1
|
El-Shiekh RA, Mohamed AF, Mandour AA, Adel IM, Atwa AM, Elgindy AM, Esmail MM, Senna MM, Ebid N, Mustafa AM. Hesperidin in Chronic Fatigue Syndrome: An Integrated Analysis of Traditional Pharmacology and Machine Learning-Based Therapeutic Predictions. Chem Biodivers 2025:e202403506. [PMID: 40234200 DOI: 10.1002/cbdv.202403506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
Hesperidin, a bioflavonoid abundantly found in citrus fruits, offers a myriad of health benefits. With the food industry extensively utilizing citrus fruits, particularly for juice production, substantial quantities of by-products such as peels, seeds, cells, and membrane residues accumulate. Remarkably, these by-products serve as a valuable source of hesperidin. Consequently, the extraction of hesperidin from these by-products has garnered significant scientific interest, aiming to harness its potential as a natural antioxidant. By shedding light on these aspects, this review provides a comprehensive review of hesperidin's role in enhancing human well-being, particularly in the context of chronic fatigue syndrome (CFS). By synthesizing current research, we elucidate the compound's antioxidant, anti-inflammatory, and neuroprotective effects, which may mitigate symptoms associated with CFS. Furthermore, we introduce machine learning methodologies to predict hesperidin's efficacy in clinical settings, offering a novel perspective on personalized nutrition strategies. Our findings underscore the need for further empirical studies to validate these predictions and explore hesperidin's mechanisms of action. This review not only bridges the gap between nutrition science and pharmacology but also highlights the promising future of hesperidin as a nutraceutical in combating chronic health conditions.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Asmaa A Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Islam M Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M Atwa
- College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Manar M Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Nouran Ebid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
2
|
Zhou H, Lu S, Zheng M, Ouyang X. Flavonoids from Ougan (Citrus suavissima Hort. ex Tanaka) peel exert hypoglycemic potency through inhibiting insulin resistance in HepG2 cells and regulating gut microbiota in diabetic mice. J Funct Foods 2024; 123:106596. [DOI: 10.1016/j.jff.2024.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
3
|
Sabahi S, Abbasi A, Mortazavi SA. Phenolic components from carrot ( Daucus carota L.) pomace: Optimizing the extraction and assessing its potential antioxidant and antimicrobial activities. Heliyon 2024; 10:e36971. [PMID: 39296060 PMCID: PMC11408792 DOI: 10.1016/j.heliyon.2024.e36971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Carrot pomace is a significant agricultural byproduct. Obtained during carrot juice processing. This residue is an appropriate reservoir of constituents with bioactive properties that could be investigated in the development of food constituents and nutritional supplements and in improving the quality and safety of foods. For this purpose, the objective of the present investigation was to extract the polyphenols from carrot pomace utilizing maceration and ultrasound-based extraction (UAE) procedures and to evaluate the antioxidant properties of phenolic constituents. To maximize the extraction of carrot pomace, a response surface approach was used. The optimal mixture of extraction time (A, min), ultrasonication power (B, w), and solvent type (C, v/v) for the highest yield of carrot pomace was found using a three-variable composite rotatable design (CRD). In order to assess different functional groups, Fourier transform infrared spectroscopy was utilized to investigate the extract collected under optimal circumstances. The highest polyphenols (26.53 %) were extracted by ethanol 70 % at 10 min with a sonication power of 250 w. The optimized extract also exhibited significant antioxidant and antimicrobial functions. The total phenolic compounds and scavenging of the DPPH radical were 85 mg GAE/gr and EC50: 55 ± 1 μg/mL, respectively. Together with Staphylococcus aureus, the highest zone of inhibition (12 mm) was identified. Our finding revealed that carrot pomace is an appropriate source of bioactive phenolic constituents, exhibiting antioxidant and antibacterial attributes, and could be applied as a natural preserver for promoting safety and quality properties in food products on an industrial scale.
Collapse
Affiliation(s)
- Sahar Sabahi
- Department of Food Science & Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mortazavi
- Department of Food Science & Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Martinidou E, Michailidis M, Ziogas V, Masuero D, Angeli A, Moysiadis T, Martens S, Ganopoulos I, Molassiotis A, Sarrou E. Comparative Evaluation of Secondary Metabolite Chemodiversity of Citrus Genebank Collection in Greece: Can the Peel be More than Waste? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9019-9032. [PMID: 38613500 PMCID: PMC11190985 DOI: 10.1021/acs.jafc.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Citrus fruits are among the most economically important crops in the world. In the global market, the Citrus peel is often considered a byproduct but substitutes an important phenotypic characteristic of the fruit and a valuable source of essential oils, flavonoids, carotenoids, and phenolic acids with variable concentrations. The Mediterranean basin is a particularly dense area of autochthonous genotypes of Citrus that are known for being a source of healthy foods, which can be repertoires of valuable genes for molecular breeding with the focus on plant resistance and quality improvement. The scope of this study was to characterize and compare the main phenotypic parameters (i.e., peel thickness, fruit volume, and area) and levels of bioactive compounds in the peel of fruits from the local germplasm of Citrus in Greece, to assess their chemodiversity regarding their polyphenolic, volatile, and carotenoid profiles. A targeted liquid chromatographic approach revealed hesperidin, tangeretin, narirutin, eriocitrin, and quercetin glycosides as the major polyphenolic compounds identified in orange, lemon, and mandarin peels. The content of tangeretin and narirutin followed the tendency mandarin > orange > lemon. Eriocitrin was a predominant metabolite of lemon peel, following its identification in lower amounts in mandarin and at least in the orange peel. For these citrus-specific metabolites, high intra- but also interspecies chemodiversity was monitored. Significant diversity was found in the essential oil content, which varied between 1.2 and 3% in orange, 0.2 and 1.4% in mandarin, and 0.9 and 1.9% in lemon peel. Limonene was the predominant compound in all Citrus species peel essential oils, ranging between 88 and 93% among the orange, 64 and 93% in mandarin, and 55 and 63% in lemon cultivars. Carotenoid analysis revealed different compositions among the Citrus species and accessions studied, with β-cryptoxanthin being the most predominant metabolite. This large-scale metabolic investigation will enhance the knowledge of Citrus peel secondary metabolite chemodiversity supported by the ample availability of Citrus genetic resources to further expand their exploitation in future breeding programs and potential applications in the global functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Eftychia Martinidou
- Institute of Plant Breeding and Genetic
Resources, ELGO−DIMITRA, Thessaloniki 57001, Greece
| | - Michail Michailidis
- Laboratory
of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Vasileios Ziogas
- Intsitute
of Olive Tree, Subtropical Plants and Viticulture, ELGO−DIMITRA, Chania 73134, Greece
| | - Domenico Masuero
- Fondazione
Edmund Mach, Centro Ricerca e Innovazione, 38098 San Michele
all’Adige, Trento, Italy
| | - Andrea Angeli
- Fondazione
Edmund Mach, Centro Ricerca e Innovazione, 38098 San Michele
all’Adige, Trento, Italy
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic
Resources, ELGO−DIMITRA, Thessaloniki 57001, Greece
- Department
of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus
| | - Stefan Martens
- Fondazione
Edmund Mach, Centro Ricerca e Innovazione, 38098 San Michele
all’Adige, Trento, Italy
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic
Resources, ELGO−DIMITRA, Thessaloniki 57001, Greece
| | - Athanassios Molassiotis
- Laboratory
of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic
Resources, ELGO−DIMITRA, Thessaloniki 57001, Greece
| |
Collapse
|
5
|
Jiamjariyatam R, Phucharoenrak P, Samosorn S, Dolsophon K, Lorliam W, Krajangsang S, Tantayotai P. Influence of Different Extraction Methods on the Changes in Bioactive Compound Composition and Antioxidant Properties of Solid-State Fermented Coffee Husk Extracts. ScientificWorldJournal 2023; 2023:6698056. [PMID: 37780638 PMCID: PMC10539082 DOI: 10.1155/2023/6698056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
In brewing coffee, a huge amount of food waste is generated; that waste, coffee husks in particular, should be comprehensively exploited. They offer a rich source of bioactive compounds such as caffeine, chlorogenic acid, and trigonelline. The aim of this study was to investigate the effects of extraction methods on the bioactive compounds and antioxidant activity of such waste. Coffee husks in this study were fermented with S. cerevisiae based on a solid-state fermentation technique. The study method included ethanolic or water extraction with varied controllable factors, i.e., temperature (60, 100°C) and extraction technique. Bioactive contents were investigated with the Folin-Ciocalteu assay and 1H-NMR spectroscopy. The antioxidant activity was investigated with DPPH and FRAP assays. Results show that yields were the highest in the extract of fermented coffee husks at 100°C. The highest levels of bioactive contents (total trigonelline content at 3.59% and antioxidant activity at 23.35% (DPPH) and 25.9% (FRAP)) were found in the ethanolic extract of fermented coffee husks at 60°C. The bioactive content and bioactivity, including antioxidant activity, depended on different raw materials, preparation methods, and extraction conditions. This study illustrates the potential for using food waste such as coffee husks as a sustainable source of bioactive compounds or bioactive extracts.
Collapse
Affiliation(s)
- Rossaporn Jiamjariyatam
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| | | | - Siritron Samosorn
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| | - Sukhumaporn Krajangsang
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| | - Prapakorn Tantayotai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| |
Collapse
|
6
|
Nutter J, Correa de Carvalho M, Zarbo Colombo AA, Jagus RJ, Agüero MV. Thermal and nonthermal sonication: Extraction of bioactive compounds from beet leaves and microbiological quality of extracts. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Julia Nutter
- Department of Food Science and Human Nutrition Iowa State University Ames USA
| | - Màrcia Correa de Carvalho
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| | - Antonella Ailín Zarbo Colombo
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| | - Rosa Juana Jagus
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| | - María Victoria Agüero
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| |
Collapse
|
7
|
Removal of RhB from water by Fe-modified hydrochar and biochar – An experimental evaluation supported by genetic programming. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Wang Z, Mei X, Chen X, Rao S, Ju T, Li J, Yang Z. Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (Citrus sinensis) peels: Effect of different extraction methods thereon. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Pradhan SP, Swain S, Sa N, Pilla SN, Behera A, Sahu PK, Chandra Si S. Photocatalysis of environmental organic pollutants and antioxidant activity of flavonoid conjugated gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121699. [PMID: 35940068 DOI: 10.1016/j.saa.2022.121699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The unique properties of nanomaterials have the potential application in different fields of biomedical application along with the management of environmental pollutants. This research work involved the isolation of hesperidin from the orange peel and the preparation of hesperidin gold nanoparticles by the chemical reduction method. The high substrate specificity and lower band gap enable the excitation of gold nanoparticles in visible light. Hence gold nanoparticles are chosen nowadays for the management and removal of organic pollutants. The efficacy of hesperidin gold nanoparticles was evaluated by the photocatalytic activity on organic dyes and pollutants like methyl orange, methylene blue, bromocresol green, and 4 - nitro phenol with sodium borohydride as reducing agent and the antioxidant study by scavenging of free radicals of DPPH, ABTS, and hydroxyl free radicals of hydrogen peroxide. The kinetics of photocatalytic degradation of organic dyes and 4 - nitro phenol was found to follow the first order with rate constants of 10 × 10-3, 37 × 10-3, 23 × 10-3 and 49 × 10-3 min-1 for methyl orange, methylene blue, bromocresol green and 4 - nitro phenol respectively. The hesperidin gold nanoparticles showed significant antioxidant activity as compared to ascorbic acid as standard. The flavonoid conjugated gold nanoparticles can be an efficient antioxidant and photocatalyst for the management of different diseases and wastewater treatment respectively.
Collapse
Affiliation(s)
| | - Sunsita Swain
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Sudam Chandra Si
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Damar I, Yilmaz E. Ultrasound-assisted extraction of phenolic compounds in blackthorn (Prunus spinosa L.): characterization, antioxidant activity and optimization by response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
11
|
Banitaba SN, Ebadi SV, Salimi P, Bagheri A, Gupta A, Arifeen WU, Chaudhary V, Mishra YK, Kaushik A, Mostafavi E. Biopolymer-based electrospun fibers in electrochemical devices: versatile platform for energy, environment, and health monitoring. MATERIALS HORIZONS 2022; 9:2914-2948. [PMID: 36226580 DOI: 10.1039/d2mh00879c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical power tools are regarded as essential keys in a world that is becoming increasingly reliant on fossil fuels in order to meet the challenges of rapidly depleting fossil fuel supplies. Additionally, due to the industrialization of societies and the growth of diseases, the need for sensitive, reliable, inexpensive, and portable sensors and biosensors for noninvasive monitoring of human health and environmental pollution is felt more than ever before. In recent decades, electrospun fibers have emerged as promising candidates for the fabrication of highly efficient electrochemical devices, such as actuators, batteries, fuel cells, supercapacitors, and biosensors. Meanwhile, the use of synthetic polymers in the fabrication of versatile electrochemical devices has raised environmental concerns, leading to an increase in the quest for natural polymers. Natural polymers are primarily derived from microorganisms and plants. Despite the challenges of processing bio-based electrospun fibers, employing natural nanofibers in the fabrication of electrochemical devices has garnered tremendous attention in recent years. Here, various natural polymers and the strategies employed to fabricate various electrospun biopolymers are briefly covered. The recent advances and research strategies used to apply the bio-based electrospun membranes in different electrochemical devices are carefully summarized, along with the scopes in various advanced technologies. A comprehensive and critical discussion about the use of biopolymer-based electrospun fibers as the potential alternative to non-renewable ones in future technologies is briefly highlighted. This review will serve as a field opening platform for using different biopolymer-based electrospun fibers to advance the electrochemical device-based renewable and sustainable technologies, which will be of high interest to a large community. Accordingly, future studies should focus on feasible and cost-effective extraction of biopolymers from natural resources as well as fabrication of high-performance nanofibrous biopolymer-based components applicable in various electrochemical devices.
Collapse
Affiliation(s)
- Seyedeh Nooshin Banitaba
- Department of Textile Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran.
| | - Seyed Vahid Ebadi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Pejman Salimi
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, I-16146 Genova, Italy
| | - Ahmad Bagheri
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Faculty of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universitate Dresden, Dresden 01062, Germany
| | - Ashish Gupta
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana, India
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi 110043, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, Smart Materials, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Han Jeong Y, Van Kien N, Jin Han Seog D, Ryoo JJ. Comparison between the use of polyether ether ketone and stainless steel columns for ultrasonic-assisted extraction under various ultrasonic conditions. ULTRASONICS SONOCHEMISTRY 2022; 90:106125. [PMID: 36191369 PMCID: PMC9531288 DOI: 10.1016/j.ultsonch.2022.106125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
The ultrasound-assisted extraction (UAE) was conducted using the stainless steel (SS) and polyether ether ketone (PEEK) columns and analyzed with high-performance liquid chromatography (HPLC) to understand the mechanism of ultrasound-assisted chromatography (UAC). Empty SS and PEEK columns were used to extract dyes from a fabric under identical conditions with several parameters including the initial ultrasonic bath temperatures (30 °C and 40 °C), ultrasound power intensities (0, 20, 40, 60, 80, and 100 %), ultrasound operation modes (normal and sweep), and ultrasound frequencies (25 kHz, 40 kHz, and 132 kHz) to compare their extraction capabilities. After 30 min of extraction, the amount of extract was determined by HPLC. The PEEK material was significantly affected by ultrasonic radiation compared to the SS material, especially at a higher temperature (40 °C), power intensity (100 %), and frequency (132 kHz) with sweep mode. At a maximum power density of 45 W/L, the extraction effectiveness ratio of PEEK to SS was in the range of 1.8 - 3.9 depending on the specific frequency, initial temperature, and with or without temperature control. The most optimal ultrasound frequencies, in terms of enhancing extraction effectiveness, are in the order of 132 kHz, 40 kHz, and 25 kHz. Unlike the SS material, the PEEK material was more affected by temperature and acoustic effects under identical conditions, especially at 132 kHz ultrasound frequency. In contrast, at lower frequencies of 40 kHz and 25 kHz, no significant differences in the acoustic effects were observed between the PEEK and SS materials. The findings of this study contribute to elucidating the roles of column materials in UAE and UAC.
Collapse
Affiliation(s)
- Young Han Jeong
- Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea
| | - Nguyen Van Kien
- Department of Chemistry Education, Kyungpook National University, Daegu 702-701, South Korea
| | - David Jin Han Seog
- Science Education Research Institute, Kyungpook National University, Daegu 702-701, South Korea
| | - Jae Jeong Ryoo
- Department of Chemistry Education, Kyungpook National University, Daegu 702-701, South Korea; Science Education Research Institute, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
13
|
Myo H, Khat-Udomkiri N. Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. ULTRASONICS SONOCHEMISTRY 2022; 89:106127. [PMID: 36007328 PMCID: PMC9424582 DOI: 10.1016/j.ultsonch.2022.106127] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/31/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In the cosmetic and pharmaceutical industries, it has been increasingly popular to use alternative solvents in the extraction of bioactive compounds from plants. Coffee pulp, a by-product of coffee production, contains different phenolic compounds with antioxidant properties. The effects of polyols, amplitude, extraction time, solvent concentration, and liquid-solid ratio on total phenolic content (TPC) using ultrasound-assisted extraction (UAE) were examined by single-factor studies. Three main factors that impact TPC were selected to optimize the extraction conditions for total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), and their antioxidant activities using the Box-Behnken design. Different extraction methods were compared, the bioactive compounds were identified and quantified by liquid chromatography triple quadrupole mass spectrometer (LC-QQQ), and the cytotoxicity and cellular antioxidant activities of the extract were studied. According to the response model, the optimal conditions for the extraction of antioxidants from coffee pulp were as follows: extraction time of 7.65 min, liquid-solid ratio of 22.22 mL/g, and solvent concentration of 46.71 %. Under optimized conditions, the values of TPC, TFC, TTC, 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging assay, 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging assay, and Ferric reducing antioxidant power assay (FRAP) were 9.29 ± 0.02 mg GAE/g sample, 58.82 ± 1.38 mg QE/g sample, 8.69 ± 0.25 mg TAE/g sample, 7.56 ± 0.27 mg TEAC/g sample, 13.59 ± 0.25 mg TEAC/g sample, and 10.90 ± 0.24 mg FeSO4/g sample, respectively. Compared with other extraction conditions, UAE with propylene glycol extract (PG-UAE) was significantlyhigher in TPC, TFC, TTC, DPPH, ABTS, and FRAP response values than UAE with ethanol (EtOH-UAE), maceration with propylene glycol (PG-maceration), and maceration with ethanol (EtOH -maceration) (p < 0.05). Major bioactive compounds detected by LC-QQQ included chlorogenic acid, caffeine, and trigonelline. At higher concentrations starting from 5 mg/ml, PG-UAE extract showed higher cell viability than EtOH-UAE in both cytotoxicity and cellular antioxidant assays. The researcher expects that this new extraction technique developed in this work could produce a higher yield of bioactive compounds with higher biological activity. Therefore, they can be used as active ingredients in cosmetics (anti-aging products) and pharmaceutical applications (food supplements, treatment for oxidative stress-related diseases) with minimal use of chemicals and energy.
Collapse
Affiliation(s)
- Hla Myo
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| | | |
Collapse
|
14
|
Wang Y, Wang C, Xue H, Jin Y, Yang M, Leng F. Comparative analysis of three kinds of extraction kinetic models of crude polysaccharides from Codonopsis pilosula and evaluate the characteristics of crude polysaccharides. BIOMASS CONVERSION AND BIOREFINERY 2022; 13:1-17. [PMID: 35342681 PMCID: PMC8933859 DOI: 10.1007/s13399-022-02518-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
In this study, the second-order model, Fick's second law of diffusion, and the Peleg model were used to evaluate the extraction kinetic model of polysaccharide (CPP) from Codonopsis pilosula. The characteristic functional groups, surface structure, and physical and chemical properties of CPP were analyzed by multi-spectroscopic and microscopic techniques. The results showed that the extraction process agreed well with the second-order model, Fick's second diffusion law, and Peleg model. Rheological tests showed that CPP exhibited different viscosity changes under different conditions (Solution viscosity was inversely proportional to temperature, time, etc.; proportional to polysaccharide concentration, Na+ content, etc.). CPP was composed of molecular aggregates composed of small particles, with more pore structure and basically completely decomposed at 130 °C. The hypoglycemic study showed that CPP had a strong inhibitory effect on α-glycosidase than α-amylase. The morphology and subsequent structural features, anti-diabetic potential, and rheological properties of CPP were revealed to provide a theoretical basis for the development of pharmaceutical preparations or health food and functional food for the treatment of diabetes. Graphic Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13399-022-02518-w.
Collapse
Affiliation(s)
- Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| | - Chenliang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| | - Hongyan Xue
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| | - Yongming Jin
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| | - Mingjun Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou City, 730050 Gansu Province China
| |
Collapse
|
15
|
Phucharoenrak P, Muangnoi C, Trachootham D. A Green Extraction Method to Achieve the Highest Yield of Limonin and Hesperidin from Lime Peel Powder ( Citrus aurantifolia). Molecules 2022; 27:820. [PMID: 35164083 PMCID: PMC8840237 DOI: 10.3390/molecules27030820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Green extraction is aimed at reducing energy consumption by using renewable plant sources and environmentally friendly bio-solvents. Lime (Citrus aurantifolia) is a rich source of flavonoids (e.g., hesperidin) and limonoids (e.g., limonin). Manufacturing of lime products (e.g., lime juice) yields a considerable amount of lime peel as food waste that should be comprehensively exploited. The aim of this study was to develop a green and simple extraction method to acquire the highest yield of both limonin and hesperidin from the lime peel. The study method included ethanolic-aqueous extraction and variable factors, i.e., ethanol concentrations, pH values of solvent, and extraction temperature. The response surface methodology was used to optimize extraction conditions. The concentrations of limonin and hesperidin were determined by using UHPLC-MS/MS. Results showed that the yields of limonin and hesperidin significantly depended on ethanol concentrations and extraction temperature, while pH value had the least effect. The optimal extraction condition with the highest amounts of limonin and hesperidin was 80% ethanol at pH 7, 50 °C, which yields 2.072 and 3.353 mg/g of limonin and hesperidin, respectively. This study illustrates a green extraction process using food waste, e.g., lime peel, as an energy-saving source and ethanol as a bio-solvent to achieve the highest amount of double bioactive compounds.
Collapse
Affiliation(s)
- Pakkapong Phucharoenrak
- Master of Science Program in Toxicology and Nutrition for Food Safety, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand;
| | | | | |
Collapse
|
16
|
Fatriansyah JF, Rizqillah RK, Yandi MY, Fadilah, Sahlan M. Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:101707. [PMID: 34803333 PMCID: PMC8591974 DOI: 10.1016/j.jksus.2021.101707] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/17/2021] [Accepted: 11/07/2021] [Indexed: 08/20/2023]
Abstract
Molecular docking and dynamics simulations were conducted to investigate the antiviral activity of Propolis Sulabiroin-A to inhibit the SARS-CoV-2 virus with quercetin, hesperidin, and remdesivir as control ligands. The parameters calculated were docking score and binding energy/molecular mechanics-generalized born surface area (MMGBSA), root mean square displacement (RMSD), and root mean square fluctuation (RMSF). Docking and MMGBSA scores showed that all the ligands demonstrate an excellent candidate as an inhibitor, and the order of both scores is hesperidin, remdesivir, quercetin, and sulabiroin-A. The molecular dynamics simulation showed that all the ligands are good candidates as inhibitors. Although the fluctuation of Sulabiroin-A is relatively high, it has less protein-ligand interaction time than other ligands. Overall, there is still a good possibility that sulabiroin-A can be used as an alternative inhibitor if a new structure of receptor SARS-CoV-2 is used.
Collapse
Affiliation(s)
- Jaka Fajar Fatriansyah
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Depok, Jawa Barat 16424, Indonesia
| | - Raihan Kenji Rizqillah
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Depok, Jawa Barat 16424, Indonesia
| | - Muhamad Yusup Yandi
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Depok, Jawa Barat 16424, Indonesia
| | - Fadilah
- Department of Medicinal Chemistry, Faculty of Medicine, Universitas Indonesia, Salemba Raya, Jakarta 10430, Indonesia
| | - Muhamad Sahlan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Depok, Jawa Barat 16424, Indonesia
| |
Collapse
|
17
|
Mohsin A, Hussain MH, Zaman WQ, Mohsin MZ, Zhang J, Liu Z, Tian X, Salim-Ur-Rehman, Khan IM, Niazi S, Zhuang Y, Guo M. Advances in sustainable approaches utilizing orange peel waste to produce highly value-added bioproducts. Crit Rev Biotechnol 2021; 42:1284-1303. [PMID: 34856847 DOI: 10.1080/07388551.2021.2002805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Orange peel waste (OPW), a discarded part of orange fruit, is a rich source of essential constituents that can be transformed into highly value-added bioproducts. OPW is being generated in million tonnes globally and returns to the environment without complete benefit. Thus, a high volume of annually produced OPW in the industry requires effective valorization. In this regard, limited data is available that summarizes the broader spectrum for the sustainable fate of OPW to produce value-added bioproducts. The main objective of this treatise is to explore the sustainable production of bioproducts from OPW. Therefore, this review covers all the aspects of OPW, from its production to complete valorization. The review encompasses the extraction technologies employed for extracting different valuable bioactive compounds, such as: essential oil (EO), pectin, and carotenoids, from OPW. Furthermore, the suitability of bioconversion technologies (digestion/fermentation) in transforming OPW to other useful bioproducts, such as: biochemicals (lactic acid and succinic acid), biopolysaccharides (xanthan and curdlan gum), and bioenergy (biomethane and bioethanol) is discussed. Also, it includes the concept of OPW-based biorefineries and their development that shall play a definite role in future to cover demands for: food, chemicals, materials, fuels, power, and heat. Lastly, this review focuses on OPW-supplemented functional food products such as: beverages, yogurts, and extruded products. In conclusion, insights provided in this review maximize the potential of OPW for commercial purposes, leading to a safe, and waste-free environment.
Collapse
Affiliation(s)
- Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Waqas Qamar Zaman
- Institute of Environment Science and Engineering, School of Civil and Environment Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Junhong Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Salim-Ur-Rehman
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Imran Mehmood Khan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Optimum Conditions and LC-ESI-MS Analysis of Phenolic Rich Extract from Eucalyptus marginata L. under Maceration and Ultrasound-Assisted Extraction Methods Using Response Surface Methodology. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5591022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Eucalyptus marginata L. has a significant value in traditional medicine and recently has been shown to possess many pharmacological properties in vitro. The main goal of the present study was to optimize the extraction parameters of phenolic compounds from Eucalyptus marginata L. leaves using the extraction technique assisted by ultrasound in comparison with maceration using response surface methodology as a predicted tool. Therefore, total phenolic and flavonoid contents have been optimized, taking into account four variables: extraction time, temperature, liquid-to-solid ratio, and ethanol concentration. The optimum ultrasound-assisted extraction method for total phenolic and total flavonoid contents was obtained by ensuring the following parameters: t = 49.9 min, T = 74.9°C, liquid-to-solid ratio = 39.5 ml/g, and ethanol = 58.48%. The optimum extract has been subjected to LC-ESI-MS analysis. This technique allowed us to identify ten phenolic compounds: four phenolic acids mainly gallic acid (27.77 ± 0.06 µg/g DW) and protocatechuic acid (37.66 ± 0.04 µg/g DW) and six flavonoid compounds such as quercetrin (150.78 ± 0.02 µg/g DW) and hyperoside (39.19 ± 0.03 µg/g DW). These green and efficient procedures should be a promising option to guide industrial design for the production of phenolic-rich plant extracts.
Collapse
|
19
|
Soybean Oil Enriched with Antioxidants Extracted from Watermelon (Citrullus colocynthis) Skin Sap and Coated in Hydrogel Beads via Ionotropic Gelation. COATINGS 2021. [DOI: 10.3390/coatings11111370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many plants and fruits are rich in antioxidant and antimicrobial compounds, such as phenolic compounds. Watermelon is one example, as various parts of the fruit present interesting phytochemical profiles. This study demonstrates that a natural C. colocynthis (watermelon) (W) skin sap (SS) extract can effectively improve the oxidative stability of microencapsulated soybean (SB) oil. By employing a combination of alginate–xanthan gums (AXG) in a matrix hydrogel bead model with WSS extract, high encapsulation efficiency can be obtained (86%). The effects of process variables on the ultrasound-assisted extraction (UAE) of phenolic compounds from watermelon (W) skin sap (SS) using the response surface methodology (RSM), as an optimized and efficient extraction process, are compared with the effects of a conventional extraction method, namely the percolation method. The WSS extracts are obtained via UAE and RSM or the conventional percolation extraction method. The two obtained extracts and synthetic antioxidant butylated hydroxytolune (BHT) are added to SB oil separately and their antioxidant effects are tested and compared. The results show the improved oxidative stability of SB oil containing the extract obtained via the optimized method (20–30%) compared to the SB oil samples containing extract obtained via the percolation extraction method, synthetic antioxidant (BHT), and SB oil only as the control (no antioxidant added). According to existing studies, we assume that the use of WSS as an effective antioxidant will ensure the prolonged stability of encapsulated SB oil in hydrogel beads, as it is well known that extended storage under different conditions may lead to severe lipid oxidation.
Collapse
|
20
|
JIN T, YU M, CAO M, ZHU X. Optimization of mechanochemical-assisted extraction of hesperidin from Pericarpium Citri Reticulatae. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.79821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tingyu JIN
- Zhejiang University of Technology, China
| | - Meijing YU
- Zhejiang University of Technology, China
| | - Mingxi CAO
- Zhejiang University of Technology, China
| | - Xingyi ZHU
- Zhejiang University of Technology, China; Zhejiang University of Technology, China
| |
Collapse
|
21
|
Foudah AI, Shakeel F, Alam P, Alqarni MH, Abdel-Kader MS, Alshehri S. A Sustainable Reversed-Phase HPTLC Method for the Quantitative Estimation of Hesperidin in Traditional and Ultrasound-Assisted Extracts of Different Varieties of Citrus Fruit Peels and Commercial Tablets. AGRONOMY 2021; 11:1744. [DOI: 10.3390/agronomy11091744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Hesperidin (HSP) is a bioactive flavanone glycoside, present abundantly in the variety of citrus fruits. The environmental safety and sustainability of the reported analytical assays of HSP analysis have not been considered in the literature. Hence, a sensitive and sustainable “reversed-phase high-performance thin-layer chromatography (RP-HPTLC)” method has been developed and validated for HSP analysis in traditional (TE) and ultrasound-based (UBE) extracts of four different varieties of citrus fruit peels and its commercial tablet dosage forms. The binary combination of green solvents such as ethanol-water (50:50, v v−1) was used as the mobile phase. The detection of HSP was performed at 287 nm. The sustainable RP-HPTLC method was linear in 20–2000 ng band−1 range. The studied validation parameters, including accuracy, precision, robustness, sensitivity were acceptable for HSP analysis. The content of HSP in TE of four different varieties of citrus fruits including grapefruit peels (Citrus paradisi), mosambi peels (Citrus limetta), lemon peels (Citrus lemon), and orange peels (Citrus sinensis) was detected as 8.26, 6.94, 5.90, and 6.81% w w−1, respectively. The content of HSP in TE of commercial formulations A and B was detected as 5.31 and 5.55% w w−1, respectively. However, the content of HSP in UBE of grapefruit peels, mosambi peels, lemon peels, and orange peels was detected as 11.41, 8.86, 7.98, and 8.64% w w−1, respectively. The content of HSP in UBE of commercial formulations A and B was detected as 6.72 and 6.92% w w−1, respectively. The greenness score of the sustainable RP-HPTLC method was predicted as 0.83 using analytical GREEnness (AGREE) metric approach, indicated the excellent greenness profile of the RP-HPTLC method. UBE procedure for HSP was superior over its TE procedure. These observations and results suggested that the present RP-HPTLC method can be successfully used for the quantitative estimation of HSP in the variety of citrus fruit peels and its commercial formulations. In addition, this method is simple, rapid, precise, accurate, and economical compared to the reported analytical methods of HSP analysis. It is also safe and sustainable method due to the use of ethanol-water solvents systems, as both the solvents are green solvents compared to the solvents used in reported analytical methods of HSP analysis.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Effect of Solvent Extraction and Blanching Pre-Treatment on Phytochemical, Antioxidant Properties, Enzyme Inactivation and Antibacterial Activities of ‘Wonderful’ Pomegranate Peel Extracts. Processes (Basel) 2021. [DOI: 10.3390/pr9061012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
‘Wonderful’ pomegranate (Punica granatum L.) peel is rich in phytochemicals which are responsible for its strong antioxidant and antimicrobial activities, but it has low economic value as it is mainly discarded, causing an environmental waste management problem. To examine the best processing regime for pomegranate peel wastes, different solvents (ethanol, methanol and acetone) at various concentrations (50%, 70% and 100%) and blanching at 60, 80 and 100 °C for 1, 3 and 5 min, for each temperature, were tested. Ethanol at 70% (v/v) provided the highest extract yield, total phenolic and total tannin content at 29.46%, 10.61 ± 0.15, and 0.76 ± 0.02 mg GAE/g DM, respectively. Antioxidant activity using the 2,2 diphenyl-1-picryl hydrazyl assay (DPPH), ferric-reducing antioxidant power assay (FRAP) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid assay (ABTS) were reported at 243.97 ± 2.43, 478.04 ± 73.98 and 718.79 ± 2.42 µmol Trolox/g DM, respectively. A blanching temperature of 80 °C for 3 min led to the highest extract that had a total phenolic content of 12.22 ± 0.08 mg GAE/g DM and total tannin content of 1.06 ± 0.06 mg GAE/g DM. This extract also exhibited the best antioxidant activity for the DPPH, FRAP and ABTS assays. Two blanching temperatures, 80 or 100 °C, significantly reduced polyphenol oxidase and peroxidase activities (p < 0.05). Although blanched peel extracts showed a broad-spectrum activity against test bacteria, blanching at 80 °C for 3 or 5 min was most effective. Hot water blanching is thus a suitable environmentally friendly post-harvesting processing method for pomegranate peels that are intended for use as extracts in value-added products with good antioxidant and antibacterial effects.
Collapse
|
23
|
Validation of a greener procedure for the extraction of triterpenic acids from Hedyotis corymbosa. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Supercritical extraction and antioxidant activity of major ingredients in Puerariae lobatae root, Pinus massoniana needle, Citrus reticulata peel and their mixture. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Leal Vieira Cubas A, Medeiros Machado M, Tayane Bianchet R, Alexandra da Costa Hermann K, Alexsander Bork J, Angelo Debacher N, Flores Lins E, Maraschin M, Sousa Coelho D, Helena Siegel Moecke E. Oil extraction from spent coffee grounds assisted by non-thermal plasma. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Liao Y, Zhong L, Liu L, Xie L, Tang H, Zhang L, Li X. Comparison of surfactants at solubilizing, forming and stabilizing nanoemulsion of hesperidin. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Yang YC, Wang CS, Wei MC. A green approach for the extraction and characterization of oridonin and ursolic and oleanolic acids from Rabdosia rubescens and its kinetic behavior. Food Chem 2020; 319:126582. [PMID: 32199144 DOI: 10.1016/j.foodchem.2020.126582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/14/2019] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
An ultrasound-assisted supercritical carbon dioxide (USC-CO2) procedure was developed for the extraction of ursolic acid, oleanolic acid and oridonin from Rabdosia rubescens, with yields that were 9.84-10.46 and 15.43-21.10% higher than those of the conventional SC-CO2 and heat-reflux extractions, respectively. USC-CO2 uses a shorter extraction time (1.83-2.09 times) and less organic solvent (3.39-173.25 times) to operate at a lower extraction temperature (5-16 °C). The dominant component in the extract was oridonin, which may indicate that the kinetic behavior in the extraction system is predominated by that of oridonin. Furthermore, the USC-CO2 and conventional SC-CO2 dynamic extraction kinetics of oridonin from R. rubescens were well described by the second-order rate and Fick's second law models. The extraction rate constant, energy of activation for diffusion, Biot number and thermodynamic parameters were deduced from the data obtained. These results provide valuable insights into the USC-CO2 and conventional SC-CO2 procedures.
Collapse
Affiliation(s)
- Yu-Chiao Yang
- Department and Graduate Institute of Pharmacology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chia-Sui Wang
- Department of Applied Geoinformatics, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Ming-Chi Wei
- Department of Applied Geoinformatics, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| |
Collapse
|
28
|
Applications of Nonconventional Green Extraction Technologies in Process Industries: Challenges, Limitations and Perspectives. SUSTAINABILITY 2020. [DOI: 10.3390/su12135244] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study reviewed five different nonconventional technologies which are aligned with green concepts of product recovery from raw materials on industrial scale, with minimal energy consumption and chemical use. Namely, this study reviewed supercritical fluid extraction (SCFE), pressurized liquid extraction (PLE), microwave-assisted extraction (MAE), ultrasound extraction (UAE) and pulsed electric fields extraction (PEFE). This paper provides an overview of relevant innovative work done in process industries on different plant matrices for functional value-added compounds and byproduct production. A comparison of the five extraction methods showed the supercritical CO2 (SC-CO2) process to be more reliable despite some limitations and challenges in terms of extraction yield and solubility of some bioactive compounds when applied in processing industries. However, these challenges can be solved by using ionic liquids as a trainer or cosolvent to supercritical CO2 during the extraction process. The choice of ionic liquid over organic solvents used to enhance extraction yield and solubility is based on properties such as hydrophobicity, polarity and selectivity in addition to a safe environment.
Collapse
|
29
|
The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100547] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Mahato N, Sinha M, Sharma K, Koteswararao R, Cho MH. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019; 8:E523. [PMID: 31652773 PMCID: PMC6915388 DOI: 10.3390/foods8110523] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Citrus contains a range of highly beneficial bioactive compounds, such as polyphenols, carotenoids, and vitamins that show antimicrobial and antioxidant properties and help in building the body's immune system. On consumption or processing, approximately 50% of the fruit remains as inedible waste, which includes peels, seeds, pulp, and segment residues. This waste still consists of substantial quantities of bioactive compounds that cause environmental pollution and are harmful to the ecosystem because of their high biological oxygen demand. In recent years, citrus cultivation and the production of processed foods have become a major agricultural industry. In addition to being a substantial source of economy, it is an ideal and sustainable and renewable resource for obtaining bioactive compounds and co-products for food and pharmaceutical industries. In the present article, the various methods of extraction, conventional and modern, as well as separation and isolation of individual bioactive compounds from the extraction mixture and their determination have been reviewed. This article presents both aspects of extraction methods, i.e., on a small laboratory scale and on an industrial mass scale. These methods and techniques have been extensively and critically reviewed with anticipated future perspectives towards the maximum utilization of the citrus waste.
Collapse
Affiliation(s)
- Neelima Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
| | - Mukty Sinha
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palej, Gandhinagar 382 355, India.
| | - Kavita Sharma
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA.
| | - Rakoti Koteswararao
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Palej, Gandhinagar 382 355, India.
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
31
|
Soquetta MB, Tonato D, Quadros MM, Boeira CP, Cichoski AJ, Marsillac Terra L, Kuhn RC. Ultrasound extraction of bioactive compounds from
Citrus reticulata
peel using electrolyzed water. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Denise Tonato
- Department of Chemical Engineering Federal University of Santa Maria (UFSM) Santa Maria Brazil
| | - Mariana Menezes Quadros
- Department of Chemical Engineering Federal University of Santa Maria (UFSM) Santa Maria Brazil
| | - Caroline Pagnossim Boeira
- Department of Technology and Food Science Centre for Rural Sciences Federal University of Santa Maria (UFSM) Santa Maria Brazil
| | - Alexandre José Cichoski
- Department of Technology and Food Science Centre for Rural Sciences Federal University of Santa Maria (UFSM) Santa Maria Brazil
| | - Lisiane Marsillac Terra
- Department of Chemical Engineering Federal University of Santa Maria (UFSM) Santa Maria Brazil
| | - Raquel C. Kuhn
- Department of Chemical Engineering Federal University of Santa Maria (UFSM) Santa Maria Brazil
| |
Collapse
|
32
|
Chen B, Wang X. Combined Approach for Determining Diuron in Sugarcane and Soil: Ultrasound-Assisted Extraction, Carbon Nanotube-Mediated Purification, and Gas Chromatography-Electron Capture Detection. J Food Sci 2019; 84:2402-2411. [PMID: 31429486 DOI: 10.1111/1750-3841.14752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/18/2019] [Accepted: 07/15/2019] [Indexed: 11/28/2022]
Abstract
Diuron is a urea herbicide that is frequently detected in surface water, groundwater, and marine waters. However, there are few methods or guidelines reported on ensuring the quality of sugarcane and soil. In this study, a method was developed for detecting diuron to ensure the quality and safety of food and sugar. Mass spectrometry was used to identify 3,4-dichloroaniline as a marker for the thermal decomposition of diuron, and thus, as a representative component for quantitative diuron analysis. This approach can be used to rapidly detect trace amounts of diuron. In addition, ultrasound-assisted extraction (UAE) and carbon nanotube column purification were used in conjunction with gas chromatography-electron capture detection to detect diuron. The method was then evaluated for its accuracy, detection limit, and viability. The effects of extraction solvent, ultrasound time, and ultrasound power on the extraction efficiency of the analyte from sugarcane and soil were also investigated. The efficiency and optimum conditions of UAE were examined through single-factor experiments and Box-Behnken design (BBD). The optimal extraction conditions were identified as follows: acetonitrile as the extraction solvent, extraction temperature of 27 °C, extraction time of 3.4 min, and ultrasound power of 70 W. Under these conditions, high linearity was achieved for diuron concentrations of 0.01 to 5.0 mg/L, and the purification correlation coefficient was consistently greater than 0.998. Hence, gas chromatography, combined with UAE and BBD, offers superior efficiency extraction, which is sufficiently accurate and precise for pesticide residue analysis. PRACTICAL APPLICATION: We developed an accurate and cost-effective method for detecting diuron (a commonly used herbicide) in soil and sugar samples. We performed experiments to determine the optimum detection conditions for our method. This method can be used for online monitoring of sugar manufacturing processes to ensure food safety and quality.
Collapse
Affiliation(s)
- Bi Chen
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal Univ., Laibin, Guangxi, 546199, China
| | - Xiaoming Wang
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal Univ., Laibin, Guangxi, 546199, China
| |
Collapse
|
33
|
Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Jokić S, Molnar M, Cikoš AM, Jakovljević M, Šafranko S, Jerković I. Separation of selected bioactive compounds from orange peel using the sequence of supercritical CO 2 extraction and ultrasound solvent extraction: optimization of limonene and hesperidin content. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1647245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ana-Marija Cikoš
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Jakovljević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Silvija Šafranko
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Split, Croatia
| |
Collapse
|
35
|
Sustainable Green Procedure for Extraction of Hesperidin from Selected Croatian Mandarin Peels. Processes (Basel) 2019. [DOI: 10.3390/pr7070469] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The peels of Citrus reticulata Blanco mandarin cultivars of different Croatian varieties (Zorica rana, Chahara, Okitsu, Kuno) were extracted using 15 different choline chloride-based deep eutectic solvents (DESs) at 50 °C for 30 min and with 20% water addition. The extracts were analyzed by high performance liquid chromatography with diode array detection (HPLC-DAD) to determine the most suitable DES for the extraction of hesperidin in the samples. The screening results indicated that choline chloride: acetamide (1:2) provided the most efficient hesperidin extraction (112.14 mg/g of plant), while choline chloride:citric acid (1:1) solvent showed the lowest hesperidin yield (1.44 mg/g of plant). The Box–Behnken design was employed to optimize extraction parameters for each variety of mandarin peel, including extraction time, temperature and water content on hesperidin extraction. The results indicated that hesperidin content in mandarin peels was completely variety-dependent. Being a novel and efficient green media for hesperidin extraction, deep eutectic solvents could also serve as promising solvent systems for the production of extracts rich in bioactive compounds.
Collapse
|
36
|
Afkhami R, Goli M, Keramat J. Loading lime by-product into derivative cellulose carrier for food enrichment. Food Sci Nutr 2019; 7:2353-2360. [PMID: 31367364 PMCID: PMC6657750 DOI: 10.1002/fsn3.1082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/16/2019] [Accepted: 05/08/2019] [Indexed: 01/21/2023] Open
Abstract
The objective here is to enrich orange juice through encapsulated lime by-product extract (LBE) through freeze-drying, in order to increase lime by-product consumption, in addition to increasing nutrition value of orange juice. The properties of both the LBE and microparticles are measured. The total polyphenolic compound (TPC) was measured to be 34.5 ± 0.5 (mg gallic acid/g LBE). The obtained value of encapsulation efficiency (EE) was within the 55%-70% range. The encapsulation method was satisfactory. The particle size is within 10-21 μm range, and differences between all treatments were statistically notable (p < 0.05). The lack of melting peaks in the thermal profiles by differential scanning calorimeter (DSC) of microparticles confirmed that hesperidin was well embedded in the polymeric cover. According to the sensory evaluations of orange juice which was enriched with LBE microparticles, the bitter taste was not perceived in some treatments.
Collapse
Affiliation(s)
- Rana Afkhami
- Department of Food Science and Technology, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Mohammad Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Javad Keramat
- Department of Food Science and TechnologyIsfahan University of TechnologyIsfahanIran
| |
Collapse
|
37
|
Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Sci Rep 2019; 9:7418. [PMID: 31092852 PMCID: PMC6520348 DOI: 10.1038/s41598-019-43886-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 04/15/2019] [Indexed: 11/08/2022] Open
Abstract
The scientific name of the traditional Chinese medicinal fungus, Sanghuang, has been clarified and confirmed that it is a new species -Sanghuangporus sanghuang in the recently discovered genus, Sanghuangporus. To maximize the yield of the active ingredients such as the triterpenoids from authentic Sanghuangporus sanghuang, four parameters of the extraction process, including the extraction time, solid-liquid ratio, extraction temperature, and ethanol concentration were determined. The Box-Behnken experimental design and the response surface method were used to optimize the triterpenoid extraction processes of Sanghuangporus sanghuang mycelium. The results showed that the parameters of the triterpenoid extraction processes were not simple linear relationships. Optimum conditions of ultrasonic extraction required an 80% ethanol concentration, a 1:20 solid-liquid ratio, a 20-min extraction time, and a 60 °C extraction temperature, to obtain a maximum triterpenoid extraction of 13.30 mg/g. Antioxidant capacity tests showed that the Sanghuangporus sanghuang triterpenoids had high clearance capabilities for hydroxyl free radicals, superoxide anions, 2,2-diphenyl-1-picrylhydrazyl free radicals, and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) radicals, indicating that the Sanghuangporus sanghuang triterpenoids had high antioxidant activities.
Collapse
|
38
|
Del Fresno JM, Morata A, Ricardo‐da‐Silva JM, Escott C, Loira I, Lepe JAS. Modification of the polyphenolic and aromatic fractions of red wines aged on lees assisted with ultrasound. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan Manuel Del Fresno
- Chemistry and Food Technology Department Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, 28040 Madrid Spain
| | - Antonio Morata
- Chemistry and Food Technology Department Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, 28040 Madrid Spain
| | - Jorge M. Ricardo‐da‐Silva
- LEAF‐ Linking Landscape Environment, Agriculture and Food Instituto Superior de Agronomia Tapada da Ajuda Universidade de Lisboa 1349‐017 Lisboa Portugal
| | - Carlos Escott
- Chemistry and Food Technology Department Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, 28040 Madrid Spain
| | - Iris Loira
- Chemistry and Food Technology Department Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, 28040 Madrid Spain
| | - José Antonio Suárez‐ Lepe
- Chemistry and Food Technology Department Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, 28040 Madrid Spain
| |
Collapse
|
39
|
DiNardo A, Subramanian J, Singh A. Intensification of phenolic extraction from yellow European plums by use of conventional, microwave-, and ultrasound-assisted extraction. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1567547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Andrea DiNardo
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | | | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
40
|
Zhong M, Huang S, Wang H, Huang Y, Xu J, Zhang L. Optimization of ultrasonic-assisted extraction of pigment from Dioscorea cirrhosa by response surface methodology and evaluation of its stability. RSC Adv 2019; 9:1576-1585. [PMID: 35518037 PMCID: PMC9059569 DOI: 10.1039/c8ra07455k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/28/2018] [Indexed: 11/29/2022] Open
Abstract
Response surface methodology (RSM) was utilized to optimize the ultrasonic-assisted extraction (UAE) of Dioscorea cirrhosa pigment (DCP). The results demonstrated that the yield of DCP is the highest (32.27%) when acetone volume fraction is 74%, extraction time is 31 min, and the temperature is 54 °C. Next, the effects of pH, temperature, light, metal ions, reductants and oxidants on the stability of DCP were further evaluated to confirm the best storage conditions of DCP. The results showed that DCP should be stored at a wide pH range of 3 to 9, below 80 °C and away from light. Metal ions such as Fe2+, Fe3+, and Ti4+ can destabilize DCP, while K+, Al3+, Ca2+, Cu2+, Mg2+, and Zn2+ have little impact on DCP. Moreover, DCP showed good anti-reduction and poor anti-oxidization properties. These results might provide the basic data and theoretical guidance for the application of DCP.
Collapse
Affiliation(s)
- Manli Zhong
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Shiya Huang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Huanhuan Wang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Yuelong Huang
- Guangzhou Jiao Zi Daily Chemical Co., Ltd. Guangzhou 510315 China
| | - Jianren Xu
- Guangzhou Jiao Zi Daily Chemical Co., Ltd. Guangzhou 510315 China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
41
|
Gallo M, Ferrara L, Naviglio D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018; 7:foods7100164. [PMID: 30287795 PMCID: PMC6210518 DOI: 10.3390/foods7100164] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 01/05/2023] Open
Abstract
Ultrasound is composed of mechanical sound waves that originate from molecular movements that oscillate in a propagation medium. The waves have a very high frequency, equal to approximately 20 kHz, are divided into two categories (i.e., low-intensity and high-intensity waves) and cannot be perceived by the human ear. Nature has created the first ultrasound applications. Bats use ultrasound to navigate in the dark, and many cetaceans use echolocation to detect prey or obstacles using ultrasound produced by their vocal system. Ultrasound is commonly associated with the biomedical field. Today, ultrasound-based methods and equipment are available to detect organs, motion, tumour masses, and pre/post-natal handicaps, and for kidney stone removal, physiotherapy, and aesthetic cures. However, ultrasound has found multiple applications in many other fields as well. In particular, ultrasound has recently been used in the food industry to develop various effective and reliable food processing applications. Therefore, this review summarizes the major applications of ultrasound in the food industry. The most common applications in the food industry include cell destruction and extraction of intracellular material. Depending on its intensity, ultrasound is used for the activation or deactivation of enzymes, mixing and homogenization, emulsification, dispersion, preservation, stabilization, dissolution and crystallization, hydrogenation, tenderization of meat, ripening, ageing and oxidation, and as an adjuvant for solid-liquid extraction for maceration to accelerate and to improve the extraction of active ingredients from different matrices, as well as the degassing and atomization of food preparations.
Collapse
Affiliation(s)
- Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy.
| | - Lydia Ferrara
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy.
| |
Collapse
|
42
|
Luo Y, Peng B, Liu Y, Wu Y, Wu Z. Ultrasound extraction of polysaccharides from guava leaves and their antioxidant and antiglycation activity. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Liu ZW, Zeng XA, Ngadi M. Enhanced extraction of phenolic compounds from onion by pulsed electric field (PEF). J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13755] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhi-Wei Liu
- School of Food Science and Technology; Hunan Agricultural University; Changsha China
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology; Changsha China
- Bioresource Engineering Department; McGill University; Ste-Anne-de-Bellevue Quebec Canada
| | - Xin-An Zeng
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou China
| | - Michael Ngadi
- Bioresource Engineering Department; McGill University; Ste-Anne-de-Bellevue Quebec Canada
| |
Collapse
|
44
|
Ciğeroğlu Z, Aras Ö, Pinto CA, Bayramoglu M, Kırbaşlar Şİ, Lorenzo JM, Barba FJ, Saraiva JA, Şahin S. Optimization of ultrasound-assisted extraction of phenolic compounds from grapefruit (Citrus paradisi Macf.) leaves via D-optimal design and artificial neural network design with categorical and quantitative variables. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4584-4596. [PMID: 29508393 DOI: 10.1002/jsfa.8987] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The extraction of phenolic compounds from grapefruit leaves assisted by ultrasound-assisted extraction (UAE) was optimized using response surface methodology (RSM) by means of D-optimal experimental design and artificial neural network (ANN). For this purpose, five numerical factors were selected: ethanol concentration (0-50%), extraction time (15-60 min), extraction temperature (25-50 °C), solid:liquid ratio (50-100 g L-1 ) and calorimetric energy density of ultrasound (0.25-0.50 kW L-1 ), whereas ultrasound probe horn diameter (13 or 19 mm) was chosen as categorical factor. RESULTS The optimized experimental conditions yielded by RSM were: 10.80% for ethanol concentration; 58.52 min for extraction time; 30.37 °C for extraction temperature; 52.33 g L-1 for solid:liquid ratio; 0.457 kW L-1 for ultrasonic power density, with thick probe type. Under these conditions total phenolics content was found to be 19.04 mg gallic acid equivalents g-1 dried leaf. CONCLUSION The same dataset was used to train multilayer feed-forward networks using different approaches via MATLAB, with ANN exhibiting superior performance to RSM (differences included categorical factor in one model and higher regression coefficients), while close values were obtained for the extraction variables under study, except for ethanol concentration and extraction time. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zeynep Ciğeroğlu
- Department of Chemical Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| | - Ömür Aras
- Department of Chemical Engineering, Faculty of Natural Sciences, Architecture and Engineering, Bursa Technical University, Turkey
| | - Carlos A Pinto
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturais e Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mahmut Bayramoglu
- Department of Chemical Engineering, Engineering Faculty, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ş İsmail Kırbaşlar
- Department of Chemical Engineering, Engineering Faculty, Istanbul University, Avcılar, Istanbul, Turkey
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Jorge A Saraiva
- Department of Chemistry, Research Unit of Química Orgânica, Produtos Naturais e Agroalimentares (QOPNA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Selin Şahin
- Department of Chemical Engineering, Engineering Faculty, Istanbul University, Avcılar, Istanbul, Turkey
| |
Collapse
|
45
|
Ren X, Liang Q, Ma H. Effects of sweeping frequency ultrasound pretreatment on the hydrolysis of zein: angiotensin-converting enzyme inhibitory activity and thermodynamics analysis. Journal of Food Science and Technology 2018; 55:4020-4027. [PMID: 30228400 DOI: 10.1007/s13197-018-3328-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/07/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
In this study, we evaluated the effects of sweeping frequency ultrasound (SFU) pretreatment on the angiotensin-converting enzyme (ACE) inhibitory activity of zein hydrolysates and enzymatic hydrolysis thermodynamics. The solubility, surface hydrophobicity (Ho ), degree of hydrolysis (DH) of zein and ACE inhibitory activity of hydrolysates were determined. After SFU pretreatment, the solubility and Ho of zein were significantly increased. During the hydrolysis process, ultrasonic pretreatment significantly increased the DH of zein and the ACE-inhibitory activity of zein hydrolysates by 19.37 and 133.76%, respectively. First-order kinetics could be used to explain both traditional and ultrasonic-assisted hydrolysis. In contrast to traditional hydrolysis, the reaction rate constants of SFU-assisted hydrolysis were largely increased by 82.76, 17.81, 23.96, and 21.26% at hydrolysis temperatures of 293, 303, 313, and 323 K, respectively. For the thermodynamic parameters, SFU pretreatment decreased activation energy, enthalpy of activation, entropy of activation, and free energy of activation by 19.52, 20.63, 6.16, and 7.02% respectively. In conclusion, SFU pretreatment markedly enhanced the hydrolysis of zein, and this method could be applied to the protein proteolysis industry to produce zein peptides with high ACE inhibitory activity.
Collapse
Affiliation(s)
- Xiaofeng Ren
- 1School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 Jiangsu China.,Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, 212013 Jiangsu China
| | - Qiufang Liang
- 1School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 Jiangsu China
| | - Haile Ma
- 1School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013 Jiangsu China.,Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang, 212013 Jiangsu China
| |
Collapse
|
46
|
Optimizing a sustainable ultrasound-assisted extraction method for the recovery of polyphenols from lemon by-products: comparison with hot water and organic solvent extractions. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3049-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Papoutsis K, Pristijono P, Golding JB, Stathopoulos CE, Bowyer MC, Scarlett CJ, Vuong QV. Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous citrus pomace extracts. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Afkhami R, Goli M, Keramat J. Functional orange juice enriched with encapsulated polyphenolic extract of lime waste and hesperidin. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rana Afkhami
- Department of Food Science and Technology; Isfahan (Khorasgan) Branch; Islamic Azad University; Isfahan 8155139998 Iran
| | - Mohammad Goli
- Department of Food Science and Technology; Isfahan (Khorasgan) Branch; Islamic Azad University; Isfahan 8155139998 Iran
| | - Javad Keramat
- Department of Food Science and Technology; Isfahan University of Technology; Isfahan 8415683111 Iran
| |
Collapse
|
49
|
Ahmed M, Eun JB. Flavonoids in fruits and vegetables after thermal and nonthermal processing: A review. Crit Rev Food Sci Nutr 2017; 58:3159-3188. [DOI: 10.1080/10408398.2017.1353480] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Maruf Ahmed
- Chonnam National University, Food Science and Technology, Gwangju, South Korea
| | - Jong-Bang Eun
- Chonnam National University, Food Science and Technology, Gwangju, South Korea
| |
Collapse
|
50
|
Optimization of Ultrasound-Assisted Extraction of Oil from Canola Seeds with the Use of Response Surface Methodology. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1030-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|