1
|
Recent advances in iron oxide nanoparticles for brain cancer theranostics: from in vitro to clinical applications. Expert Opin Drug Deliv 2021; 18:949-977. [PMID: 33567919 DOI: 10.1080/17425247.2021.1888926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Today, the development of multifunctional nanoplatforms is more seriously considered in the field of cancer theranostics.Areas covered: In this respect, nanoparticles provide several advantages over the routine, conventional diagnostic methods, and treatments. Due to the expedient properties of iron oxide nanoparticles, such as being readily modified, great payload potential, intrinsic magnetic qualification, considerable biocompatibility, and overwhelming response to targeting strategies, these nanoparticles can be considered good candidates for application as diagnostic contrast agents and drug/gene delivery vehicles, while also being incorporated into hyperthermia-based approaches. Interestingly, these agents are detectable with routine imaging modalities such as magnetic resonance imaging.Expert opinion: Therefore, combining the traditional diagnostics and therapies with nanotechnological approaches may leave a positive impact on the survival rate of patients with cancer. This review summarizes the application of magnetic iron oxide nanoparticles in both in vitro and in vivo models of brain tumors.
Collapse
|
2
|
Baghirov H, Snipstad S, Sulheim E, Berg S, Hansen R, Thorsen F, Mørch Y, Davies CDL, Åslund AKO. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model. PLoS One 2018; 13:e0191102. [PMID: 29338016 PMCID: PMC5770053 DOI: 10.1371/journal.pone.0191102] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/28/2017] [Indexed: 01/12/2023] Open
Abstract
The treatment of brain diseases is hindered by the blood-brain barrier (BBB) preventing most drugs from entering the brain. Focused ultrasound (FUS) with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate) nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma.
Collapse
Affiliation(s)
- Habib Baghirov
- Department of Physics, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sofie Snipstad
- Department of Physics, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- SINTEF Materials and Chemistry, Trondheim, Norway
| | - Sigrid Berg
- SINTEF Medical Technology, Trondheim, Norway
- Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rune Hansen
- SINTEF Medical Technology, Trondheim, Norway
- Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Frits Thorsen
- Molecular Imaging Center and Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Yrr Mørch
- SINTEF Materials and Chemistry, Trondheim, Norway
| | - Catharina de Lange Davies
- Department of Physics, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- * E-mail:
| | - Andreas K. O. Åslund
- Department of Physics, The Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
3
|
Güvener N, Appold L, de Lorenzi F, Golombek SK, Rizzo LY, Lammers T, Kiessling F. Recent advances in ultrasound-based diagnosis and therapy with micro- and nanometer-sized formulations. Methods 2017; 130:4-13. [PMID: 28552267 DOI: 10.1016/j.ymeth.2017.05.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 01/15/2023] Open
Abstract
Ultrasound (US) is one of the most frequently used imaging methods in the clinic. The broad spectrum of its applications can be increased by the use of gas-filled microbubbles (MB) as ultrasound contrast agents (UCA). In recent years, also nanoscale UCA like nanobubbles (NB), echogenic liposomes (ELIP) and nanodroplets have been developed, which in contrast to MB, are able to extravasate from the vessels into the tissue. New disease-specific UCA have been designed for the assessment of tissue biomarkers and advanced US to a molecular imaging modality. For this purpose, specific binding moieties were coupled to the UCA surface. The vascular endothelial growth factor receptor-2 (VEGFR-2) and P-/E-selectin are prominent examples of molecular US targets to visualize tumor blood vessels and inflammatory diseases, respectively. Besides their application in contrast-enhanced imaging, MB can also be employed for drug delivery to tumors and across the blood-brain barrier (BBB). This review summarizes the development of micro- and nanoscaled UCA and highlights recent advances in diagnostic and therapeutic applications, which are ready for translation into the clinic.
Collapse
Affiliation(s)
- Nihan Güvener
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Lia Appold
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Federica de Lorenzi
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Susanne K Golombek
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Larissa Y Rizzo
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
| |
Collapse
|
4
|
Natchimuthu V, Thomas S, Ramalingam M, Ravi S. Influence of perfluorocarbons on Carbamazepine and Benzodiazepine for a neuro-lung protective strategy. J Clin Neurosci 2017; 43:82-88. [PMID: 28528895 DOI: 10.1016/j.jocn.2017.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 04/22/2017] [Indexed: 11/29/2022]
Abstract
Lennox-Gastaut syndrome (LGS) is commonly characterized by a triad of features including multiple seizure types, intellectual disability or regression. LGS type of seizures is epilepsy which is due to abnormal vibrations occurring in seizures. During the time of such abnormal vibrations, both the seizures and the lungs suffer a lack in oxygen content to a considerable extent. This results in prolonged vibrations and loses of nervous control. As a neuro-lung protective strategy, a novel attempt has been made to enrich both seizures and lungs with oxygen content through the support of Perfluorodecalin (an excellent oxygen carrier) C10F18 (PFD) and Perfluorohexane C6F14 (PFH) along with an enhancement in the antiepileptic activity by the two chosen antiepileptic drugs (AEDs) Carbamazepine (CBZ) and Benzodiazepine (BDZ). Perfluorodecalin C10F18 (PFD) and Perfluorohexane C6F14 (PFH) emulsions were prepared by sonication process with combination of nonionic emulsifier, Lecithin (l-α-phosphatidylcholine) as a surfactant in Aqueous phase medium. These emulsions were mixed with Carbamazepine (CBZ) and Benzodiazepine (BDZ) drugs maintained at a temperature of about -20°C to 20°C and were set to slow evaporation process. The products are subjected to Optical microscope, Transmission electron microscopy (TEM) and Scanning Electron Microscope (SEM) - Energy dispersive X-ray Spectroscopy (EDS). Study reveals the co-existence of fluorine and drug ensuring the oxygen uptake by the drug. Morphology of TEM, Optical microscopic images and the particle diameter estimated through Image_J confirms this analysis.
Collapse
Affiliation(s)
- V Natchimuthu
- PG & Research Department of Physics, National College (Affiliated to Bharathidasan University), Tiruchirappalli, Tamilnadu 620 001, India.
| | - Sabu Thomas
- International and Interuniversity Centre for Nanoscience and Nanotechnology, School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India.
| | - Murugan Ramalingam
- Associé des Universités, Faculty of Medicine, University of Strasbourg, 67085 Strasbourg Cedex, France.
| | - S Ravi
- PG & Research Department of Physics, National College (Affiliated to Bharathidasan University), Tiruchirappalli, Tamilnadu 620 001, India.
| |
Collapse
|
5
|
De Cock I, Lajoinie G, Versluis M, De Smedt SC, Lentacker I. Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials 2016; 83:294-307. [DOI: 10.1016/j.biomaterials.2016.01.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/24/2015] [Accepted: 01/01/2016] [Indexed: 11/26/2022]
|
6
|
The Optimized Fabrication of Nanobubbles as Ultrasound Contrast Agents for Tumor Imaging. Sci Rep 2015; 5:13725. [PMID: 26333917 PMCID: PMC4558543 DOI: 10.1038/srep13725] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 07/31/2015] [Indexed: 12/23/2022] Open
Abstract
Nanobubbles, which have the potential for ultrasonic targeted imaging and treatment in tumors, have been a research focus in recent years. With the current methods, however, the prepared uniformly sized nanobubbles either undergo post-formulation manipulation, such as centrifugation, after the mixture of microbubbles and nanobubbles, or require the addition of amphiphilic surfactants. These processes influence the nanobubble stability, possibly create material waste, and complicate the preparation process. In the present work, we directly prepared uniformly sized nanobubbles by modulating the thickness of a phospholipid film without the purification processes or the addition of amphiphilic surfactants. The fabricated nanobubbles from the optimal phospholipid film thickness exhibited optimal physical characteristics, such as uniform bubble size, good stability, and low toxicity. We also evaluated the enhanced imaging ability of the nanobubbles both in vitro and in vivo. The in vivo enhancement intensity in the tumor was stronger than that of SonoVue after injection (UCA; 2 min: 162.47 ± 8.94 dB vs. 132.11 ± 5.16 dB, P < 0.01; 5 min: 128.38.47 ± 5.06 dB vs. 68.24 ± 2.07 dB, P < 0.01). Thus, the optimal phospholipid film thickness can lead to nanobubbles that are effective for tumor imaging.
Collapse
|
7
|
Lee KL, Zhou Y. Quantitative evaluation of sonophoresis efficiency and its dependence on sonication parameters and particle size. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:519-526. [PMID: 25715372 DOI: 10.7863/ultra.34.3.519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Transdermal drug delivery makes a critical contribution to medical practice and some advantages over conventional oral administration and hypodermic injection. Enhancement of percutaneous absorption or penetration of therapeutic agents (ie, drugs and macromolecules) by ultrasound, termed sonophoresis, has been applied and studied for decades. In this study, the penetration percentage through porcine ear skin specimens was determined quantitatively by measuring the fluorescence from nanoparticles of 60, 220, and 840 nm in size in a receptor chamber at different sonication parameters (ie, duty cycle, 20%-100%; acoustic intensity, 0.3-1.0 W/cm(2); duration, 7-30 minutes; and frequency, 1 MHz). In general, the sonophoresis efficiency increased with the acoustic intensity, duty cycle, and sonication duration but decreased with the particle size (mean ± SD, 62.6% ± 5.4% for 60-nm versus 11.9% ± 1.1% for 840-nm polystyrene nanospheres after 30 minutes of sonication at 0.5 W/cm(2) and a 100% duty cycle; P < .05). On scanning electron microscopy the pore size remained the same (≈100 μm), but more flakes were observed with the progress of sonication. In summary, sonophoresis efficiency is dependent on the ultrasound parameters and particle size. Sufficient sonication would lead to satisfactory penetration of even submicrometer objects through the pores.
Collapse
Affiliation(s)
- Kun Loong Lee
- Division of Engineering Mechanics, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore (K.L.L., Y.Z.); and Key Laboratory of Modern Acoustics, Nanjing University, Nanjing, China (Y.Z.)
| | - Yufeng Zhou
- Division of Engineering Mechanics, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore (K.L.L., Y.Z.); and Key Laboratory of Modern Acoustics, Nanjing University, Nanjing, China (Y.Z.).
| |
Collapse
|
8
|
AgCu Bimetallic Nanoparticles under Effect of Low Intensity Ultrasound: The Cell Viability Study In Vitro. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/971769] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effects of metallic nanoparticles as cytotoxicity or antibacterial activity are widely known. It is also obvious that ultrasound is one of the most widely used therapeutic modalities in medicine. The effect of application of therapeutical ultrasonic field in the presence of metallic nanoparticles AgCu <100 nm modified by phenanthroline or polyvinyl alcohol was examined on human ovarian carcinoma cells A2780. Metallic nanoparticles were characterized by electron microscopy and by measuring of zeta potential. The cell viability was tested by MTT test. The experimental results indicate a significant decrease of cell viability, which was affected by a combined action of ultrasound field and AgCu nanoparticles. The maximum decrease of cells viability was observed for nanoparticles modified by phenanthroline. The effect of metallic nanoparticles on human cell in presence of ultrasound exposure was found—a potential health risk or medical advantage of targeted therapy in the future.
Collapse
|
9
|
Wu SK, Chiang CF, Hsu YH, Lin TH, Liou HC, Fu WM, Lin WL. Short-time focused ultrasound hyperthermia enhances liposomal doxorubicin delivery and antitumor efficacy for brain metastasis of breast cancer. Int J Nanomedicine 2014; 9:4485-94. [PMID: 25278753 PMCID: PMC4178504 DOI: 10.2147/ijn.s68347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The blood–brain/tumor barrier inhibits the uptake and accumulation of chemotherapeutic drugs. Hyperthermia can enhance the delivery of chemotherapeutic agent into tumors. In this study, we investigated the effects of short-time focused ultrasound (FUS) hyperthermia on the delivery and therapeutic efficacy of pegylated liposomal doxorubicin (PLD) for brain metastasis of breast cancer. Murine breast cancer 4T1-luc2 cells expressing firefly luciferase were injected into female BALB/c mice striatum tissues and used as a brain metastasis model. The mice were intravenously injected with PLD (5 mg/kg) with/without 10-minute transcranial FUS hyperthermia on day 6 after tumor implantation. The amounts of doxorubicin accumulated in the normal brain tissues and tumor tissues with/without FUS hyperthermia were measured using fluorometry. The tumor growth for the control, hyperthermia, PLD, and PLD + hyperthermia groups was measured using an IVIS spectrum system every other day from day 3 to day 11. Cell apoptosis and tumor characteristics were assessed using immunohistochemistry. Short-time FUS hyperthermia was able to significantly enhance the PLD delivery into brain tumors. The tumor growth was effectively inhibited by a single treatment of PLD + hyperthermia compared with both PLD alone and short-time FUS hyperthermia alone. Immunohistochemical examination further demonstrated the therapeutic efficacy of PLD plus short-time FUS hyperthermia for brain metastasis of breast cancer. The application of short-time FUS hyperthermia after nanodrug injection may be an effective approach to enhance nanodrug delivery and improve the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Sheng-Kai Wu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, Taipei, Taiwan
| | - Chi-Feng Chiang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, Taipei, Taiwan
| | - Yu-Hone Hsu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, Taipei, Taiwan ; Department of Neurosurgery, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Tzu-Hung Lin
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Houng-Chi Liou
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Mei Fu
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Win-Li Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, Taipei, Taiwan ; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
10
|
Goette MJ, Keupp J, Rahmer J, Lanza GM, Wickline SA, Caruthers SD. Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn Reson Med 2014; 74:537-43. [PMID: 25163853 DOI: 10.1002/mrm.25437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/18/2014] [Accepted: 08/15/2014] [Indexed: 12/30/2022]
Abstract
PURPOSE A novel technique for highly sensitive detection of multiresonant fluorine imaging agents was designed and tested with the use of dual-frequency 19F/1H ultrashort echo times (UTE) sampled with a balanced steady-state free precession (SSFP) pulse sequence and three-dimensional (3D) radial readout. METHODS Feasibility of 3D radial balanced UTE-SSFP imaging was demonstrated for a phantom comprising liquid perfluorooctyl bromide (PFOB). Sensitivity of the pulse sequence was measured and compared with other sequences imaging the PFOB (CF2 )6 line group including UTE radial gradient-echo (GRE) at α = 30°, as well as Cartesian GRE, balanced SSFP, and fast spin-echo (FSE). The PFOB CF3 peak was also sampled with FSE. RESULTS The proposed balanced UTE-SSFP technique exhibited a relative detection sensitivity of 51 μmolPFOB(-1) min(-1/2) (α = 30°), at least twice that of other sequence types with either 3D radial (UTE GRE: 20 μmolPFOB(-1) min(-1/2) ) or Cartesian k-space filling (GRE: 12 μmolPFOB(-1) min(-1/2) ; FSE: 16 μmolPFOB(-1) min(-1/2) ; balanced SSFP: 23 μmolPFOB(-1) min(-1/2) ). In vivo imaging of angiogenesis-targeted PFOB nanoparticles was demonstrated in a rabbit model of cancer on a clinical 3 Tesla scanner. CONCLUSION A new dual 19F/1H balanced UTE-SSFP sequence manifests high SNR, with detection sensitivity more than two-fold better than traditional techniques, and alleviates imaging problems caused by dephasing in complex spectra.
Collapse
Affiliation(s)
- Matthew J Goette
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA
| | | | | | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Shelton D Caruthers
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Philips Healthcare, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Feril LB, Tachibana K. Use of ultrasound in drug delivery systems: emphasis on experimental methodology and mechanisms. Int J Hyperthermia 2012; 28:282-9. [PMID: 22621730 DOI: 10.3109/02656736.2012.668640] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown that ultrasound energy could be applied for targeting or controlling drug release. This new concept of therapeutic ultrasound combined with drugs has induced a great amount of interest in various medical fields. In this paper, several experimental systems are cited in which ultrasound is being utilized to evaluate new application of this modality. The mechanisms of ultrasound-mediated drug delivery are discussed in addition to the review of current advances in the use of ultrasound in systems involving research in cancer therapy, gene therapy, microbubbles and other drug delivery in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Loreto B Feril
- Department of Anatomy, Fukuoka University School of Medicine , 7-45-1 Nanakuma, Fukuoka 814-0180, Japan
| | | |
Collapse
|
12
|
Lee SJ, Schlesinger PH, Wickline SA, Lanza GM, Baker NA. Simulation of fusion-mediated nanoemulsion interactions with model lipid bilayers. SOFT MATTER 2012; 8:3024-3035. [PMID: 22712024 PMCID: PMC3375911 DOI: 10.1039/c2sm25847a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Perfluorocarbon-based nanoemulsion particles have become promising platforms for the delivery of therapeutic and diagnostic agents to specific target cells in a non-invasive manner. A "contact-facilitated" delivery mechanism has been proposed wherein the emulsifying phospholipid monolayer on the nanoemulsion surface contacts and forms a lipid complex with the outer monolayer of target cell plasma membrane, allowing cargo to diffuse to the surface of target cell. While this mechanism is supported by experimental evidence, its molecular details are unknown. The present study develops a coarse-grained model of nanoemulsion particles that are compatible with the MARTINI force field. Simulations using this coarse-grained model have demonstrated multiple fusion events between the particles and a model vesicular lipid bilayer. The fusion proceeds in the following sequence: dehydration at the interface, close apposition of the particles, protrusion of hydrophobic molecules to the particle surface, transient lipid complex formation, absorption of nanoemulsion into the liposome. The initial monolayer disruption acts as a rate-limiting step and is strongly influenced by particle size as well as by the presence of phospholipids supporting negative spontaneous curvature. The core-forming perfluorocarbons play critical roles in initiating the fusion process by facilitating protrusion of hydrophobic moieties into the interface between the two particles. This study directly supports the hypothesized nanoemulsion delivery mechanism and provides the underlying molecular details that enable engineering of nanoemulsions for a variety of medical applications.
Collapse
Affiliation(s)
- Sun-Joo Lee
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | - Paul H. Schlesinger
- Department of Cell Biology and Physiology, Washington University in St. Louis
| | | | | | - Nathan A. Baker
- To whom correspondence should be addressed. Pacific Northwest National Laboratory,
| |
Collapse
|
13
|
Lanza GM, Caruthers SD, Winter PM, Hughes MS, Schmieder AH, Hu G, Wickline SA. Angiogenesis imaging with vascular-constrained particles: the why and how. Eur J Nucl Med Mol Imaging 2010; 37 Suppl 1:S114-26. [PMID: 20617434 DOI: 10.1007/s00259-010-1502-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a keystone in the treatment of cancer and potentially many other diseases. In cancer, first-generation antiangiogenic therapeutic approaches have demonstrated survival benefit in subsets of patients, but their high cost and notable adverse side effect risk have fueled alternative development efforts to personalize patient selection and reduce off-target effects. In parallel, rapid advances in cost-effective genomic profiling and sensitive early detection of high-risk biomarkers for cancer, atherosclerosis, and other angiogenesis-related pathologies will challenge the medical imaging community to identify, characterize, and risk stratify patients early in the natural history of these disease processes. Conventional diagnostic imaging techniques were not intended for such sensitive and specific detection, which has led to the emergence of novel noninvasive biomedical imaging approaches. The overall intent of molecular imaging is to achieve greater quantitative characterization of pathologies based on microanatomical, biochemical, or functional assessments; in many approaches, the capacity to deliver effective therapy, e.g., antiangiogenic therapy, can be combined. Agents with both diagnostic and therapy attributes have acquired the moniker "theranostics." This review will explore biomedical imaging options being pursued to better segment and treat patients with angiogenesis-influenced disease using vascular-constrained contrast platform technologies.
Collapse
Affiliation(s)
- Gregory M Lanza
- Washington University Medical School, St. Louis, MO 63146, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Targeting therapy of choroidal neovascularization by use of polypeptide- and PEDF-loaded immunoliposomes under ultrasound exposure. ACTA ACUST UNITED AC 2010; 30:798-803. [DOI: 10.1007/s11596-010-0661-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Indexed: 11/25/2022]
|
15
|
Bhojani MS, Van Dort M, Rehemtulla A, Ross BD. Targeted imaging and therapy of brain cancer using theranostic nanoparticles. Mol Pharm 2010; 7:1921-9. [PMID: 20964352 PMCID: PMC3291122 DOI: 10.1021/mp100298r] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The past decade has seen momentous development in brain cancer research in terms of novel imaging-assisted surgeries, molecularly targeted drug-based treatment regimens or adjuvant therapies and in our understanding of molecular footprints of initiation and progression of malignancy. However, mortality due to brain cancer has essentially remained unchanged in the last three decades. Thus, paradigm-changing diagnostic and therapeutic reagents are urgently needed. Nanotheranostic platforms are powerful tools for imaging and treatment of cancer. Multifunctionality of these nanovehicles offers a number of advantages over conventional agents. These include targeting to a diseased site thereby minimizing systemic toxicity, the ability to solubilize hydrophobic or labile drugs leading to improved pharmacokinetics and their potential to image, treat and predict therapeutic response. In this article, we will discuss the application of newer theranostic nanoparticles in targeted brain cancer imaging and treatment.
Collapse
Affiliation(s)
- Mahaveer Swaroop Bhojani
- Center for Molecular Imaging, Departments of Radiation Oncology and, and Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
16
|
Deckers R, Moonen CT. Ultrasound triggered, image guided, local drug delivery. J Control Release 2010; 148:25-33. [DOI: 10.1016/j.jconrel.2010.07.117] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/18/2010] [Indexed: 10/19/2022]
|
17
|
Lin CY, Huang YL, Li JR, Chang FH, Lin WL. Effects of focused ultrasound and microbubbles on the vascular permeability of nanoparticles delivered into mouse tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1460-1469. [PMID: 20800173 DOI: 10.1016/j.ultrasmedbio.2010.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 05/08/2010] [Accepted: 06/08/2010] [Indexed: 05/29/2023]
Abstract
Ultrasound sonication with microbubbles (MBs) was evaluated for enhancement of the release of nanoparticles from vasculature to tumor tissues. In this study, tumor-bearing Balb/c mice were insonicated with focused ultrasound (FUS) in the tumors after the injection of MBs (SonoVue) and then lipid-coated quantum dot (LQD) nanoparticles (130 +/- 25 nm) were injected through the tail vein. We studied the effects of the injected MB dose (0-300 microL/kg), sonication duration (0-300 s) and treatment-procedure sequence on the accumulation of nanoparticles in the tumors 24 h after the treatment and the time response of the accumulation (0.5-24 h). After the treatment, the mice were sacrificed and perfused and then the tumor tissues were harvested for quantifying the amount of nanoparticles using graphite furnace atomic absorption spectrometry (GF-AAS). The results showed that pulsed-FUS sonication with MBs can effectively enhance the vascular permeability for LQD nanoparticle delivery into the sonicated tumors. It indicates that this technique is promising for a better nanodrug delivery for tumor chemotherapy.
Collapse
Affiliation(s)
- Chung-Yin Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Akers WJ, Zhang Z, Berezin M, Ye Y, Agee A, Guo K, Fuhrhop RW, Wickline SA, Lanza GM, Achilefu S. Targeting of alpha(nu)beta(3)-integrins expressed on tumor tissue and neovasculature using fluorescent small molecules and nanoparticles. Nanomedicine (Lond) 2010; 5:715-26. [PMID: 20662643 PMCID: PMC2914325 DOI: 10.2217/nnm.10.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Receptor-specific small molecules and nanoparticles are widely used in molecular imaging of tumors. Although some studies have described the relative strengths and weaknesses of the two approaches, reports of a direct comparison and analysis of the two strategies are lacking. Herein, we compared the tumor-targeting characteristics of a small near-infrared fluorescent compound (cypate-peptide conjugate) and relatively large perfluorocarbon-based nanoparticles (250 nm diameter) for imaging alpha(nu)beta(3)-integrin receptor expression in tumors. MATERIALS & METHODS Near-infrared fluorescent small molecules and nanoparticles were administered to living mice bearing subcutaneous or intradermal syngeneic tumors and imaged with whole-body and high-resolution optical imaging systems. RESULTS The nanoparticles, designed for vascular constraint, remained within the tumor vasculature while the small integrin-avid ligands diffused into the tissue to target integrin expression on tumor and endothelial cells. Targeted small-molecule and nanoparticle contrast agents preferentially accumulated in tumor tissue with tumor-to-muscle ratios of 8 and 7, respectively, compared with 3 for nontargeted nanoparticles. CONCLUSION Fluorescent small molecular probes demonstrate greater overall early tumor contrast and rapid visualization of tumors, but the vascular-constrained nanoparticles are more selective for detecting cancer-induced angiogenesis. A combination of both imaging agents provides a strategy to image and quantify integrin expression in tumor tissue and tumor-induced neovascular systems.
Collapse
Affiliation(s)
- Walter J Akers
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lanza GM, Winter PM, Caruthers SD, Hughes MS, Hu G, Schmieder AH, Wickline SA. Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions. Angiogenesis 2010; 13:189-202. [PMID: 20411320 PMCID: PMC3140871 DOI: 10.1007/s10456-010-9166-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
Molecular imaging agents are extending the potential of noninvasive medical diagnosis from basic gross anatomical descriptions to complicated phenotypic characterizations based upon the recognition of unique cell-surface biochemical signatures. Although originally the purview of nuclear medicine, "molecular imaging" is now studied in conjunction with all clinically relevant imaging modalities. Of the myriad of particles that have emerged as prospective candidates for clinical translation, perfluorocarbon nanoparticles offer great potential for combining targeted imaging with drug delivery, much like the "magic bullet" envisioned by Paul Ehrlich 100 years ago. Perfluorocarbon nanoparticles, once studied in Phase III clinical trials as blood substitutes, have found new life for molecular imaging and drug delivery. The particles have been adapted for use with all clinically relevant modalities and for targeted drug delivery. In particular, their intravascular constraint due to particle size provides a distinct advantage for angiogenesis imaging and antiangiogenesis therapy. As perfluorocarbon nanoparticles have recently entered Phase I clinical study, this review provides a timely focus on the development of this platform technology and its application for angiogenesis-related pathologies.
Collapse
Affiliation(s)
- G M Lanza
- Division of Cardiology, Department of Medicine, Washington University Medical School, 4320 Forest Park Ave, Suite 101, St. Louis, MO 63108, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Pangu GD, Davis KP, Bates FS, Hammer DA. Ultrasonically Induced Release from Nanosized Polymer Vesicles. Macromol Biosci 2010; 10:546-54. [DOI: 10.1002/mabi.201000081] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Abstract
Ultrasound is a very effective modality for drug delivery and gene therapy because energy that is non-invasively transmitted through the skin can be focused deeply into the human body in a specific location and employed to release drugs at that site. Ultrasound cavitation, enhanced by injected microbubbles, perturbs cell membrane structures to cause sonoporation and increases the permeability to bioactive materials. Cavitation events also increase the rate of drug transport in general by augmenting the slow diffusion process with convective transport processes. Drugs and genes can be incorporated into microbubbles, which in turn can target a specific disease site using ligands such as the antibody. Drugs can be released ultrasonically from microbubbles that are sufficiently robust to circulate in the blood and retain their cargo of drugs until they enter an insonated volume of tissue. Local drug delivery ensures sufficient drug concentration at the diseased region while limiting toxicity for healthy tissues. Ultrasound-mediated gene delivery has been applied to heart, blood vessel, lung, kidney, muscle, brain, and tumour with enhanced gene transfection efficiency, which depends on the ultrasonic parameters such as acoustic pressure, pulse length, duty cycle, repetition rate, and exposure duration, as well as microbubble properties such as size, gas species, shell material, interfacial tension, and surface rigidity. Microbubble-augmented sonothrombolysis can be enhanced further by using targeting microbubbles.
Collapse
Affiliation(s)
- H-D Liang
- School of Engineering, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
22
|
Krupka TM, Solorio L, Wilson RE, Wu H, Azar N, Exner AA. Formulation and characterization of echogenic lipid-Pluronic nanobubbles. Mol Pharm 2010; 7:49-59. [PMID: 19957968 DOI: 10.1021/mp9001816] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The advent of microbubble contrast agents has enhanced the capabilities of ultrasound as a medical imaging modality and stimulated innovative strategies for ultrasound-mediated drug and gene delivery. While the utilization of microbubbles as carrier vehicles has shown encouraging results in cancer therapy, their applicability has been limited by a large size which typically confines them to the vasculature. To enhance their multifunctional contrast and delivery capacity, it is critical to reduce bubble size to the nanometer range without reducing echogenicity. In this work, we present a novel strategy for formulation of nanosized, echogenic lipid bubbles by incorporating the surfactant Pluronic, a triblock copolymer of ethylene oxide copropylene oxide coethylene oxide into the formulation. Five Pluronics (L31, L61, L81, L64 and P85) with a range of molecular weights (M(w): 1100 to 4600 Da) were incorporated into the lipid shell either before or after lipid film hydration and before addition of perfluorocarbon gas. Results demonstrate that Pluronic-lipid interactions lead to a significantly reduced bubble size. Among the tested formulations, bubbles made with Pluronic L61 were the smallest with a mean hydrodynamic diameter of 207.9 +/- 74.7 nm compared to the 880.9 +/- 127.6 nm control bubbles. Pluronic L81 also significantly reduced bubble size to 406.8 +/- 21.0 nm. We conclude that Pluronic is effective in lipid bubble size control, and Pluronic M(w), hydrophilic-lipophilic balance (HLB), and Pluronic/lipid ratio are critical determinants of the bubble size. Most importantly, our results have shown that although the bubbles are nanosized, their stability and in vitro and in vivo echogenicity are not compromised. The resulting nanobubbles may be better suited for contrast enhanced tumor imaging and subsequent therapeutic delivery.
Collapse
Affiliation(s)
- Tianyi M Krupka
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
23
|
Caruthers SD, Cyrus T, Winter PM, Wickline SA, Lanza GM. Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:311-23. [PMID: 20049799 DOI: 10.1002/wnan.9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Complementary developments in nanotechnology, genomics, proteomics, molecular biology and imaging offer the potential for early, accurate diagnosis. Molecularly-targeted diagnostic imaging agents will allow noninvasive phenotypic characterization of pathologies and, therefore, tailored treatment close to the onset. For atherosclerosis, this includes anti-angiogenic therapy with specifically-targeted drug delivery systems to arrest the development of plaques before they impinge upon the lumen. Additionally, monitoring the application and effects of this targeted therapy in a serial fashion will be important. This review covers the specific application of alpha(nu)beta(3)-targeted anti-angiogenic perfluorocarbon nanoparticles in (1) the detection of molecular markers for atherosclerosis, (2) the immediate verification of drug delivery with image-based prediction of therapy outcomes, and (3) the serial, noninvasive observation of therapeutic efficacy.
Collapse
Affiliation(s)
- Shelton D Caruthers
- Washington University School of Medicine and Philips Medical Systems, St. Louis, MO, USA.
| | | | | | | | | |
Collapse
|
24
|
Pan D, Caruthers SD, Chen J, Winter PM, SenPan A, Schmieder AH, Wickline SA, Lanza GM. Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Med Chem 2010; 2:471-90. [PMID: 20485473 PMCID: PMC2871711 DOI: 10.4155/fmc.10.5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The science of 'theranostics' plays a crucial role in personalized medicine, which represents the future of patient management. Over the last decade an increasing research effort has focused on the development of nanoparticle-based molecular-imaging and drug-delivery approaches, emerging as a multidisciplinary field that shows promise in understanding the components, processes, dynamics and therapies of a disease at a molecular level. The potential of nanometer-sized agents for early detection, diagnosis and personalized treatment of diseases is extraordinary. They have found applications in almost all clinically relevant biomedical imaging modality. In this review, a number of these approaches will be presented with a particular emphasis on MRI and optical imaging-based techniques. We have discussed both established molecular-imaging approaches and recently developed innovative strategies, highlighting the seminal studies and a number of successful examples of theranostic nanomedicine, especially in the areas of cardiovascular and cancer therapy.
Collapse
Affiliation(s)
- Dipanjan Pan
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Shelton D Caruthers
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Junjie Chen
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Patrick M Winter
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Angana SenPan
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Anne H Schmieder
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Samuel A Wickline
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| | - Gregory M Lanza
- Division of Cardiology, Washington University Medical School, 4320 Forest Park Avenue, Cortex Building, Suite 101, Saint Louis, MO 63108, USA, Tel.:+1 314 454 8813, Fax: +1 314 454 5265
| |
Collapse
|
25
|
Kornmann LM, Reesink KD, Reneman RS, Hoeks APG. Critical appraisal of targeted ultrasound contrast agents for molecular imaging in large arteries. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:181-91. [PMID: 20018434 DOI: 10.1016/j.ultrasmedbio.2009.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/26/2009] [Accepted: 09/21/2009] [Indexed: 05/25/2023]
Abstract
Molecular imaging may provide new insights into the early detection and development of atherosclerosis before first symptoms occur. One of the techniques in use employs noninvasive ultrasound. In the past decade, experimental and clinical validation studies showed that for the microcirculation targeted ultrasound contrast agents, such as echogenic liposomes, microbubbles and perfluorocarbon emulsions, do improve visualization of specific structures. For large arteries, however, successful application is less obvious. In this review, we will address the challenges for molecular imaging of large arteries. We will discuss the problems encountered in the use of targeted ultrasound contrast agents presently available, mainly based on data obtained in flow chambers and animal studies because clinical studies are lacking. We conclude that molecular imaging of activated endothelium in large- and middle-sized arteries by site-specific accumulation of contrast material is still difficult to achieve due to wall shear stress conditions in these vessels.
Collapse
Affiliation(s)
- Liselotte M Kornmann
- Department of Biophysics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
26
|
Kaneda MM, Caruthers S, Lanza GM, Wickline SA. Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann Biomed Eng 2009; 37:1922-33. [PMID: 19184435 PMCID: PMC2745515 DOI: 10.1007/s10439-009-9643-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Accepted: 01/09/2009] [Indexed: 12/13/2022]
Abstract
A broad array of nanomaterials is available for use as contrast agents for molecular imaging and drug delivery. Due to the lack of endogenous background signal in vivo and the high NMR sensitivity of the (19)F atom, liquid perfluorocarbon nanoemulsions make ideal agents for cellular and magnetic resonance molecular imaging. The perfluorocarbon core material is surrounded by a lipid monolayer which can be functionalized with a variety of agents including targeting ligands, imaging agents and drugs either individually or in combination. Multiple copies of targeting ligands (approximately 20-40 monoclonal antibodies or 200-400 small molecule ligands) serve to enhance avidity through multivalent interactions while the composition of the particle's perfluorocarbon core results in high local concentrations of (19)F. Additionally, lipophilic drugs contained within molecularly targeted nanoemulsions can result in contact facilitated drug delivery to target cells. Ultimately, the dual use of perfluorocarbon nanoparticles for both site targeted drug delivery and molecular imaging may provide both imaging of disease states as well as conclusive evidence that drug delivery is localized to the area of interest. This review will focus on liquid perfluorocarbon nanoparticles as (19)F molecular imaging agents and for targeted drug delivery in cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Megan M. Kaneda
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Campus Box 8215, 4444 Forest Park Avenue, St Louis, MO 63108, USA
| | - Shelton Caruthers
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Campus Box 8215, 4444 Forest Park Avenue, St Louis, MO 63108, USA
- Philips Healthcare, Andover, MA, USA
| | - Gregory M. Lanza
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Campus Box 8215, 4444 Forest Park Avenue, St Louis, MO 63108, USA
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Samuel A. Wickline
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Campus Box 8215, 4444 Forest Park Avenue, St Louis, MO 63108, USA
- Department of Medicine, Washington University, St Louis, MO, USA
| |
Collapse
|
27
|
Laing ST, McPherson DD. Cardiovascular therapeutic uses of targeted ultrasound contrast agents. Cardiovasc Res 2009; 83:626-35. [PMID: 19581314 DOI: 10.1093/cvr/cvp192] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The therapeutic use of ultrasound contrast agents (UCAs) is an emerging methodology with high potential for enhanced directed therapeutic gene, bioactive gas, drug, and stem cell delivery. Ultrasound-targeted microbubble destruction has already demonstrated feasibility for plasmid DNA delivery. Similarly, therapeutic ultrasound for thrombolysis treatment has been taken into the clinical setting, and the addition of UCAs for therapeutic delivery or enhanced effect through cavitation is a natural progression to this investigation. However, as with any new technique, safety needs to be first demonstrated before translation into clinical practice. This review article will focus on the development of UCAs for cardiac and vascular therapeutics as well as the limitations/concerns for the use of therapeutic ultrasound in clinical medicine in order to lay a foundation for investigators planning to enter this exciting field or for those who want to broaden their understanding.
Collapse
Affiliation(s)
- Susan T Laing
- Division of Cardiology, Department of Internal Medicine, University of Texas Health Sciences Center-Houston, 6431 Fannin Street, MSB 1.246, Houston, TX 77030, USA.
| | | |
Collapse
|
28
|
Staples BJ, Roeder BL, Husseini GA, Badamjav O, Schaalje GB, Pitt WG. Role of frequency and mechanical index in ultrasonic-enhanced chemotherapy in rats. Cancer Chemother Pharmacol 2009; 64:593-600. [PMID: 19127364 DOI: 10.1007/s00280-008-0910-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 12/15/2008] [Indexed: 12/20/2022]
Abstract
PURPOSE The therapeutic effect of ultrasound and micellar-encapsulated doxorubicin was studied in vivo using a tumor-bearing rat model with emphasis on how tumor growth rate is affected by ultrasonic parameters such as frequency and intensity. METHODS This study employed ultrasound of two different frequencies (20, 476 kHz) and two pulse intensities, but identical mechanical indices and temporal average intensities. Ultrasound was applied weekly for 15 min to one of two bilateral leg tumors (DHD/K12/TRb colorectal epithelial cell line) in the rat model immediately after intravenous injection of micelle-encapsulated doxorubicin. This therapy was applied weekly for 6 weeks. RESULTS Results showed that tumors treated with drug and ultrasound displayed, on average, slower growth rates than non-insonated tumors (P = 0.0047). However, comparison between tumors that received 20 or 476-kHz ultrasound treatments showed no statistical difference (P = 0.9275) in tumor growth rate. CONCLUSION Application of ultrasound in combination with drug therapy was effective in reducing tumor growth rate, irrespective of which frequency was employed.
Collapse
Affiliation(s)
- Bryant J Staples
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | |
Collapse
|
29
|
Chappell JC, Song J, Burke CW, Klibanov AL, Price RJ. Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:1769-77. [PMID: 18720443 PMCID: PMC2716217 DOI: 10.1002/smll.200800806] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Therapeutic strategies in which recombinant growth factors are injected to stimulate arteriogenesis in patients suffering from occlusive vascular disease stand to benefit from improved targeting, less invasiveness, better growth-factor stability, and more sustained growth-factor release. A microbubble contrast-agent-based system facilitates nanoparticle deposition in tissues that are targeted by 1-MHz ultrasound. This system can then be used to deliver poly(D,L-lactic-co-glycolic acid) nanoparticles containing fibroblast growth factor-2 to mouse adductor muscles in a model of hind-limb arterial insufficiency. Two weeks after treatment, significant increases in both the caliber and total number of collateral arterioles are observed, indicating that the delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction may represent an effective and minimally invasive strategy for the targeted stimulation of therapeutic arteriogenesis.
Collapse
Affiliation(s)
- John C. Chappell
- Department of Biomedical Engineering and Robert M. Berne, Cardiovascular Research Center, Box 800759, Health System, Charlottesville VA, 22908 (USA) Fax: (+1) 434-982-3870
| | - Ji Song
- Department of Biomedical Engineering and Robert M. Berne, Cardiovascular Research Center, Box 800759, Health System, Charlottesville VA, 22908 (USA) Fax: (+1) 434-982-3870
| | - Caitlin W. Burke
- Department of Biomedical Engineering and Robert M. Berne, Cardiovascular Research Center, Box 800759, Health System, Charlottesville VA, 22908 (USA) Fax: (+1) 434-982-3870
| | - Alexander L. Klibanov
- University of Virginia, Cardiovascular Medicine and Robert M. Berne, Cardiovascular Research Center, Box 800500, Health System, Charlottesville VA, 22908 (USA) Fax: (+1) 434-982-3183
| | - Richard J. Price
- Department of Biomedical Engineering and Robert M. Berne, Cardiovascular Research Center, Box 800759, Health System, Charlottesville VA, 22908 (USA) Fax: (+1) 434-982-3870
| |
Collapse
|
30
|
Partlow KC, Lanza GM, Wickline SA. Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery. Biomaterials 2008; 29:3367-75. [PMID: 18485474 PMCID: PMC2688337 DOI: 10.1016/j.biomaterials.2008.04.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 04/10/2008] [Indexed: 01/27/2023]
Abstract
The ability to specifically deliver therapeutic agents to selected cell types while minimizing systemic toxicity is a principal goal of nanoparticle-based drug delivery approaches. Numerous cellular portals exist for cargo uptake and transport, but after targeting, intact nanoparticles typically are internalized via endocytosis prior to drug release. However, in this work, we show that certain classes of nanoparticles, namely lipid-coated liquid perfluorocarbon emulsions, undergo unique interactions with cells to deliver lipophilic substances to target cells without the need for entire nanoparticle internalization. To define the delivery mechanisms, fluorescently-labeled nanoparticles complexed with alphav beta 3-integrin targeting ligands were incubated with alphav beta 3-integrin expressing cells (C32 melanoma) under selected inhibitory conditions that revealed specific nanoparticle-to-cell interactions. We observed that the predominant mechanism of lipophilic delivery entailed direct delivery of lipophilic substances to the target cell plasma membrane via lipid mixing and subsequent intracellular trafficking through lipid raft-dependent processes. We suggest that local drug delivery to selected cell types could be facilitated by employing targeted nanoparticles designed specifically to utilize alternative membrane transport mechanisms.
Collapse
Affiliation(s)
- Kathryn C. Partlow
- Department of Medicine, Washington University in St. Louis, School of Medicine, Campus Box 8215, 660 S. Euclid, St. Louis, MO 63110, USA
| | - Gregory M. Lanza
- Department of Medicine, Washington University in St. Louis, School of Medicine, Campus Box 8215, 660 S. Euclid, St. Louis, MO 63110, USA
| | - Samuel A. Wickline
- Department of Medicine, Washington University in St. Louis, School of Medicine, Campus Box 8215, 660 S. Euclid, St. Louis, MO 63110, USA
| |
Collapse
|
31
|
Winter PM, Schmieder AH, Caruthers SD, Keene JL, Zhang H, Wickline SA, Lanza GM. Minute dosages of alpha(nu)beta3-targeted fumagillin nanoparticles impair Vx-2 tumor angiogenesis and development in rabbits. FASEB J 2008; 22:2758-67. [PMID: 18362202 PMCID: PMC2493462 DOI: 10.1096/fj.07-103929] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 02/28/2008] [Indexed: 01/06/2023]
Abstract
Fumagillin suppresses angiogenesis in cancer models and clinical trials, but it is associated with neurotoxicity at systemic doses. In this study, alpha(nu)beta(3)-targeted fumagillin nanoparticles were used to suppress the neovasculature and inhibit Vx-2 adenocarcinoma development using minute drug doses. Tumor-bearing rabbits were treated on days 6, 9, and 12 postimplantation with alpha(nu)beta(3)-targeted fumagillin nanoparticles (30 microg/kg), alpha(nu)beta(3)-targeted nanoparticles without drug, nontargeted fumagillin nanoparticles (30 microg/kg) or saline. On day 16, MRI was performed with alpha(nu)beta(3)-targeted paramagnetic nanoparticles to quantify tumor size and assess neovascularity. Tumor volume was reduced among rabbits receiving alpha(nu)beta(3)-targeted fumagillin nanoparticles (470+/-120 mm(3)) compared with the three control groups: nontargeted fumagillin nanoparticles (1370+/-300 mm(3), P<0.05), alpha(nu)beta(3)-targeted nanoparticles without drug (1080+/-180 mm(3), P<0.05) and saline (980+/-80 mm(3), P<0.05). MR molecular imaging of control rabbits (no fumagillin) revealed a predominant peripheral distribution of neovascularity representing 7.2% of the tumor rim volume, which decreased to 2.8% (P<0.05) with alpha(nu)beta(3)-targeted fumagillin nanoparticle treatment. Microscopically, the tumor parenchyma tended to show T-cell infiltration after targeted fumagillin treatment, which was not appreciated in control animals. These results suggest that alpha(nu)beta(3)-targeted fumagillin nanoparticles could provide a safe and effective means to deliver MetAP2 inhibitors alone or in combination with cytotoxic or immunotherapy.
Collapse
Affiliation(s)
- Patrick M Winter
- Washington University Medical School, Campus Box 8215, 4320 Forest Park Ave., St. Louis, MO 63108, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Yasuhiro Honda
- Center for Cardiovascular Technology, Division of Cardiovascular Medicine, Stanford University Medical Center, Stanford, Calif 94305-5637, USA
| | | |
Collapse
|
33
|
Soman N, Marsh J, Lanza G, Wickline S. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles. NANOTECHNOLOGY 2008; 19:185102. [PMID: 21494419 PMCID: PMC3074498 DOI: 10.1088/0957-4484/19/18/185102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The cell membrane constitutes a major barrier for non-endocytotic intracellular delivery of therapeutic molecules from drug delivery vehicles. Existing approaches to breaching the cell membrane include cavitational ultrasound (with microbubbles), electroporation and cell-penetrating peptides. We report the use of diagnostic ultrasound for intracellular delivery of therapeutic bulky cargo with the use of molecularly targeted liquid perfluorocarbon (PFC) nanoparticles. To demonstrate the concept, we used a lipid with a surrogate polar head group, nanogold-DPPE, incorporated into the nanoparticle lipid monolayer. Melanoma cells were incubated with nanogold particles and this was followed by insonication with continuous wave ultrasound (2.25 MHz, 5 min, 0.6 MPa). Cells not exposed to ultrasound showed gold particles partitioned only in the outer bilayer of the cell membrane with no evidence of the intracellular transit of nanogold. However, the cells exposed to ultrasound exhibited numerous nanogold-DPPE components inside the cell that appeared polarized inside intracellular vesicles demonstrating cellular uptake and trafficking. Further, ultrasound-exposed cells manifested no incorporation of calcein or the release of lactate dehydrogenase. These observations are consistent with a mechanism that suggests that ultrasound is capable of stimulating the intracellular delivery of therapeutic molecules via non-porative mechanisms. Therefore, non-cavitational adjunctive ultrasound offers a novel paradigm in intracellular cargo delivery from PFC nanoparticles.
Collapse
Affiliation(s)
- Nr Soman
- Washington University School of Medicine, Consortium for Translational Research in Advanced Imaging and Nanomedicine, CTRAIN, Campus Box 8215, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
34
|
Deckers R, Rome C, Moonen CT. The role of ultrasound and magnetic resonance in local drug delivery. J Magn Reson Imaging 2008; 27:400-9. [DOI: 10.1002/jmri.21272] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
35
|
Magadala P, van Vlerken LE, Shahiwala A, Amiji MM. Multifunctional Polymeric Nanosystems for Tumor-Targeted Delivery. MULTIFUNCTIONAL PHARMACEUTICAL NANOCARRIERS 2008. [DOI: 10.1007/978-0-387-76554-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imaging 2007; 25:667-80. [PMID: 17347992 DOI: 10.1002/jmri.20866] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advances in bionanotechnology are poised to impact the field of cardiovascular diagnosis and therapy for decades to come. This review seeks to illustrate selected examples of newly developed diagnostic and therapeutic nanosystems that have been evaluated in experimental atherosclerosis, thrombosis, and vascular biology. We review a variety of nanotechnologies that are capable of detecting early cardiovascular pathology, as well as associated imaging approaches and conjunctive strategies for site-targeted treatment with nanoparticle delivery systems.
Collapse
Affiliation(s)
- Samuel A Wickline
- Department of Medicine, Washington University, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
37
|
Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger PY, Geissbühler I, Demurtas D, Dubochet J, Vogel H. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew Chem Int Ed Engl 2007; 45:5478-83. [PMID: 16847983 DOI: 10.1002/anie.200600545] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gopakumar Gopalakrishnan
- Laboratoire de Chimie Physique des Polymères et Membranes, Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Winter PM, Cai K, Caruthers SD, Wickline SA, Lanza GM. Emerging nanomedicine opportunities with perfluorocarbon nanoparticles. Expert Rev Med Devices 2007; 4:137-45. [PMID: 17359221 DOI: 10.1586/17434440.4.2.137] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Perfluorocarbon (PFC) nanoparticles can serve as a platform technology for molecular imaging and targeted drug-delivery applications. These nanoparticles are approximately 250 nm in diameter and are encapsulated in a phospholipid shell, which provides an ideal surface for the incorporation of targeting ligands, imaging agents and drugs. For molecular imaging, PFC nanoparticles can carry very large payloads of gadolinium to detect pathological biomarkers with magnetic resonance imaging. A variety of different epitopes, including alpha(v)beta(3)-integrin, tissue factor and fibrin, have been imaged using nanoparticles formulated with appropriate antibodies or peptidomimentics as targeting ligands. Lipophilic drugs can also be incorporated into the outer lipid shell of nanoparticles for targeted delivery. Upon binding to the target cell, the drug is exchanged from the particle surfactant monolayer to the cell membrane through a novel process called 'contact facilitated drug delivery'. By combining targeted molecular imaging and localized drug delivery, PFC nanoparticles provide diagnosis and therapy with a single agent.
Collapse
Affiliation(s)
- Patrick M Winter
- Medicine and Biomedical Engineering, C-TRAIN Group, St. Louis, MO 63108, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Therapeutic applications of ultrasound predate its use in imaging. A range of biological effects can be induced by ultrasound, depending on the exposure levels used. At low levels, beneficial, reversible cellular effects may be produced, whereas at high intensities instantaneous cell death is sought. Therapy ultrasound can therefore be broadly divided into "low power" and "high power" applications. The "low power" group includes physiotherapy, fracture repair, sonophoresis, sonoporation and gene therapy, whereas the most common use of "high power" ultrasound in medicine is probably now high intensity focused ultrasound. Therapeutic effect through the intensity spectrum is obtained by both thermal and non-thermal interaction mechanisms. At low intensities, acoustic streaming is likely to be significant, but at higher levels, heating and acoustic cavitation will predominate. While useful therapeutic effects are now being demonstrated clinically, the mechanisms by which they occur are often not well understood.
Collapse
Affiliation(s)
- Gail ter Haar
- Joint Physics Department, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, UK.
| |
Collapse
|
40
|
Lanza G, Winter P, Cyrus T, Caruthers S, Marsh J, Hughes M, Wickline S. Nanomedicine Opportunities in Cardiology. Ann N Y Acad Sci 2006; 1080:451-65. [PMID: 17132801 DOI: 10.1196/annals.1380.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite myriad advances, cardiovascular-related diseases continue to remain our greatest health problem. In more than half of patients with atherosclerotic disease, their first presentation to medical attention becomes their last. Patients often survive their first cardiac event through acute revascularization and placement of drug-eluting stents (DES), but only select coronary lesions are amenable to DES placement, resulting in the use of bare metal or no stent, both of which lack the benefit of antirestenotic therapy. In other patients, transient ischemic attacks (TIAs) and stroke constitute the initial presentation of disease. In these patients, the diagnostic and therapeutic options are woefully inadequate. Nanomedicine offers options to each of these challenges. Antiangiogenic paramagnetic nanoparticles may be used to serially assess the severity of atherosclerotic disease in asymptomatic, high-risk patients by detecting the development of plaque neovasculature, which reflects the underlying lesion activity and vulnerability to rupture. The nanoparticles can locally deliver antiangiogenic therapy, which may acutely retard plaque progression, allowing aggressive statin therapy to become effective. Moreover, these agents may be useful as a quantitative marker to guide atherosclerotic management in an asymptomatic patient. In those cases proceeding to the catheterization laboratory for revascularization, nanoparticles incorporating antirestenotic drugs can be delivered directly into the wall of lesions not amenable to DES placement. Targeted nanoparticles could help ensure that antirestenotic drugs are available for all lesions. Moreover, displacement of antiproliferative agents from the intimal surface into the vascular wall is likely to improve rehealing of the endothelium, improving postprocedural management of these patients.
Collapse
Affiliation(s)
- Gregory Lanza
- Med and Biomed Engineering, School of Medicine, Washington University St. Louis, 4003 Kingshighway Bldg., St. Louis, MO 63130, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Lanza GM, Winter PM, Caruthers SD, Hughes MS, Cyrus T, Marsh JN, Neubauer AM, Partlow KC, Wickline SA. Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles. Nanomedicine (Lond) 2006; 1:321-9. [PMID: 17716162 DOI: 10.2217/17435889.1.3.321] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanomedicine promises to enhance the ability of clinicians to address some of the serious challenges responsible for cardiovascular mortality, morbidity and numerous societal consequences. Targeted imaging and therapy applications with perfluorocarbon nanoparticles are relevant to a broad spectrum of cardiovascular diseases, ranging from asymptomatic atherosclerotic disease to acute myocardial infarction or stroke. As illustrated in this article, perfluorocarbon nanoparticles offer new tools to recognize and characterize pathology, to identify and segment high-risk patients and to treat chronic and acute disease.
Collapse
Affiliation(s)
- Gregory M Lanza
- Division of Cardiology, Washington University Medical School, Cortex Building, St Louis, MO 63108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Soman NR, Marsh JN, Hughes MS, Lanza GM, Wickline SA. Acoustic activation of targeted liquid perfluorocarbon nanoparticles does not compromise endothelial integrity. IEEE Trans Nanobioscience 2006; 5:69-75. [PMID: 16805101 DOI: 10.1109/tnb.2006.875052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Perfluorocarbon nanoparticles consisting essentially of liquid perfluoro-octyl bromide (PFOB) core surrounded by a lipid monolayer can serve as highly specific site-targeted contrast and therapeutic agents after binding to cellular biomarkers. Based on previous findings that ultrasound applied at 2 MHz and 1.9 mechanical index (MI) for a 5-min duration dramatically enhances the cellular interaction of targeted PFOB nanoparticles with melanoma cells in vitro without inducing apoptosis or other harmful effects to cells that are targeted, we sought to define mechanisms of interaction and the safety profile of ultrasound used in conjunction with liquid perfluorocarbon nanoparticles for targeted drug delivery, as compared with conventional microbubble ultrasound contrast agents under identical insonification conditions. Cell-culture inserts were used to grow a confluent monolayer of human umbilical vein endothelial cells. Definity in conjunction with continuous wave ultrasound (2.25 MHz for 1 and 5 min) increased the permeability of monolayer by four to six times above the normal, decreased transendothelial electrical resistance (a sign of reduced membrane integrity), and decreased cell viability by approximately 50%. Histological evaluation demonstrated extensive disruptions of cell monolayers. Nanoparticles (both nontargeted and targeted) elicited no changes in these different measures under similar insonification conditions and did not disrupt cell monolayers. We hypothesize that ultrasound facilitates drug transport from the perfluorocarbon nanoparticles not by cavitation-induced effects on cell membrane but rather by direct interaction with the nanoparticles that stimulate lipid exchange and drug delivery.
Collapse
Affiliation(s)
- Neelesh R Soman
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
43
|
Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger PY, Geissbühler I, Demurtas D, Dubochet J, Vogel H. Multifunctional Lipid/Quantum Dot Hybrid Nanocontainers for Controlled Targeting of Live Cells. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600545] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, Schmieder AH, Hu G, Allen JS, Lacy EK, Zhang H, Wickline SA, Lanza GM. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26:2103-9. [PMID: 16825592 DOI: 10.1161/01.atv.0000235724.11299.76] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiogenic expansion of the vasa vasorum is a well-known feature of progressive atherosclerosis, suggesting that antiangiogenic therapies may stabilize or regress plaques. Alpha(v)beta3 integrin-targeted paramagnetic nanoparticles were prepared for noninvasive assessment of angiogenesis in early atherosclerosis, for site-specific delivery of antiangiogenic drug, and for quantitative follow-up of response. METHODS AND RESULTS Expression of alpha(v)beta3 integrin by vasa vasorum was imaged at 1.5 T in cholesterol-fed rabbit aortas using integrin-targeted paramagnetic nanoparticles that incorporated fumagillin at 0 microg/kg or 30 microg/kg. Both formulations produced similar MRI signal enhancement (16.7%+/-1.1%) when integrated across all aortic slices from the renal arteries to the diaphragm. Seven days after this single treatment, integrin-targeted paramagnetic nanoparticles were readministered and showed decreased MRI enhancement among fumagillin-treated rabbits (2.9%+/-1.6%) but not in untreated rabbits (18.1%+/-2.1%). In a third group of rabbits, nontargeted fumagillin nanoparticles did not alter vascular alpha(v)beta3-integrin expression (12.4%+/-0.9%; P>0.05) versus the no-drug control. In a second study focused on microscopic changes, fewer microvessels in the fumagillin-treated rabbit aorta were counted compared with control rabbits. CONCLUSIONS This study illustrates the potential of combined molecular imaging and drug delivery with targeted nanoparticles to noninvasively define atherosclerotic burden, to deliver effective targeted drug at a fraction of previous levels, and to quantify local response to treatment.
Collapse
Affiliation(s)
- Patrick M Winter
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dayton PA, Zhao S, Bloch SH, Schumann P, Penrose K, Matsunaga TO, Zutshi R, Doinikov A, Ferrara KW. Application of Ultrasound to Selectively Localize Nanodroplets for Targeted Imaging and Therapy. Mol Imaging 2006. [DOI: 10.2310/7290.2006.00019] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Yin MZ, Han YC, Bauer IW, Chen P, Li SP. Effect of hydroxyapatite nanoparticles on the ultrastructure and function of hepatocellular carcinoma cells in vitro. Biomed Mater 2006; 1:38-41. [PMID: 18458384 DOI: 10.1088/1748-6041/1/1/006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interaction of Bel-7402 hepatocellular carcinoma cells (HCC) as a single cell suspension with hydroxyapatite (HAP) nanoparticles was investigated. It was observed by an inverted microscope that the cells were still homogeneously distributed in the culture medium after 24 h. A TEM analysis showed that the HAP nanoparticles attached to the Bel-7402 cells were finally swallowed by the cells after 4 h, and induced ultrastructural changes of the cells after 4 days. A MTT assay and cell count test for the HAP nanoparticles of various concentrations from 0.14 to 0.56 mmol L(-1) showed that the HAP nanoparticles at a concentration of 0.56 mmol L(-1) induced the strongest effect on the inhibition of Bel-7402 cell proliferation and induced a dramatic decline in cell numbers. Proliferation of Bel-7402 was inhibited by more than 70%, compared to the control. A cell cycle analysis revealed that HAP can arrest Bel-7402 cells at the G1 phase with increasing effect over time. These findings demonstrated that HAP can enter into HCC very easily, change their ultrastructure, and evidently suppress their proliferation.
Collapse
Affiliation(s)
- Mei-Zhen Yin
- Center of Biomedical Material and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Wickline SA, Neubauer AM, Winter P, Caruthers S, Lanza G. Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol 2005; 26:435-41. [PMID: 16373609 DOI: 10.1161/01.atv.0000201069.47550.8b] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of nanotechnology in cardiovascular diagnosis is expanding rapidly. The goal of this brief review is to illustrate selected examples of nanosystems that have been applied to the arenas of atherosclerosis, thrombosis, and vascular biology. The technologies for producing targeted nanosystems are multifarious and reflect end uses in many cases. The results to date indicate rapid growth of interest and capability in the field. The future of cardiovascular diagnosis already is being impacted by nanosystems that can both diagnose pathology and treat it with targeted delivery systems.
Collapse
|