1
|
Vazquez-Prada KX, Moonshi SS, Wu Y, Peter K, Wang X, Xu ZP, Ta HT. Branched silver-iron oxide nanoparticles enabling highly effective targeted and localised drug-free thrombolysis. Biomater Sci 2025; 13:1683-1696. [PMID: 39960377 DOI: 10.1039/d4bm01089b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ultrasound has been widely used as an external stimulus to trigger drug release from nanomaterials in thrombosis treatment. Here, we introduce a novel strategy leveraging nanomaterials not for drug delivery, but for enhancing US-induced thrombolysis. This innovative strategy is particularly significant, as thrombolytic drugs inherently pose a risk of systemic bleeding. We combined branched silver-iron oxide nanoparticles (AgIONPs) with low-intensity focused ultrasound to evaluate their thrombolytic potential. Binding assays in in vitro human blood clots and in a thrombosis mouse model confirmed that the targeted AgIONPs specifically bound to thrombi. Upon ultrasound activation, AgIONPs facilitated thrombolysis via two key mechanisms: hyperthermia driven by the nanoparticle-mediated thermal conversion, and mechanical shear forces induced by ultrasound. The combination of AgIONPs and US generated a synergistic thrombolytic effect, demonstrating significant efficacy in both in vitro and in vivo.
Collapse
Affiliation(s)
- Karla X Vazquez-Prada
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland 4072, Australia
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane Queensland 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane Queensland 4111, Australia
| | - Yuao Wu
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane Queensland 4111, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Bio21, Victoria 3052, Australia
- Department of Medicine, Monash University, Victoria 3004, Australia
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Bio21, Victoria 3052, Australia
- Department of Medicine, Monash University, Victoria 3004, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane Queensland 4111, Australia
| |
Collapse
|
2
|
Wu Z, Liu X, Guo H, Huang J, He G, Chen H, Liu X. Promoting ultrasonic cavitation via Negative-Curvature nanoparticles. ULTRASONICS SONOCHEMISTRY 2024; 107:106924. [PMID: 38820931 PMCID: PMC11170476 DOI: 10.1016/j.ultsonch.2024.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
It is a challenge to study the nucleation of cavitation bubbles, which critically depends on nanoscale morphological features. Our recent advances in synthesizing colloidal negative-curvature nanoparticles (NGC-NPs) offer a rare opportunity, in comparison to the conventional studies of bulk substrates, where it is difficult to obtain consistent and well-defined surface features. In order to quantitatively assess their effects, we exploit the radical-induced color change of [Fe(SCN)6]3-, which turned out to be a more convenient method than the bending of AgNWs and the fluorescence-based methods. We show that the NGC-NPs outperform positive-curvature nanoparticles (PSC-NPs) and homogeneous nucleation, in terms of promoting cavitation. The NGC-NPs provide a higher percentage of gas-solid interface, and thus reduces the activation barrier during the critical stage of bubble nucleation. This leads a higher probability of cavitation and transforms more energy from ultrasonication to radical formation and shockwaves.
Collapse
Affiliation(s)
- Zhouling Wu
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Xiaobin Liu
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Huiying Guo
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jie Huang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Guangyu He
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Hongyu Chen
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xueyang Liu
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Zhou H, Yu CY, Wei H. Liposome-based nanomedicine for immune checkpoint blocking therapy and combinatory cancer therapy. Int J Pharm 2024; 652:123818. [PMID: 38253269 DOI: 10.1016/j.ijpharm.2024.123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
The discovery of immune checkpoint (IC) has led to a wave of leap forward in cancer immunotherapy that represents probably the most promising strategy for cancer therapy. However, the clinical use of immune checkpoint block (ICB) therapy is limited by response rates and side effects. A strategy that addresses the limitations of ICB therapies through combination therapies, using nanocarriers as mediators, has been mentioned in numerous research papers. Liposomes have been probably one of the most extensively used nanocarriers for clinical applications, with broad drug delivery and high safety. A timely review on this hot subject of research, i.e., the application of liposomes for ICB, is thus highly desirable for both fundamental and clinical translatable studies, but remains, to our knowledge, unexplored so far. For this purpose, this review is composed to address the dilemma of ICB therapy and the reasons for this dilemma. We later describe how other cancer treatments have broken this dilemma. Finally, we focus on the role of liposomes in various combinatory cancer therapy. This review is believed to serve as a guidance for the rational design and development of liposome for immunotherapy with enhanced therapeutic efficiency.
Collapse
Affiliation(s)
- Haoyuan Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China.
| |
Collapse
|
4
|
Nene LC, Abrahamse H. Design consideration of phthalocyanines as sensitizers for enhanced sono-photodynamic combinatorial therapy of cancer. Acta Pharm Sin B 2024; 14:1077-1097. [PMID: 38486981 PMCID: PMC10935510 DOI: 10.1016/j.apsb.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 11/25/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer remains one of the diseases with the highest incidence and mortality globally. Conventional treatment modalities have demonstrated threatening drawbacks including invasiveness, non-controllability, and development of resistance for some, including chemotherapy, radiation, and surgery. Sono-photodynamic combinatorial therapy (SPDT) has been developed as an alternative treatment modality which offers a non-invasive and controllable therapeutic approach. SPDT combines the mechanism of action of sonodynamic therapy (SDT), which uses ultrasound, and photodynamic therapy (PDT), which uses light, to activate a sensitizer and initiate cancer eradication. The use of phthalocyanines (Pcs) as sensitizers for SPDT is gaining interest owing to their ability to induce intracellular oxidative stress and initiate toxicity under SDT and PDT. This review discusses some of the structural prerequisites of Pcs which may influence their overall SPDT activities in cancer therapy.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
5
|
Simultaneous degradation of antibiotic and removal of phosphate in water by a O3/CaO2 advanced oxidation process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Ghamkhari A, Tafti HA, Rabbani S, Ghorbani M, Ghiass MA, Akbarzadeh F, Abbasi F. Ultrasound-Triggered Microbubbles: Novel Targeted Core-Shell for the Treatment of Myocardial Infarction Disease. ACS OMEGA 2023; 8:11335-11350. [PMID: 37008126 PMCID: PMC10061684 DOI: 10.1021/acsomega.3c00067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 06/19/2023]
Abstract
Myocardial infarction (MI) is known as a main cardiovascular disease that leads to extensive cell death by destroying vasculature in the affected cardiac muscle. The development of ultrasound-mediated microbubble destruction has inspired extensive interest in myocardial infarction therapeutics, targeted delivery of drugs, and biomedical imaging. In this work, we describe a novel therapeutic ultrasound system for the targeted delivery of biocompatible microstructures containing basic fibroblast growth factor (bFGF) to the MI region. The microspheres were fabricated using poly(lactic-co-glycolic acid)-heparin-polyethylene glycol- cyclic arginine-glycine-aspartate-platelet (PLGA-HP-PEG-cRGD-platelet). The micrometer-sized core-shell particles consisting of a perfluorohexane (PFH)-core and a PLGA-HP-PEG-cRGD-platelet-shell were prepared using microfluidics. These particles responded adequately to ultrasound irradiation by triggering the vaporization and phase transition of PFH from liquid to gas in order to achieve microbubbles. Ultrasound imaging, encapsulation efficiency cytotoxicity, and cellular uptake of bFGF-MSs were evaluated using human umbilical vein endothelial cells (HUVECs) in vitro. In vivo imaging demonstrated effective accumulation of platelet- microspheres injected into the ischemic myocardium region. The results revealed the potential use of bFGF-loaded microbubbles as a noninvasive and effective carrier for MI therapy.
Collapse
Affiliation(s)
- Aliyeh Ghamkhari
- Institute
of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz 5331817634, Iran
| | - Hossein Ahmadi Tafti
- Research
Center for Advanced Technologies in Cardiovascular Medicine, Tehran
Heart Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Shahram Rabbani
- Research
Center for Advanced Technologies in Cardiovascular Medicine, Tehran
Heart Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Marjan Ghorbani
- Nutrition
Research Center, Tabriz University of Medical Sciences, Tabriz IR 51656-65811, Iran
| | - Mohammad Adel Ghiass
- Tissue
Engineering Department, Tarbiat Modares
University, Tehran 1411713116, Iran
| | - Fariborz Akbarzadeh
- Cardiovascular
Research Center, Tabriz University of Medical
Sciences, Tabriz 5166/15731, Iran
| | - Farhang Abbasi
- Institute
of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz 5331817634, Iran
| |
Collapse
|
7
|
Enhancement of the in vitro anticancer photo-sonodynamic combination therapy activity of cationic thiazole-phthalocyanines using gold and silver nanoparticles. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Ducrozet F, Girard HA, Jianu T, Peulon S, Brun E, Sicard-Roselli C, Arnault JC. Unintentional formation of nitrate and nitrite ions during nanodiamonds sonication: a source of radical and electron scavengers. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Huang J, Puyang C, Wang Y, Zhang J, Guo H. Hydroxylamine activated by discharge plasma for synergetic degradation of tetracycline in water: Insight into performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Graham J, Keten S. Bacterial flotation devices enhance ultrasound imaging. Biophys J 2022; 121:4019-4021. [PMID: 36257324 PMCID: PMC9675023 DOI: 10.1016/j.bpj.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Jacob Graham
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois
| | - Sinan Keten
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois; Northwestern University, Department of Civil and Environmental Engineering, Evanston, Illinois.
| |
Collapse
|
11
|
Esmailzadeh A, Shanei A, Attaran N, Hejazi SH, Hemati S. Sonodynamic Therapy Using Dacarbazine-Loaded AuSiO 2 Nanoparticles for Melanoma Treatment: An In-Vitro Study on the B16F10 Murine Melanoma Cell Line. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1131-1142. [PMID: 35307236 DOI: 10.1016/j.ultrasmedbio.2022.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The use of nanoparticles as a sonosensitizer in cancer sonodynamic therapy has been gaining attention because of their great advantages in drug delivery applications. By conjugating chemotherapy agents with nanoparticles, we can develop a drug delivery platform, control drug release and improve the outcome of treatments. The in-vitro study described here evaluates the combination of AuSiO2 nanoparticles and dacarbazine (DTIC@AuSiO2) as a sonosensitizer for sonodynamic therapy of melanoma. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays revealed that the viability of B16F10 melanoma cells was significantly inhibited by the increase in apoptosis induction in treatment with DTIC@AuSiO2 nanoparticles under ultrasound exposure compared with treatment with the free DTIC or AuSiO2 nanoparticles. The sonosensitization activity of AuSiO2 nanoparticles and greater uptake of DTIC by tumor cells after loading in DTIC@AuSiO2 nanoparticles inhibited the proliferation of melanoma tumor cells effectively. In conclusion, the DTIC@AuSiO2 nanoparticles established in this study could represent a good drug delivery and sonosensitizer platform for use in melanoma sonodynamic therapy.
Collapse
Affiliation(s)
- Arman Esmailzadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Simin Hemati
- Department of Radiation Oncology, School of Medicine, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Tehrani Fateh S, Moradi L, Kohan E, Hamblin MR, Shiralizadeh Dezfuli A. Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:808-862. [PMID: 34476167 PMCID: PMC8372309 DOI: 10.3762/bjnano.12.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/15/2021] [Indexed: 05/03/2023]
Abstract
The field of theranostics has been rapidly growing in recent years and nanotechnology has played a major role in this growth. Nanomaterials can be constructed to respond to a variety of different stimuli which can be internal (enzyme activity, redox potential, pH changes, temperature changes) or external (light, heat, magnetic fields, ultrasound). Theranostic nanomaterials can respond by producing an imaging signal and/or a therapeutic effect, which frequently involves cell death. Since ultrasound (US) is already well established as a clinical imaging modality, it is attractive to combine it with rationally designed nanoparticles for theranostics. The mechanisms of US interactions include cavitation microbubbles (MBs), acoustic droplet vaporization, acoustic radiation force, localized thermal effects, reactive oxygen species generation, sonoluminescence, and sonoporation. These effects can result in the release of encapsulated drugs or genes at the site of interest as well as cell death and considerable image enhancement. The present review discusses US-responsive theranostic nanomaterials under the following categories: MBs, micelles, liposomes (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan, Kurdistan, Sanandaj, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | |
Collapse
|
13
|
Laajimi H, Mattia M, Stein RS, Bianchi CL, Boffito DC. Electron paramagnetic resonance of sonicated powder suspensions in organic solvents. ULTRASONICS SONOCHEMISTRY 2021; 73:105544. [PMID: 33819869 PMCID: PMC8047979 DOI: 10.1016/j.ultsonch.2021.105544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 05/08/2023]
Abstract
The chemical effects of the acoustic cavitation generated by ultrasound translates into the production of highly reactive radicals. Acoustic cavitation is widely explored in aqueous solutions but it remains poorly studied in organic liquids and in particular in liquid/solid media. However, several heterogeneous catalysis reactions take place in organic solvents. Thus, we sonicated trimethylene glycol and propylene glycol in the presence of silica particles (SiO2) of different sizes (5-15 nm, 0.2-0.3 µm, 12-26 µm) and amounts (0.5 wt% and 3 wt%) at an ultrasound frequency of 20 kHz to quantify the radicals generated. The spin trap 5,5-dimethyl-1-pyrrolin-N-oxide (DMPO) was used to trap the generated radicals for study by electron paramagnetic resonance (EPR) spectroscopy. We identified the trapped radical as the hydroxyalkyl radical adduct of DMPO, and we quantified it using stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a quantitation standard. The concentration of DMPO spin adducts in solutions containing silica size 12-26 µm was higher than the solution without particles. The presence of these particles increased the concentration of the acoustically generated radicals by a factor of 1.5 (29 µM for 0.5 wt% of SiO2 size 12-26 µm vs 19 µM for 0 wt%, after 60 min of sonication). Ultrasound produced fewest radicals in solutions with the smallest particles; the concentration of radical adducts was highest for SiO2 particle size 12-26 µm at 0.5 wt% loading, reaching 29 µM after 60 min sonication. Ultrasound power of 50.6 W produced more radicals than 24.7 W (23 µM and 18 µM, respectively, at 30 min sonication). Increased temperature during sonication generated more radical adducts in the medium (26 µM at 75 °C and 18 µM at 61 °C after 30 min sonication). Acoustic cavitation, in the presence of silica, increased the production of radical species in the studied organic medium.
Collapse
Affiliation(s)
- Héla Laajimi
- Polytechnique Montréal - Department of Chemical Engineering, C.P. 6079, Centre Ville, H3C 3A7 Montréal, QC, Canada
| | - Michela Mattia
- Università degli Studi di Milano - Chemistry Department, via Golgi 19, 20133 Milan, Italy
| | - Robin S Stein
- McGill University - Chemistry Department, 801 Rue Sherbrooke Ouest, Montréal QC H3A 0B8, QC, Canada
| | - Claudia L Bianchi
- Università degli Studi di Milano - Chemistry Department, via Golgi 19, 20133 Milan, Italy
| | - Daria C Boffito
- Polytechnique Montréal - Department of Chemical Engineering, C.P. 6079, Centre Ville, H3C 3A7 Montréal, QC, Canada.
| |
Collapse
|
14
|
Liu L, Yang C, Tan W, Wang Y. Degradation of Acid Red 73 by Activated Persulfate in a Heat/Fe 3O 4@AC System with Ultrasound Intensification. ACS OMEGA 2020; 5:13739-13750. [PMID: 32566839 PMCID: PMC7301586 DOI: 10.1021/acsomega.0c00903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
This work aimed to investigate the degradation efficiency of waste water with an azo dye, Acid Red 73 (AR73), by persulfate/heat/Fe3O4@AC/ultrasound (US). The introduction of ultrasound into the persulfate/heat/Fe3O4@AC system greatly enhanced the reaction rate because of the physical and chemical effects induced by cavitation. Various parameters such as temperature, initial pH, sodium persulfate dosage, catalyst dosage, initial concentration of AR73, ultrasonic frequency and power, and free-radical quenching agents were investigated. The optimal conditions were determined to be AR73 50 mg/L, PS 7.5 mmol/L, catalyst dosage 2 g/L, ultrasound frequency 80 kHz, acoustic density 5.4 W/L, temperature 50 °C, and pH not adjusted. Nearly, 100% decolorization was achieved within 10 min under optimal conditions. Different from some other similar research studies, the reaction did not follow a radical-dominating way but rather had 1O2 as the main reactive species. The recycling and reusability test confirmed the superiority of the prepared Fe3O4@AC catalyst. The research achieved a rapid decolorization method not only using waste heat of textile water as a persulfate activator but also applicable to a complex environment where common radical scavengers such as ethanol exist.
Collapse
Affiliation(s)
- Liyan Liu
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chao Yang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wei Tan
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yang Wang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
- Tianjin
Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| |
Collapse
|
15
|
Shanei A, Akbari-Zadeh H, Attaran N, Salamat MR, Baradaran-Ghahfarokhi M. Effect of targeted gold nanoparticles size on acoustic cavitation: An in vitro study on melanoma cells. ULTRASONICS 2020; 102:106061. [PMID: 31948804 DOI: 10.1016/j.ultras.2019.106061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
When a liquid is irradiated with high intensities of ultrasound irradiation, acoustic cavitation occurs. Since cavitation can be fatal to cells, it is utilized to destroy cancer tumors. Considering cavitation onset and bubbles collapse, the required ultrasonic intensity threshold can be significantly decreased in the presence of nanoparticles in a liquid. The effects of gold nanoparticles size on acoustic cavitation were investigated in this in vitro study. For this purpose, ultrasonic waves were used at intensities of 0.5, 1 and 2 W/cm2 and frequency of 1 MHz in the presence of F-Cys-GNPs with 15, 23 and 79 nm sizes and different concentrations (0.2, 1 and 5 µg/ml) in order to determine their effects on the viability of melanoma cells. This was performed at different incubation times 12, 24 and 36 h. The viability of melanoma cells decreased at higher concentrations and sizes of F-Cys-GNPs. The lowest viability of melanoma cells was seen in those containing 79, 23, and 15 nm F-Cys-GNPs. This finding could be explained from the concept that the nucleation sites on the surface of GNPs increase with an increase in size of GNPs, which results in an increase in the number of cavitation bubbles. Acoustic cavitation in the presence of gold nanoparticles can be used as a way for improving therapeutic effects on the tumors.
Collapse
Affiliation(s)
- Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Akbari-Zadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohammad Reza Salamat
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Baradaran-Ghahfarokhi
- Department of Medical Radiation Engineering, Faculty of Advanced Sciences & Technologies, Isfahan University, Isfahan, Iran
| |
Collapse
|
16
|
Li Y, Wu Z, Wan N, Wang X, Yang M. Extraction of high-amylose starch from Radix Puerariae using high-intensity low-frequency ultrasound. ULTRASONICS SONOCHEMISTRY 2019; 59:104710. [PMID: 31421611 DOI: 10.1016/j.ultsonch.2019.104710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
High-amylose starch is in great demand in the food industry due to its unique functional properties but has very limited source. In this study, high-amylose starch was successfully extracted from Radix Puerariae using ultrasound extraction. The effects of ultrasound intensity (15.29, 20.38, 22.93, 24.46 and 25.38 kW/m2) and frequency (20 and 45 kHz) on extraction kinetics, and chemical compositions, crystallinity, in vitro digestion behaviour and gelling properties of starches were investigated. It was shown that with the increasing intensity, the extraction rate and content of amylose increased, but for starch the extraction rate increased initially until reached a plateau at an intensity of 24.46 kW/m2. With the increasing low-frequency, the extraction rate and content of amylose increased, but the extraction rate of starch decreased. Based on statistical tests, the Logistic model was found to fit well to the extraction kinetics of amylose, and the Peleg model fit well to that of starch. The extraction yield of starch was not significantly affected by ultrasound conditions. The obtained starch has a high-purity with a content of more than 99% dry basis and an unchanged crystallinity. Moreover, the increased amylose content resulted in an increase of the content of slowly digestible starch, resistant starch, and gelling hardness. This study demonstrates that high-amylose starch can be obtained using ultrasound extraction from Radix Puerariae at high-intensity low-frequency.
Collapse
Affiliation(s)
- Yuanhui Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Na Wan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xuecheng Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
17
|
Shanei A, Akbari-Zadeh H. Investigating the Sonodynamic-Radiosensitivity Effect of Gold Nanoparticles on HeLa Cervical Cancer Cells. J Korean Med Sci 2019; 34:e243. [PMID: 31559711 PMCID: PMC6763396 DOI: 10.3346/jkms.2019.34.e243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In this article, we estimated the combined effect of radiotherapy (RT) with ultrasound (US) wave and the ability of gold nanoparticles (GNPs) to improve their combined therapeutic effects. METHODS At first, HeLa cells received the various treatment modalities: RT (6 MV; 0.5, 1, and 2 Gy), US irradiation (1 MHz; 0.5, 1, and 1.5 W/cm², 1 minute), and RT+US. Afterwards, the enhanced effect of US on RT was evaluated. Then, the effect of the synthesized GNPs at different concentrations (0.2, 1, and 5 μg/mL, 24 hours) was evaluated to assess the effect on HeLa cells combined with RT+US. Cell survival rates in the different treatment groups at 24, 48, and 72 hours post-treatment were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trypan blue assays. RESULTS Our results show US irradiation could enhance the effect of RT at the same radiation dose and could be utilized as a sensitizer agent for RT. Moreover, our findings indicate RT+US in combination with different nanoparticle concentrations could enhance the effect of RT+US so that they can improve the treatment results up to 9.93 times and act as sonodynamic-radiosensitivity. These results also indicate that the combination of RT with US along with GNPs has synergistic effects compared to RT or US alone. Cell survival results show that combining the low US waves (1.5 W/cm²), GNPs (5 μ/mL), and X-rays (2 Gy) increase the cytotoxicity on HeLa cell up to 95.8%. CONCLUSION We concluded that GNPs could act as a good sensitizing agent in RT+US irradiation and could result in the synergistic effects.
Collapse
Affiliation(s)
- Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Akbari-Zadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Lv L, Zhang Y, Zhang Y, Zhang Y. Experimental investigations of the particle motions induced by a laser-generated cavitation bubble. ULTRASONICS SONOCHEMISTRY 2019; 56:63-76. [PMID: 31101290 DOI: 10.1016/j.ultsonch.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/01/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The interactions between a laser-generated cavitation bubble and a spherical particle are investigated experimentally with the aid of high-speed camera. Both the cavitation bubble dynamics and its induced particle moving dynamics are clearly recorded and analyzed qualitatively and quantitatively. Influences of two essential parameters (including the bubble-particle distance and the particle/bubble radius ratio) on the phenomenon are given and discussed. Furthermore, the underlying physical mechanisms are discussed based on the calculations of the radiation pressure and the generations of the micro-jet. Our results reveal that the distance between the cavitation bubble and the particle shows significant influences on the phenomenon. For different radius ratios, the maximum particle displacement varies especially for the small stand-off distance.
Collapse
Affiliation(s)
- Liang Lv
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China; Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yongxue Zhang
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China; Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yuning Zhang
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China; Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Yuning Zhang
- Key Laboratory of Condition Monitoring and Control for Power Plant Equipment (Ministry of Education), School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
19
|
Shanei A, Sazgarnia A. An overview of therapeutic applications of ultrasound based on synergetic effects with gold nanoparticles and laser excitation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:848-855. [PMID: 31579439 PMCID: PMC6760485 DOI: 10.22038/ijbms.2019.29584.7142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/16/2019] [Indexed: 12/26/2022]
Abstract
Acoustic cavitation which occurs at high intensities of ultrasound waves can be fatal for tumor cells. The existence of dissolved gases and also the presence of nanoparticles (NPs) in a liquid, irradiated by ultrasound, decrease the acoustic cavitation onset threshold and the resulting bubbles collapse. On the other hand, due to unique capabilities and optical properties of gold nanoparticles (GNPs), they have been emphasized as effective NPs in the field of tumor therapy. Absorption of the laser light by GNPs causes the water molecules around the NPs to evaporate and produces vapor cavities. In this paper, we have reviewed published studies in the fields of ultrasound therapy, sonodynamic therapy (SDT) and synergism of low-level ultrasound and also laser radiation in the presence of GNPs.
Collapse
Affiliation(s)
- Ahmad Shanei
- Medical Physics Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ameneh Sazgarnia
- Medical Physics research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Usman AI, Aziz AA, Sodipo BK. Application of central composite design for optimization of biosynthesized gold nanoparticles via sonochemical method. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0429-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
21
|
Zhang W, Wu Y, Dong HJ, Yin JJ, Zhang H, Wu HA, Song LN, Chong Y, Li ZX, Gu N, Zhang Y. Sparks fly between ascorbic acid and iron-based nanozymes: A study on Prussian blue nanoparticles. Colloids Surf B Biointerfaces 2018; 163:379-384. [PMID: 29353215 DOI: 10.1016/j.colsurfb.2018.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/02/2017] [Accepted: 01/09/2018] [Indexed: 01/17/2023]
Abstract
Herein we reported Prussian blue nanoparticles (PBNPs) possess ascorbic acid oxidase (AAO)- and ascorbic acid peroxidase (APOD)-like activities, which suppressed the formation of harmful H2O2 and finally inhibited the anti-cancer efficiency of ascorbic acid (AA). This newly revealed correlation between iron and AA could provide new insight for the studies of nanozymes and free radical biology.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, PR China; The Jiangsu Province Research Institute for Clinical Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, PR China
| | - Yang Wu
- Research Centre of Clinical Oncology, Jiangsu Cancer Hospital, Nanjing 210009, PR China
| | - Hai-Jiao Dong
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Jun-Jie Yin
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Hui Zhang
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Hao-An Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Li-Na Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Yu Chong
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, USA
| | - Zhuo-Xuan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, PR China.
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
22
|
Huang G, Tang Y, Sun L, Xing H, Ma H, He R. Ultrasonic irradiation of low intensity with a mode of sweeping frequency enhances the membrane permeability and cell growth rate of Candida tropicalis. ULTRASONICS SONOCHEMISTRY 2017; 37:518-528. [PMID: 28427664 DOI: 10.1016/j.ultsonch.2017.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 06/07/2023]
Abstract
Here we report the enhancement of both cellular permeability and cell growth rate of Candida tropicalis after treatment with the ultrasonic irradiation of low intensity using a mode of sweeping frequency (UILS) generated by a self-developed ultrasonic device in our lab. After the ultrasonic treatment, remarkable biomass enhancement of the yeast was observed; the hyphae became significantly longer; the seeped cellular protein and nucleic acid from the yeast increased and the cellular Ca2+ content became lower. Illumina transcriptome sequencing showed that the ultrasonic treatment affected the expression of genes involved in diverse cellular components, biological processes and molecular functions. RT-PCR and Western blotting further confirmed the up-/down-regulation of genes in the ultrasound-treated yeasts. The optimal conditions of the ultrasonic treatment for the maximum biomass addition were determined as follows: the yeast was treated for 1h at the mid logarithmic phase, the frequency was 28±2kHz and the power density was 120W/L. Under these conditions, the Candida tropicalis biomass increased by 142.5% compared with the untreated yeast.
Collapse
Affiliation(s)
- Guoping Huang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yingxiu Tang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ling Sun
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Huan Xing
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ronghai He
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
23
|
Zhang L, Zhou C, Wang B, Yagoub AEGA, Ma H, Zhang X, Wu M. Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies. ULTRASONICS SONOCHEMISTRY 2017; 37:106-113. [PMID: 28427612 DOI: 10.1016/j.ultsonch.2016.12.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 05/14/2023]
Abstract
The ultrasonic extraction of oils is a typical physical processing technology. The extraction process was monitored from the standpoint of the oil quality and efficiency of oil extraction. In this study, the ultrasonic cavitation fields were measured by polyvinylidene fluoride (PVDF) sensor. Waveform of ultrasonic cavitation fields was gained and analyzed. The extraction yield and oxidation properties were compared. The relationship between the fields and cavitation oxidation was established. Numerical calculation of oscillation cycle was done for the cavitation bubbles. Results showed that the resonance frequency, fr, of the oil extraction was 40kHz. At fr, the voltage amplitude was the highest; the time was the shortest as reaching the amplitude of the waveform. Accordingly, the cavitation effect worked most rapidly, resulting in the strongest cavitation intensity. The extraction yield and oxidation properties were closely related to the cavitation effect. It controlled the cavitation oxidation effectively from the viewpoint of chemical and physical aspects.
Collapse
Affiliation(s)
- Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, China.
| | - Bei Wang
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, China.
| | - Xiao Zhang
- Department of Mathematics and Statistics, Mississippi State University, Starkville, MS 39762, USA
| | - Mian Wu
- School of Food and Biological Engineering, Jiangsu University, 212013 Zhenjiang, China
| |
Collapse
|
24
|
Shabana S, Sonawane SH, Ranganathan V, Pujjalwar PH, Pinjari DV, Bhanvase BA, Gogate PR, Ashokkumar M. Improved synthesis of aluminium nanoparticles using ultrasound assisted approach and subsequent dispersion studies in di-octyl adipate. ULTRASONICS SONOCHEMISTRY 2017; 36:59-69. [PMID: 28069240 DOI: 10.1016/j.ultsonch.2016.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
The present work reports on an efficient and simple one pot synthetic approach for aluminium nanoflakes and nanoparticles based on the intensification using ultrasound and provides a comparison with the conventional approach to establish the cutting edge process benefits. In situ passivation of aluminium particles with oleic acid was used as the method of synthesis in both the conventional and ultrasound assisted approaches. The aluminium nanoflakes prepared using the ultrasound assisted approach were subsequently dispersed in di-octyl adipate (DOA) and it was demonstrated that a stable dispersion of aluminium nanoflakes into di-octyl adipate (DOA) is achieved. The morphology of the synthesized material was established using the transmission electron microscopy (TEM) analysis and energy dispersive X-ray analysis (EDX) and the obtained results confirmed the metal state and nano size range of the obtained aluminium nanoflakes and particles. The stability of the aluminium nanoflakes obtained using ultrasound assisted approach and nanoparticles using conventional approach were characterized using the zeta potential analysis and the obtained values were in the range of -50 to +50mV and -100 to +30mV respectively. The obtained samples from both the approaches were also characterized using X-ray diffraction (XRD) and particle size analysis (PSA) to establish the crystallite size and particle distribution. It was observed that the particle size of the aluminium nanoflakes obtained using ultrasound assisted approach was in the range of 7-11nm whereas the size of aluminium nanoparticles obtained using conventional approach was much higher in the range of 1000-3000nm. Overall it was demonstrated that the aluminium nanoflakes obtained using the ultrasound assisted approach showed excellent morphological characteristics and dispersion stability in DOA showing promise for the high energy applications.
Collapse
Affiliation(s)
- S Shabana
- Chemical Engineering Department, National Institute of Technology, Warangal 506 004, India
| | - S H Sonawane
- Chemical Engineering Department, National Institute of Technology, Warangal 506 004, India
| | - V Ranganathan
- Soild Propellant Plant, Satish Dhawan Space Centre-SHAR, ISRO, Sriharikota, India
| | - P H Pujjalwar
- Respond/R&D, Satish Dhawan Space Centre -SHAR, ISRO, Sriharikota, India
| | - D V Pinjari
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
| | - B A Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, MS, India
| | - P R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|