1
|
Wang T, Du M, Chen Z. Sonosensitizers for Sonodynamic Therapy: Current Progress and Future Perspectives. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:727-734. [PMID: 39909788 DOI: 10.1016/j.ultrasmedbio.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Sonodynamic therapy (SDT) is a novel non-invasive treatment method that combines low-intensity ultrasound and sonosensitizers. Compared with photodynamic therapy, SDT has the advantages of deeper tissue penetration, higher accuracy and fewer adverse reactions. Sonosensitizers are essential for the efficacy of SDT. Sonosensitizers have the advantages of clear structure, easy monitoring, evaluation of drug metabolism and clinical transformation, etc. Notably, biochemical techniques can be used in the field of sonosensitizers and SDT to overcome inherent barriers and achieve sustainable innovation. This article first summarizes the molecular mechanism of SDT, focusing on organic sonosensitizers, inorganic nano-sonosensitizers and multi-functional drug delivery systems with targeting, penetration and imaging functions after a series of modifications. This review provides ideas and references for the design of sonosensitizers and SDT and promotes their future transformation into clinical applications.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; Department of Medical Imaging, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
2
|
Liu H, Nan Z, Zhao C, Bai L, Shi L, He C, Wu D, Wan M, Feng Y. Emerging synergistic strategies for enhanced antibacterial sonodynamic therapy: Advances and prospects. ULTRASONICS SONOCHEMISTRY 2025; 116:107288. [PMID: 40038013 PMCID: PMC11986242 DOI: 10.1016/j.ultsonch.2025.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/29/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Antibacterial therapy has been extensively applied in medical field to alleviate the severity and mortality of infection. However, it still exists some issues such as drug side effects, limited efficacy and bacterial resistance. Among the alternative therapies, antibacterial sonodynamic therapy (aSDT) has been explored as a promising approach to tackle those crises. It is meaningful to investigate superior strategy to augment the therapeutic efficacy of aSDT. This review summarizes the potential aSDT-based antibacterial mechanisms and comprehensively discusses the prevailing synergistic strategies, such as nanomaterials-based aSDT antibacterial strategy, aSDT + strategy with physical, chemical and biological methods. Moreover, we also reviewed the medical applications of aSDT strategies. Finally, the perspectives on the current challenges that need be resolved in aSDT are proposed. We expect that this review could provide robust support to expedite the clinical applications of aSDT.
Collapse
Affiliation(s)
- Hengyu Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhezhu Nan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chen Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Liang Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Linrong Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chenhui He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
3
|
Fiegler-Rudol J, Kapłon K, Kotucha K, Moś M, Skaba D, Kawczyk-Krupka A, Wiench R. Hypocrellin-Mediated PDT: A Systematic Review of Its Efficacy, Applications, and Outcomes. Int J Mol Sci 2025; 26:4038. [PMID: 40362277 PMCID: PMC12071988 DOI: 10.3390/ijms26094038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Photodynamic therapy (PDT) is a light-activated treatment that generates reactive oxygen species (ROS) to induce microbial cell death. As resistance to traditional antibiotics intensifies globally, PDT has emerged as a promising alternative or adjunctive antimicrobial strategy. Among various photosensitizers, Hypocrellin, a perylenequinone compound, has shown high ROS yield and broad-spectrum activity against bacteria and fungi. This systematic review evaluated the efficacy, safety, and therapeutic potential of Hypocrellin-mediated antimicrobial photodynamic therapy. Following PRISMA 2020 guidelines, a comprehensive literature search was conducted in PubMed, Embase, Scopus, and the Cochrane Library for studies published between 2015 and 2025. Eligible studies included in vitro and preclinical in vivo research using Hypocrellin as a photosensitizer. Quality and risk of bias were assessed using a structured nine-item checklist. Ten eligible studies, all conducted in China, were included. Hypocrellin-mediated aPDT significantly reduced microbial loads in both planktonic and biofilm states of resistant pathogens such as Candida albicans, Candida auris, Cutibacterium acnes, and Staphylococcus aureus. The treatment acted via ROS-mediated apoptosis, membrane disruption, and mitochondrial dysfunction, with minimal cytotoxicity to mammalian cells. Studies also reported enhanced efficacy when Hypocrellin was incorporated into nanocarriers, polymeric scaffolds, or combined with chemodynamic or photothermal therapies. However, substantial heterogeneity was observed in Hypocrellin concentrations, irradiation parameters, and outcome measures. Hypocrellin-based PDT exhibits potent antimicrobial activity and favorable safety in preclinical settings, supporting its potential as an alternative to conventional antibiotics. However, standardized treatment protocols and robust clinical trials are urgently needed to validate long-term safety and translational feasibility. These findings underscore the broader promise of PDT in addressing drug-resistant infections through a mechanism unlikely to induce resistance.
Collapse
Affiliation(s)
- Jakub Fiegler-Rudol
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.F.-R.); (R.W.)
| | - Katarzyna Kapłon
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland; (K.K.); (K.K.); (M.M.)
| | - Kornela Kotucha
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland; (K.K.); (K.K.); (M.M.)
| | - Magdalena Moś
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland; (K.K.); (K.K.); (M.M.)
| | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.F.-R.); (R.W.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland; (K.K.); (K.K.); (M.M.)
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (J.F.-R.); (R.W.)
| |
Collapse
|
4
|
Liu X, Feng Z, Ran Z, Zeng Y, Cao G, Li X, Ye H, Wang M, Liang W, He Y. External Stimuli-Responsive Strategies for Surface Modification of Orthopedic Implants: Killing Bacteria and Enhancing Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67028-67044. [PMID: 38497341 DOI: 10.1021/acsami.3c19149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacterial infection and insufficient osteogenic activity are the main causes of orthopedic implant failure. Conventional surface modification methods are difficult to meet the requirements for long-term implant placement. In order to better regulate the function of implant surfaces, especially to improve both the antibacterial and osteogenic activity, external stimuli-responsive (ESR) strategies have been employed for the surface modification of orthopedic implants. External stimuli act as "smart switches" to regulate the surface interactions with bacteria and cells. The balance between antibacterial and osteogenic capabilities of implant surfaces can be achieved through these specific ESR manifestations, including temperature changes, reactive oxygen species production, controlled release of bioactive molecules, controlled release of functional ions, etc. This Review summarizes the recent progress on different ESR strategies (based on light, ultrasound, electric, and magnetic fields) that can effectively balance antibacterial performance and osteogenic capability of orthopedic implants. Furthermore, the current limitations and challenges of ESR strategies for surface modification of orthopedic implants as well as future development direction are also discussed.
Collapse
Affiliation(s)
- Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhili Ran
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Meijing Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Gao Z, Zheng X, Dong X, Liu W, Sha J, Bian S, Li J, Cong H, Lee CS, Wang P. A General Strategy for Enhanced Photodynamic Antimicrobial Therapy with Perylenequinonoid Photosensitizers Using a Macrocyclic Supramolecular Carrier. Adv Healthc Mater 2024; 13:e2401778. [PMID: 38979867 DOI: 10.1002/adhm.202401778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Perylenequinonoid natural products are a class of photosensitizers (PSs) that exhibit high reactive oxygen species (ROS) generation and excellent activity for Type I/Type II dual photodynamic therapy. However, their limited activity against gram-negative bacteria and poor water solubility significantly restrict their potential in broad-spectrum photodynamic antimicrobial therapy (PDAT). Herein, a general approach to overcome the limitations of perylenequinonoid photosensitizers (PQPSs) in PDAT by utilizing a macrocyclic supramolecular carrier is presented. Specifically, AnBox·4Cl, a water-soluble cationic cyclophane, is identified as a universal macrocyclic host for PQPSs such as elsinochrome C, hypocrellin A, hypocrellin B, and hypericin, forming 1:1 host-guest complexes with high binding constants (≈107 m -1) in aqueous solutions. Each AnBox·4Cl molecule carries four positive charges that promote strong binding with the membrane of gram-negative bacteria. As a result, the AnBox·4Cl-PQPS complexes can effectively anchor on the surfaces of gram-negative bacteria, while the PQPSs alone cannot. In vitro and in vivo experiments demonstrate that these supramolecular PSs have excellent water solubility and high ROS generation, with broad-spectrum PDAT effect against both gram-negative and gram-positive bacteria. This work paves a new path to enhance PDAT by showcasing an efficient approach to improve PQPSs' water solubility and killing efficacy for gram-negative bacteria.
Collapse
Affiliation(s)
- Zekun Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangyu Dong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuaishuai Bian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
Bao Z, Xie Y, Xu C, Zhang Z, Zhu D. Biotechnological production and potential applications of hypocrellins. Appl Microbiol Biotechnol 2023; 107:6421-6438. [PMID: 37695342 DOI: 10.1007/s00253-023-12727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Hypocrellins (HYPs), a kind of natural perylenequinones (PQs) with an oxidized pentacyclic core, are important natural compounds initially extracted from the stromata of Hypocrella bambusae and Shiraia bambusicola. They have been widely concerned for their use as anti-microbial, anti-cancers, and anti-viral photodynamic therapy agents in recent years. Considering the restrictions of natural stromal resources, submerged fermentation with Shiraia spp. has been viewed as a promising alternative biotechnology for HYP production, and great efforts have been made to improve HYP production over the past decade. This article reviews recent publications about the mycelium fermentation production of HYPs, and their bioactivities and potential applications, and especially summarizes the progresses toward manipulation of fermentation conditions. Also, their chemical structure and analytic methods are outlined. Herein, it is worth mentioning that the gene arrangement in HYP gene cluster is revised; previous unknown genes in HYP and CTB gene clusters with correct function annotation are deciphered; the homologous sequences of HYP, CTB, and elc are systematically aligned, and especially the biosynthetic pathway of HYPs is full-scale proposed. KEY POINTS: • The mycelial fermentation process and metabolic regulation of hypocrellins are reviewed. • The bioactivities and potential applications of hypocrellins are summarized. • The biosynthesis pathway and regulatory mechanisms of hypocrellins are outlined.
Collapse
Affiliation(s)
- Zhuanying Bao
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunchang Xie
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Chenglong Xu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022, China.
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
7
|
Duan X, Wang D, Liu J, Liu Y, Dong B, Wang X, Liu B. Synthesis and Sonodynamic Antibacterial Activity Evaluation of Three Novel Fluoroquinolone Compounds. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00166-7. [PMID: 37331919 DOI: 10.1016/j.ultrasmedbio.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVE Three ciprofloxacin derivatives (CPDs) were synthesized. Also, their sonodynamic antibacterial activities and possible mechanism under ultrasound (US) irradiation were preliminarily investigated. METHODS Staphylococcus aureus and Escherichia coli were selected as the research objects. The sonodynamic antibacterial effects of three CPDs and their structure-effective relationship were explored by the inhibition rate. The reactive oxygen species (ROS) produced under US irradiation were detected by oxidative extraction spectrophotometry and used to analyze the sonodynamic antibacterial mechanism of three CPDs. RESULTS Research indicated that three CPDs, named compound 1 (C1), compound 2 (C2) and compound 3 (C3), separately all had strong sonodynamic antibacterial activities. In addition, C3 had the strongest effect relative to the other CPDs. The study also found that CPDs' concentration, US irradiation time, US solution temperature and US medium could disturb their sonodynamic antimicrobial effects. Moreover, 1O2 and ·OH were the main types of ROS produced by C1 and C3; the ROS produced by C2 included 1O2, among other types. CONCLUSION Results showed that all three CPDs could be activated to produce ROS after US irradiation. Among them, C3 displayed the highest ROS production and the utmost activity, which may be related to the introduction of the electron-giving group at the C-3 position of the quinoline backbone.
Collapse
Affiliation(s)
- Xinyue Duan
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Dongjing Wang
- Beijing Liling Hengtai Pharmaceutical Co. Ltd., Beijing, China
| | - Ju Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Boyang Dong
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Xiaofang Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China
| | - Bin Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, China.
| |
Collapse
|
8
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
9
|
Wang R, Liu Q, Gao A, Tang N, Zhang Q, Zhang A, Cui D. Recent developments of sonodynamic therapy in antibacterial application. NANOSCALE 2022; 14:12999-13017. [PMID: 36052726 DOI: 10.1039/d2nr01847k] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid emergence of pathogenic bacteria poses a serious threat to global health. Notably, traditional antibiotic therapies suffer from the risk of strengthening bacterial drug resistance. Sonodynamic therapy (SDT) combining sonosensitizers and low-intensity ultrasound (US) has broadened the way towards treating drug-resistant bacteria. The allure of this therapy emerges from the capacity to focus the US energy on bacterial infection sites buried deep in tissues, locally activating the sonosensitizers to produce cytotoxic reactive oxygen species (ROS) with the ability to induce bacterial death. The past decade has witnessed the rapid development of antibacterial SDT owing to their excellent penetration, favorable biocompatibility and specific targeting ability. This review summarizes available sonosensitizers for antibacterial SDT, and digs into innovative biotechnologies to improve SDT efficiency, such as enhancing the targeting ability of sonosensitizers, image-guided assisted SDT, improvement of hypoxia and combination of SDT with other therapies. Finally, we conclude with the present challenges and provide insights into the future research of antibacterial SDT.
Collapse
Affiliation(s)
- Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
- State Key Laboratory of Ocean Engineering, Key Laboratory of Hydrodynamics of Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China
| | - Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Ang Gao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Ning Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| |
Collapse
|
10
|
Combination of high-frequency ultrasound with propyl gallate for enhancing inactivation of bacteria in water and apple juice. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Photodynamic inactivation of Staphylococcus aureus in the system of titanium dioxide nanoparticles sensitized by hypocrellin B and its application in food preservation. Food Res Int 2022; 156:111141. [DOI: 10.1016/j.foodres.2022.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/20/2022]
|
12
|
Wysocki M, Czarczynska-Goslinska B, Ziental D, Michalak M, Güzel E, Sobotta L. Excited state and reactive oxygen species against cancer and pathogens: a review on sonodynamic and sono-photodynamic therapy. ChemMedChem 2022; 17:e202200185. [PMID: 35507015 DOI: 10.1002/cmdc.202200185] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/28/2022] [Indexed: 11/07/2022]
Abstract
Photodynamic and sonodynamic therapy are therapies having great potential in the treatment of bacterial infections and cancer. Their background is associated with photo- and sonosensitizers - substances that can be excited when exposed to light or ultrasound. These sensitizers belong to a variety of compounds groups, including porphyrins, porphyrazines, and phthalocyanines. Releasing the energy when returning to the ground state can occur in the manner of transferring it to oxygen molecules, leading to reactive oxygen species able to disrupt membranes of bacterial and cancer cells, leaving the organism's cells unaffected. In recent years, the number of reports on numerous sensitizers being effective has been constantly growing. Therefore, the development of this field may prove beneficial for dealing with cancer and microbes. This review describes the development of photodynamic and sonodynamic therapy, as well as their combination, with emphasize on sonodynamic therapy and its potential in the treatment of cancer and bacterial infections.
Collapse
Affiliation(s)
- Marcin Wysocki
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Inorganic and Analytical Chemistry, POLAND
| | - Beata Czarczynska-Goslinska
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Pharmaceutical Technology, POLAND
| | - Daniel Ziental
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Inorganic and Analytical Chemistry, POLAND
| | - Maciej Michalak
- Poznan University of Medical Sciences Faculty of Pharmacy: Uniwersytet Medyczny im Karola Marcinkowskiego w Poznaniu Wydzial Farmaceutyczny, Chair and Department of Inorganic and Analytical Chemistry, POLAND
| | - Emre Güzel
- Sakarya Uygulamali Bilimler Universitesi, Department of Engineering Fundamental Sciences, TURKEY
| | - Lukasz Sobotta
- Uniwersytet Medyczny imienia Karola Marcinkowskiego w Poznaniu, Department of Inorganic and Analytical Chemistry, Grunwaldzka 6, 60780, Poznan, POLAND
| |
Collapse
|
13
|
Yang M, Zhang J, Wei Y, Zhang J, Tao C. Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. NANO RESEARCH 2022; 15:6220-6242. [PMID: 35578616 PMCID: PMC9094125 DOI: 10.1007/s12274-022-4302-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
The rapid spread of staphylococcus aureus (S. aureus) causes an increased morbidity and mortality, as well as great economic losses in the world. Anti-S. aureus infection becomes a major challenge for clinicians and nursing professionals to address drug resistance. Hence, it is urgent to explore high efficiency, low toxicity, and environmental-friendly methods against S. aureus. Metal-organic frameworks (MOFs) represent great potential in treating S. aureus infection due to the unique features of MOFs including tunable chemical constitute, open crystalline structure, and high specific surface area. Especially, these properties endow MOF-based materials outstanding antibacterial effect, which can be mainly attributed to the continuously released active components and the exerted catalytic activity to fight bacterial infection. Herein, the structural characteristics of MOFs and evaluation method of antimicrobial activity are briefly summarized. Then we systematically give an overview on their recent progress on antibacterial mechanisms, metal ion sustained-release system, controlled delivery system, catalytic system, and energy conversion system based on MOF materials. Finally, suggestions and direction for future research to develop and mechanism understand MOF-based materials are discussed in antibacterial application.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Yinhao Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
14
|
Wang G, Wu W, Zhu JJ, Peng D. The promise of low-intensity ultrasound: A review on sonosensitizers and sonocatalysts by ultrasonic activation for bacterial killing. ULTRASONICS SONOCHEMISTRY 2021; 79:105781. [PMID: 34673340 PMCID: PMC8529547 DOI: 10.1016/j.ultsonch.2021.105781] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance has become one of the main public health issues in modern society. Ultrasonicantimicrobial treatment (UAT) is expected to solve the problem of antimicrobial resistance since ultrasonic treatment does not cause drug resistance during inactivation. However, the ultrasonic application is hindered due to the high energy cost. To cast more lights on the ultrasound in tandem with catalysts as a superior strategy for bacterial inactivation, the present review focuses on the UAT with the assistant of continuous development of organic sonosensitizer and inorganic sonocatalyst. With the application of these nanomaterials, the ultrasonic parameters changed from low-frequency and high-power ultrasound to high-frequency and low-power ultrasound. The review also presents the composition of sonosensitizers/sonocatalysts including organic and inorganic nanoparticles and discusses the ultrasonic activation mechanisms triggered by these catalysts. Based on the synergistic effect of ultrasound and catalysts, we discuss the importance of extracellular oxidation and intracellular oxidation in the process of bacterial inactivation. Overall, UAT combined with catalysts appears to be an effective treatment strategy that can be successfully applied in the field of medicine, environmental treatment, and food industry.
Collapse
Affiliation(s)
- Gongdao Wang
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Wei Wu
- School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Danhong Peng
- Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
15
|
Sonophotodynamic Inactivation: The power of light and ultrasound in the battle against microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
16
|
Fan L, Idris Muhammad A, Bilyaminu Ismail B, Liu D. Sonodynamic antimicrobial chemotherapy: An emerging alternative strategy for microbial inactivation. ULTRASONICS SONOCHEMISTRY 2021; 75:105591. [PMID: 34082219 PMCID: PMC8182071 DOI: 10.1016/j.ultsonch.2021.105591] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
Sonodynamic antimicrobial chemotherapy (SACT), which relies on a combination of low-intensity ultrasound and chemotherapeutic agents termed sonosensitizers, has been explored as a promising alternative for microbial inactivation. Such treatment has superior penetration ability, high target specificity, and can overcome resistance conferred by the local microenvironment. Taken of these advantages, SACT has been endowed with an extensive application prospect in the past decade and attracted more and more attention. This review focusses on the current understanding of the mechanism of SACT, the interaction of sonodynamic action on different microbes, the factors affecting the efficacy of SACT, discusses the findings of recent works on SACT, and explores further prospects for SACT. Thus, a better understanding of sonodynamic killing facilitates the scientific community and industry personnel to establish a novel strategy to combat microbial burden.
Collapse
Affiliation(s)
- Lihua Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China; Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aliyu Idris Muhammad
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Balarabe Bilyaminu Ismail
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 05/14/2023]
Abstract
Reactive oxygen species (ROS)-related therapeutic approaches are developed as a promising modality for cancer treatment because the aberrant increase of intracellular ROS level can cause cell death due to nonspecific oxidation damage to key cellular biomolecules. However, the most widely considered strategy, photodynamic therapy (PDT), suffers from critical limitations such as limited tissue-penetration depth, high oxygen dependence, and phototoxicity. Non-photo-induced ROS generation strategies, which are defined as Xdynamic therapies (X = sono, radio, microwave, chemo, thermo, and electro), show good potential to overcome the drawbacks of PDT. Herein, recent advances in the development of Xdynamic therapies, including the design of systems, the working mechanisms, and examples of cancer therapy application, are introduced. Furthermore, the approaches to enhance treatment efficiency of Xdynamic therapy are highlighted. Finally, the perspectives and challenges of these strategies are also discussed.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and, Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
18
|
Dong C, Hu H, Sun L, Chen Y. Inorganic chemoreactive nanosonosensitzers with unique physiochemical properties and structural features for versatile sonodynamic nanotherapies. Biomed Mater 2021; 16. [PMID: 33725684 DOI: 10.1088/1748-605x/abef58] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 01/24/2023]
Abstract
The fast development of nanomedicine and nanobiotechnology has enabled the emerging of versatile therapeutic modalities with high therapeutic efficiency and biosafety, among which nanosonosensitizer-involved sonodynamic therapy (SDT) employs ultrasound (US) as the exogenous activation source for inducing the production of reactive oxygen species (ROS) and disease therapy. The chemoreactive nanosonosensitizers are the critical components participating in the SDT process, which generally determine the SDT efficiency and therapeutic outcome. Compared to the traditional and mostly explored organic sonosensitizers, the recently developed inorganic chemoreactive nanosonosensitizers feature the distinct high stability, multifunctionality and significantly different SDT mechanism. This review dominantly discusses and highlights two types of inorganic nanosensitizers in sonodynamic treatments of various diseases and their underlying therapeutic mechanism, including US-activated generation of electrons (e-) and holes (h+) for facilitating the following ROS production and delivery of organic molecular sonosensitizers. Especially, this review proposes four strategies aiming for augmenting the SDT efficiency on antitumor and antibacterial applications based on inorganic sonosensitizers, including defect engineering, novel metal coupling, increasing electric conductivity and alleviating tumor hypoxia. The encountered challenges and critical issues facing these inorganic nanosonosensitzers are also highlighted and discussed for advancing their clinical translations.
Collapse
Affiliation(s)
- Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Hui Hu
- Medmaterial Research Center, Jiangsu University Affiliated People's Hospital, Zhenjiang 212002, People's Republic of China
| | - Liping Sun
- Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
19
|
Hu H, Feng W, Qian X, Yu L, Chen Y, Li Y. Emerging Nanomedicine-Enabled/Enhanced Nanodynamic Therapies beyond Traditional Photodynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005062. [PMID: 33565157 DOI: 10.1002/adma.202005062] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Indexed: 05/18/2023]
Abstract
The rapid knowledge growth of nanomedicine and nanobiotechnology enables and promotes the emergence of distinctive disease-specific therapeutic modalities, among which nanomedicine-enabled/augmented nanodynamic therapy (NDT), as triggered by either exogenous or endogenous activators on nanosensitizers, can generate reactive radicals for accomplishing efficient disease nanotherapies with mitigated side effects and endowed disease specificity. As one of the most representative modalities of NDT, traditional light-activated photodynamics suffers from the critical and unsurmountable issues of the low tissue-penetration depth of light and the phototoxicity of the photosensitizers. To overcome these obstacles, versatile nanomedicine-enabled/augmented NDTs have been explored for satisfying varied biomedical applications, which strongly depend on the physicochemical properties of the involved nanomedicines and nanosensitizers. These distinctive NDTs refer to sonodynamic therapy (SDT), thermodynamic therapy (TDT), electrodynamic therapy (EDT), piezoelectric dynamic therapy (PZDT), pyroelectric dynamic therapy (PEDT), radiodynamic therapy (RDT), and chemodynamic therapy (CDT). Herein, the critical roles, functions, and biological effects of nanomedicine (e.g., sonosensitizing, photothermal-converting, electronic, piezoelectric, pyroelectric, radiation-sensitizing, and catalytic properties) for enabling the therapeutic procedure of NDTs, are highlighted and discussed, along with the underlying therapeutic principle and optimization strategy for augmenting disease-therapeutic efficacy and biosafety. The present challenges and critical issues on the clinical translations of NDTs are also discussed and clarified.
Collapse
Affiliation(s)
- Hui Hu
- Medmaterial Research Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, P. R. China
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei Feng
- School of Life Sciences, Shanghai University, Shanghai, 2000444, P. R. China
| | - Xiaoqin Qian
- Medmaterial Research Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212002, P. R. China
| | - Luodan Yu
- School of Life Sciences, Shanghai University, Shanghai, 2000444, P. R. China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 2000444, P. R. China
- State Key Laboratory of High Performance Ceramic and Superfine, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
20
|
Pourhajibagher M, Bahador A. In Vitro Application of Sonodynamic Antimicrobial Chemotherapy as a Sonobactericidal Therapeutic Approach for Bacterial Infections: A Systematic Review and Meta-analysis. J Lasers Med Sci 2020; 11:S1-S7. [PMID: 33995962 DOI: 10.34172/jlms.2020.s1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: This study aimed to perform a systematic review of the literature followed by a meta-analysis about the efficacy of sonodynamic antimicrobial chemotherapy (SACT) in bacterial infections. Methods: According to the PICOS (population, intervention, comparison and outcome) recommendations and PRISMA guidelines, an electronic search was conducted in PubMed, SCOPUS, Embase, and Cochrane Library based on the MeSH terms. All analyses were conducted using Biostat's Comprehensive Meta-Analysis version 2.0. The inter-study heterogeneity and publication bias assessments were carried out on the studies using I2 and the Egger's regression test. Results: Initially, 126 articles were identified in the electronic search, and 14 studies remained after analysis and exclusion of the duplicated studies and eligibility criteria. All results from the included studies displayed a significant reduction of microorganisms. The meta-analysis demonstrated a significant reduction in the bacterial load in all analyses (0.944% [95% CI, 0.901-0.969%; P=0.000]). Also, there was a low risk of bias for microbial load reduction without the evidence of publication bias. Conclusion: The results highlight that there is scientific evidence emphasizing the effectiveness of SACT in reducing the count of microorganisms in bacterial infections.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Wang J, Pang X, Wang Z, Liu G. Sonoactivated Nanoantimicrobials: A Potent Armament in the Postantibiotic Era. ACS APPLIED BIO MATERIALS 2020; 3:7255-7264. [DOI: 10.1021/acsabm.0c01106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
22
|
Zhang Y, Zhang H, Zhuang D, Bi L, Hu Z, Cao W. Hematoporphyrin monomethyl ether mediated sonodynamic antimicrobial chemotherapy on porphyromonas gingivalis in vitro. Microb Pathog 2020; 144:104192. [DOI: 10.1016/j.micpath.2020.104192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
|
23
|
Sun D, Pang X, Cheng Y, Ming J, Xiang S, Zhang C, Lv P, Chu C, Chen X, Liu G, Zheng N. Ultrasound-Switchable Nanozyme Augments Sonodynamic Therapy against Multidrug-Resistant Bacterial Infection. ACS NANO 2020; 14:2063-2076. [PMID: 32022535 DOI: 10.1021/acsnano.9b08667] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ultrasound (US)-driven sonodynamic therapy (SDT) has demonstrated wide application prospects in the eradication of deep-seated bacterial infections due to its noninvasiveness, site-confined irradiation, and high-tissue-penetrating capability. However, the ineffective accumulation of sonosensitizers at the infection site, the hypoxic microenvironment, as well as rapid depletion of oxygen during SDT greatly hamper the therapeutic efficacy of SDT. Herein, an US-switchable nanozyme system was proposed for the controllable generation of catalytic oxygen and sonosensitizer-mediated reactive oxygen species during ultrasound activation, thereby alleviating the hypoxia-associated barrier and augmenting SDT efficacy. This nanoplatform (Pd@Pt-T790) was easily prepared by bridging enzyme-catalytic Pd@Pt nanoplates with the organic sonosensitizer meso-tetra(4-carboxyphenyl)porphine (T790). It was really interesting to find that the modification of T790 onto Pd@Pt could significantly block the catalase-like activity of Pd@Pt, whereas upon US irradiation, the nanozyme activity was effectively recovered to catalyze the decomposition of endogenous H2O2 into O2. Such "blocking and activating" enzyme activity was particularly important for decreasing the potential toxicity and side effects of nanozymes on normal tissues and has potential to realize active, controllable, and disease-loci-specific nanozyme catalytic behavior. Taking advantage of this US-switchable enzyme activity, outstanding accumulation in infection sites, as well as excellent biocompatibility, the Pd@Pt-T790-based SDT nanosystem was successfully applied to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced myositis, and the sonodynamic therapeutic progression was noninvasively monitored by photoacoustic imaging and magnetic resonance imaging. The developed US-switchable nanoenzyme system provides a promising strategy for augmenting sonodynamic eradication of deep-seated bacterial infection actively, controllably, and precisely.
Collapse
Affiliation(s)
- Duo Sun
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Yi Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Sijin Xiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Chang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Xiaolan Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering, Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
24
|
Pang X, Xiao Q, Cheng Y, Ren E, Lian L, Zhang Y, Gao H, Wang X, Leung W, Chen X, Liu G, Xu C. Bacteria-Responsive Nanoliposomes as Smart Sonotheranostics for Multidrug Resistant Bacterial Infections. ACS NANO 2019; 13:2427-2438. [PMID: 30657302 DOI: 10.1021/acsnano.8b09336] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid emergence of multidrug resistant (MDR) "superbugs" poses a severe threat to global health. Notably, undeveloped diagnosis and concomitant treatment failure remain highly challenging. Herein, we report a sonotheranostic strategy to achieve bacteria-specific labeling and visualized sonodynamic therapy (SDT). Using maltohexaose-decorated cholesterol and bacteria-responsive lipid compositions, a smart nanoliposomes platform (MLP18) was developed for precise delivery of purpurin 18, a potent sonosensitizer proved in this study. Taking advantage of the bacteria-specific maltodextrin transport pathway, the prepared MLP18 can specifically target the bacterial infection site and accurately distinguish the foci from sterile inflammation or cancer with a highly selective fluorescence/photoacoustic signal on the bacteria-infected site of mice. Moreover, the bacteria-responsive feature of MLP18 activated an efficient release and internalization of high concentration sonosensitizer into bacterial cells, resulting in effective sonodynamic elimination of MDR bacteria. In situ MRI monitoring visualized such potent sonodynamic activity and indicated that MLP18-mediated SDT could successfully eradicate inflammation and abscess from mice with bacterial myositis. In view of the above advantages, the developed nanoliposomes may serve as a promising sonotheranostic platform against MDR bacteria in the areas of healthcare.
Collapse
Affiliation(s)
- Xin Pang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Yi Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Lanlan Lian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Haiyan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education , The University of Hong Kong , 999077 Pokfulam , Hong Kong
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , China
| |
Collapse
|
25
|
Liu Y, Bai H, Wang H, Wang X, Liu Q, Zhang K, Wang P. Comparison of hypocrellin B-mediated sonodynamic responsiveness between sensitive and multidrug-resistant human gastric cancer cell lines. J Med Ultrason (2001) 2018; 46:15-26. [DOI: 10.1007/s10396-018-0899-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
|
26
|
Rengeng L, Qianyu Z, Yuehong L, Zhongzhong P, Libo L. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagnosis Photodyn Ther 2017; 19:159-166. [PMID: 28606724 DOI: 10.1016/j.pdpdt.2017.06.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/19/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022]
Abstract
Sonodynamic therapy (SDT) as a new non-invasive treatment developed from photodynamic (PDT), it can kill tumor cells specifically and selectively. Moreover, recently studies showed SDT has potential to treat solid tumor, leukemia and atherosclerosis, remove proliferative scars and kill pathogenic microorganism. As SDT has an extensive application prospect, SDT has attracted more and more research recently. This thesis aims to be an informative introduction on SDT. With the assistance of related literature from 2012 to 2016, we introduce the progress of SDT research in six aspects: the therapeutic mechanism of SDT, development of the sound sensitizer, exploration of the size and frequency of ultrasonic energy, application of SDT, comparison between SDT and PDT, and current situation and future of SDT.
Collapse
Affiliation(s)
- Liu Rengeng
- Cancer Center, Southern Medical University, Guangzhou 510315, China; Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou 510315, China
| | - Zhang Qianyu
- Cancer Center, Southern Medical University, Guangzhou 510315, China; Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou 510315, China
| | - Lang Yuehong
- Cancer Center, Southern Medical University, Guangzhou 510315, China; Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou 510315, China
| | - Peng Zhongzhong
- Department of Oncology, Ningbo NO.2 Hospital, Ningbo, Zhejiang, China
| | - Li Libo
- Cancer Center, Southern Medical University, Guangzhou 510315, China; Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou 510315, China.
| |
Collapse
|