen B, Zheng R, Liu D, Li B, Lin J, Zhang W. The tumor affinity of chlorin e6 and its sonodynamic effects on non-small cell lung cancer. ULTRASONICS SONOCHEMISTRY 2013; 20:667-673. [PMID: 23073382 DOI: 10.1016/j.ultsonch.2012.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/22/2012] [Accepted: 09/23/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVE Sonodynamic therapy (SDT) is a promising new approach for cancer therapy. The aim of this study was to investigate the tumor affinity of chlorin e6, a photosensitizer, and its sonodynamic effects on NSCLC. METHODS Human lung adenocarcinoma cells SPCA-1 and mice bearing SPCA-1 tumor xenograft were exposed to ultrasound in the presence or absence of chlorin e6. Chlorin e6 distribution was detected by laser scan confocal microscope. Cell apoptosis and necrosis were studied by flow cytometry analysis. Tumor size and weight were measured after different treatments. RESULTS The concentration of chlorin e6 in tumor tissue was remarkably higher than that in normal muscle near tumor, and the difference was greatest at 18h (the fluorescence intensity was 5.38-fold higher in tumor than in muscle, P<0.05). In vivo, ultrasound (0.4-1.6W/cm(2)) or chlorin e6 (10-40mg/kg) alone had no remarkable anti-tumor effects, but the combination of ultrasound (1.6W/cm(2)) with chlorin e6 (SDT) hampered tumor growth significantly (P<0.05). Intraperitoneal injection of 40mg/kg chlorin e6 exerted no notable side effect on blood, liver and kidney function. Flow cytometry analysis showed that chlorin e6-mediated sonodynamic effect was mainly through the induction of cell necrosis. CONCLUSION Chlorin e6 is a promising sonosensitizer and chlorin e6-mediated SDT may provide a new approach for NSCLC therapy.
Collapse
Affiliation(s)
- Bei Chen
- Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, PR China.
| | | | | | | | | | | |
Collapse
|
24
|
Bai WK, Shen E, Hu B. The induction of the apoptosis of cancer cell by sonodynamic therapy: a review. Chin J Cancer Res 2013; 24:368-73. [PMID: 23359780 DOI: 10.3978/j.issn.1000-9604.2012.08.03] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/06/2012] [Indexed: 11/14/2022] Open
Abstract
Ultrasound can be used not only in the examination, but also in the therapy, especially in the therapy of cancer, which has got effect in the treatment. Sonodynamic therapy is an experimental cancer therapy which uses ultrasound to enhance the cytotoxic effects of drugs known as sonosensitizers. It has been tested in vitro and in vivo. The ultrasound could penetrate the tissue and cell under some of conditions which directly changes the cell membranes permeability, thereby allowing the delivery of exogenous molecules into the cells in some degree. Ultrasound could inhibit the proliferation or induce the apoptosis of the cancer cell in vitro or in vivo. Recent research indicated low frequency and low intensity ultrasound could induce cells apoptosis, and which could be strengthened by sonodynamic sensitivities, microbubbles, chemotherapeutic drugs and so on. Most kinds of ultrasound suppressed the proliferation of cancer cell through inducing the apoptosis of cancer cell. The mechanism of apoptosis is not clear. In this review, we will focus on and discuss the mechanisms of the induction of the apoptosis of cancer cell by ultrasound.
Collapse
Affiliation(s)
- Wen-Kun Bai
- Department of Ultrasound In Medicine, Shanghai Jiao tong University Affiliated 6th People's Hospital, Shanghai Institute of Ultrasound In Medicine, Shanghai 200233, China; ; Department of Ultrasound In Medicine, Shandong University Affiliated Qian Fo Shan Hospital, Ji Nan 250014, China
| | | | | |
Collapse
|
25
|
The sonodynamic effect of curcumin on THP-1 cell-derived macrophages. BIOMED RESEARCH INTERNATIONAL 2012; 2013:737264. [PMID: 23509769 PMCID: PMC3591177 DOI: 10.1155/2013/737264] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/13/2012] [Indexed: 12/20/2022]
Abstract
Curcumin is extracted from the rhizomes of the traditional Chinese herb Curcuma longa and has been proposed to function as a photosensitizer. The potential use of curcumin as a sonosensitizer for sonodynamic therapy (SDT) requires further exploration. This study investigated the sonodynamic effect of curcumin on macrophages, the pivotal inflammatory cells in atherosclerotic plaque. THP-1-derived macrophages were incubated with curcumin at a concentration of 40.7 μmol/L for 2 h and then exposed to pulse ultrasound irradiation (2 W/cm2 with 0.86 MHz) for 5–15 min. Six hours later, cell viability was decreased in cells that had been treated with ultrasound for 10 and 15 min. After ultrasound irradiation for 15 min, the ratio of apoptotic and necrotic cells in SDT group was higher than that in ultrasound group, and the ratio of apoptotic cells was higher than that of necrotic cells. Both loss of mitochondrial membrane potential and morphological changes of cytoskeleton were apparent 2 h after treatment with curcumin SDT. These findings support that curcumin had sonodynamic effect on THP-1-derived macrophages and that curcumin SDT could be a promising treatment for atherosclerosis.
Collapse
|
26
|
Tang W, Fan W, Liu Q, Zhang J, Qin X. The role of p53 in the response of tumor cells to sonodynamic therapy in vitro. ULTRASONICS 2011; 51:777-785. [PMID: 21616517 DOI: 10.1016/j.ultras.2011.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 02/18/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
p53 plays a pivotal role in apoptosis. In addition, p53 is currently extensively investigated as a promising strategy for highly specific anticancer therapy in chemotherapeutics and photodynamic therapy. However, the role of p53 in the response of tumor cells to sonodynamic therapy treatment is still unclear. In this study, we aim to investigate the activation of p53 in sonodynamic therapy. Three murine tumor models with distinct aggressiveness (S180, H-22 and EAC) were treated with 1.75MHz continuous ultrasound at an acoustic intensity (I(SATA)) of 1.4W for 3min in the presence of 20μg/ml hematoporphyrin. The DNA fragment and nuclear damage were observed by TUNEL and single cell gel electrophoresis. Western blotting and RT-PCR were used to analyze the expression of p53, PUMA, Bax and Fas. Then we checked the translocation of p53 by confocal microscopy. DNA sequencing was used to determine the status of p53 gene in three tumor cell lines. Our results indicated that the level of p53 protein and mRNA increased significantly, and p53 activated the expression of its downstream pro-apoptosis gene PUMA, Bax and Fas in the S180 and H-22 cells. Meanwhile, p53 protein translocated onto mitochondria. In the EAC cells, expression and translocation of p53 was not found; the level of PUMA, Bax and Fas remained unaltered. The S180 cells showed most serious DNA fragment and nuclear damage with 77.43% TDNA; H-22 cells in the middle with 58.85% TDNA; whereas EAC cells appeared less nuclear material lost with just 15.82% TDNA. The results of DNA sequencing showed that the sequences of exons 5-8 of the p53 gene of S180, H-22 and EAC cells were the same with the sequences of wild-type p53 provided by NCBI. These results primarily demonstrated that: (1) p53 was activated to promote SDT-induced apoptosis through extrinsic and intrinsic signaling pathways in the S180 and H-22 cells; (2) cellular responses of different cells to SDT were distinct, the aggressive S180 cells were much more sensitive than H-22, whereas EAC cells were relatively less sensitive. The discrepancy among the cell lines may be due to different activation time of p53 protein.
Collapse
Affiliation(s)
- Wei Tang
- College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | | | | | | | | |
Collapse
|
27
|
Gao Q, Wang F, Guo S, Li J, Zhu B, Cheng J, Jin Y, Li B, Wang H, Shi S, Gao Q, Zhang Z, Cao W, Tian Y. Sonodynamic effect of an anti-inflammatory agent--emodin on macrophages. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1478-1485. [PMID: 21767904 DOI: 10.1016/j.ultrasmedbio.2011.05.846] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/19/2011] [Accepted: 05/31/2011] [Indexed: 05/31/2023]
Abstract
Emodin has been used as an anti-inflammatory agent and inflammation is a crucial feature of atherosclerosis. Here, we investigated the sonodynamic effect of emodin on macrophages, the pivotal inflammatory cells in atherosclerotic plaque. THP-1 derived macrophages were cultured with emodin and exposed to ultrasound. Six hours later, unlike the cells treated for 5 and 10 min, the viability of cells treated for 15 min decreased significantly and the cells showed typical apoptotic chromatin fragmentation. The percentage of apoptotic and necrotic cells in the sonodynamic therapy (SDT) group was higher than that in the ultrasound group. Two hours after treatment for 15 min, the cytoskeleton lost its original features as the filaments dispersed and the cytoskeletal proteins aggregated. The percentage of cells with disturbed cytoskeletal filaments in the SDT group was higher than that in the ultrasound group. These results suggest emodin has a sonodynamic effect on macrophages and might be used as a novel sonosensitizer for SDT for atherosclerosis.
Collapse
Affiliation(s)
- Qianping Gao
- Department of Pathophysiology, Harbin Medical University, Harbin, P R China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Daigeler A, Chromik AM, Haendschke K, Emmelmann S, Siepmann M, Hensel K, Schmitz G, Klein-Hitpass L, Steinau HU, Lehnhardt M, Hauser J. Synergistic effects of sonoporation and taurolidin/TRAIL on apoptosis in human fibrosarcoma. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1893-1906. [PMID: 20870344 DOI: 10.1016/j.ultrasmedbio.2010.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/30/2010] [Accepted: 08/13/2010] [Indexed: 05/29/2023]
Abstract
Sonodynamic therapy, in combination with ultrasound contrast agents, proved to enhance the uptake of chemotherapeutics in malignant cells. HT1080 fibrosarcoma cells were treated in vitro with a combination of ultrasound SonoVue™-microbubbles and taurolidine (TRD) plus tumor necrosis factor related apoptosis inducing ligand (TRAIL). Apoptosis was measured by TdT-mediated dUTP-biotin nick end labelling (TUNEL) assay and fluorescence activated cell sorting (FACS) analysis. Gene expression was analysed by RNA-microarray. The apoptotic effects of TRD and TRAIL on human fibrosarcoma are enhanced by sonodynamic therapy and additional application of contrast agents, such as SonoVue™ by 25%. A broad change in the expression of genes related to apoptotic pathways is observed when ultrasound and microbubbles act synchronously in combination with the chemotherapeutics (e.g. BIRC3, NFKBIA and TNFAIP3). Some of these genes have already been proven to play a role in programmed cell death in human fibrosarcoma (HSPA1A/HSPA1B, APAF1, PAWR, SOCS2) or were associated with sonication induced apoptosis (CD44). Further studies are needed to explore the options of sonodynamic therapy on soft tissue sarcoma and its molecular mechanisms.
Collapse
Affiliation(s)
- Adrien Daigeler
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG-Unfallkrankenhaus, Ludwigshafen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|