1
|
Karamoko G, Chèné C, Karoui R. Impact of acidic and basic pH on the interfacial shear rheology and foaming properties of transglutaminase cross-linked casein micelle: Structure-function relationship. Food Chem 2025; 476:143384. [PMID: 39986066 DOI: 10.1016/j.foodchem.2025.143384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
This work investigated the pH effect (pH 3.5 to 9.0) on the interfacial behavior of native and transglutaminase cross-linked (TGase) caseins films at air-water interface using a rotational rheometer equipped with a BiCone geometry. Both caseins formed a viscous-like interfacial adsorbed layer within the range of frequency from 0.1 to 10 rad/s, with a maxima viscoelastic layer at alkaline pH (8.0 and 9.0). TGase caseins exhibited the highest interfacial shear surface moduli values, and the difference between them was pronouncedly, under acid pH conditions (3.5 to 5.5). The conformational studies revealed the pH and transglutaminase cross-linking effect on the protein structure. The foaming properties suggested a weakening and strengthening of foaming capacity and stability, respectively, by TGase in alkaline pH conditions. The combination of pH-shifting and transglutaminase treatment, especially, under alkaline pH conditions might be applied to improve the casein ability to stabilize the foams in several food applications.
Collapse
Affiliation(s)
- Gaoussou Karamoko
- Univ. Artois, Inra, Ulco, Univ. Lille, Yncréa, Umrt 1158 BioEcoAgro, ICV-Institut Charles Viollette, F-62300 Lens, France.
| | | | - Romdhane Karoui
- Univ. Artois, Inra, Ulco, Univ. Lille, Yncréa, Umrt 1158 BioEcoAgro, ICV-Institut Charles Viollette, F-62300 Lens, France
| |
Collapse
|
2
|
San Y, Xing Y, Li B, Zheng L. Effect of transglutaminase cross-linking on the structure and emulsification performance of heated black bean protein isolate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2382-2389. [PMID: 39520152 DOI: 10.1002/jsfa.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Transglutaminase (TGase) is a heat-resistant biocatalyst with strong catalytic activity, which functions effectively under moderate temperature and pH conditions, and is used widely in protein cross-linking and recombination. Transglutaminase cross-linking is a novel and specific modification method for black bean protein isolate (BBPI). This article investigates the effect of transglutaminase cross-linking on the structure and emulsification performance of heated BBPI. RESULTS Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that heated BBPI with TGase had a higher molecular weight than heated BBPI without TGase, and the protein bands widened with increasing enzyme activity, indicating that TGase cross-linking promoted protein molecule aggregation. A high molecular weight polymer can better stabilize the oil-water interface, preventing the emulsion from layering. Fourier transform infrared (FTIR) spectroscopy showed that the α-helix content decreased from 15.64% to 13.75%, and the β-sheet content increased from 48.13% to 54.08%. The decrease in α-helix content and increase in β-sheet content could make the structure more stable and improve the emulsifying properties of heated BBPI. When TGase was 20 U g-1, the protein emulsification activity index (EAI) reached its highest value of 1.87 m2 g-1, and the emulsification stability index (ESI) value was 0.27 min (P < 0.05); these figures were 0.19 m2 g-1, and 0.07 min higher, respectively, than in the sample without added TGase. CONCLUSION In summary, transglutaminase cross-linking has a positive effect on the structure and emulsification performance of heated BBPI and can be used as an effective method for BBPI modification. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue San
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yuejiao Xing
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Guoru Biotechnology Co., Ltd, Harbin, China
| |
Collapse
|
3
|
Liu Y, Zhang Y, Dong F, Zhao Q, Zhang S, Tan C. Preparation and application of glucono-δ-lactone-induced gel of transglutaminase cross-linked black bean protein isolate-whey protein isolate: Effect of ultrasound pretreatment. ULTRASONICS SONOCHEMISTRY 2025; 112:107152. [PMID: 39608065 PMCID: PMC11635778 DOI: 10.1016/j.ultsonch.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
A glucono-δ-lactone induced gel was prepared using transglutaminase cross-linked black bean protein-whey protein to deliver riboflavin. Ultrasound pretreatment was found to positively affected gels' hardness, water holding capacity and elasticity. The hardness and elasticity of protein gel pretreated by ultrasound at 360 W were the best, and the water holding capacity of protein gel pretreated by ultrasound at 480 W was the best. These improvements could be attributed to the enhanced hydrophobic interactions and disulfide bonds between proteins by ultrasound pretreatment, which could facilitate a dense network structure, as observed by scanning electron microscope. The dense network of ultrasound-pretreated protein gel effectively protected the riboflavin, and the riboflavin release was reduced by 52 % during gastric digestion for the gel produced at ultrasound power of 360 W, enabling a large amount of riboflavin for absorption and utilization in the intestine. These findings will guide the design of double protein complex gels, providing possible avenues for use as carriers of biologically active substances such as riboflavin.
Collapse
Affiliation(s)
- Yuexin Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yichen Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengjuan Dong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Chen Tan
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
4
|
Anvar A, Azizi MH, Gavlighi HA. Exploring the effect of natural deep eutectic solvents on zein: Structural and functional properties. Curr Res Food Sci 2024; 10:100965. [PMID: 39839327 PMCID: PMC11748687 DOI: 10.1016/j.crfs.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis. Circular dichroism spectroscopy analysis indicated significant conformational change in modified zein, with decreased α-helix and increased random coil content. Notably, the NADES system leads to greater disruption of hydrogen bonds and facilitates the exposure of hydrophobic regions compared to water, ethanol, and acetic acid systems. This resulted in enhanced solubility, surface hydrophobicity, and free amine content in zein, indicating a more significant change in protein structure. In contrast, water and acetic acid solvents maintained more stable disulfide bonds within zein, which correlates with lower solubility and less unfolding. The NADES system promoted interactions between zein and its solvent components, improving emulsifying properties. Water, ethanol, and acetic acid systems had higher solubility in urea, thiourea, and dithiothreitol than the NADES system, revealing disruption of both covalent and noncovalent bonds in zein modified by NADES. Overall, this study highlights the superior ability of the NADES system to modify zein's structure and functionality compared to conventional solvents, suggesting its potential for enhancing protein applications in the industrial production of foods.
Collapse
Affiliation(s)
- Adieh Anvar
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hossein Azizi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
5
|
Al-Thaibani A, Mostafa H, Al Alawi M, Sboui A, Hamed F, Mudgil P, Maqsood S. Camel milk whey powder formulated using thermal (spray-drying process) and non-thermal (ultrasonication) processing methods: Effect on physicochemical, technological, and functional properties. ULTRASONICS SONOCHEMISTRY 2024; 111:107097. [PMID: 39405817 PMCID: PMC11525224 DOI: 10.1016/j.ultsonch.2024.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Whey protein concentrates (WPCs) are gaining importance as a functional ingredient due to their high technological and functional properties and their diverse application in the food industry. In this study, Camel milk whey (CW) was separated from skimmed camel milk, then either spray-dried (SD) at 170, 185 and 200 °C, or treated by ultrasonication (US) (20 kHz) for 5, 10 and 15 min followed by freeze-drying to obtain camel milk whey powder (CWP). The structural analysis of CWP was carried out by Fourier-Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) which showed no significant difference in the functional groups profile of US samples compared to control and SD samples. US samples showed some degree of crystallinity that was comparable to the control samples, while SD samples exhibited very low degree of crystallinity. The surface morphology, particle size, and surface charge of CWP were evaluated using scanning electron microscopy (SEM) and Zetasizer. The lowest particle size of 215.1 nm with surface charge of -21.6 mv was observed in SD-185 WPC. Moreover, SD samples revealed whiter color compared to the US-treated samples which were having lower L* values (P < 0.05). US-15 sample exhibited high protein solubility (100 %), whereas the SD-200 sample showed reduced solubility (92.7 %). Improvement in the emulsifying activity of CWP samples was observed after SD and US, with highest emulsifying activity index (EAI) values of 143.75 m2/g and 143.11 m2/g were reported for SD-185 and US-15 CWP samples, respectively. To conclude, SD and US were found to improve the physico-chemical, technological, and functional properties of CWP, and thus can be utilized as a promising strategy to preserve and enhance the technofunctional properties of CWP.
Collapse
Affiliation(s)
- Alanoud Al-Thaibani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Hussein Mostafa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Mariam Al Alawi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Amel Sboui
- Livestock and Wildlife Laboratory, Arid Land Institute (IRA), 4119 Medenine, Tunisia
| | - Fathalla Hamed
- Department of Physics, College of Science, United Arab Emirates University, 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Zayed Center of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
6
|
Wang K, Sun H, Wang J, Cui Z, Hou J, Lu F, Liu Y. Mechanism on microbial transglutaminase and Tremella fuciformis polysaccharide-mediated modification of lactoferrin: Development of functional food. Food Chem 2024; 454:139835. [PMID: 38815323 DOI: 10.1016/j.foodchem.2024.139835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Lactoferrin (LF) with various biological functions demonstrates great application potential. However, its application was restricted by its poor gelation and instability. The aim of this work was to explore the effect of microbial transglutaminase (MTGase) and Tremella fuciformis polysaccharide (TP) on the functional properties of LF. The formation of a self-supporting LF gel could be induced by MTGase through generating covalent crosslinks between the LF protein molecules. Meanwhile, TP was introduced into the gel system to improve the strength of LF-TP composite gels by enhancing non-covalent interactions such as hydrogen bond and electrostatic interactions during gel formation. Additionally, the LF-TP composite gel exhibited outstanding functional characteristics such as gastrointestinal digestive stability and antioxidant property. This work clarified the mechanism on MTGase and TP-mediated modification of lactoferrin, offered a novel strategy to increase the functional characteristics of LF, and enlarged the application range of LF and TP.
Collapse
Affiliation(s)
- Kangning Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhihan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Wang K, Wang J, Chen L, Hou J, Lu F, Liu Y. Effect of sanxan as novel natural gel modifier on the physicochemical and structural properties of microbial transglutaminase-induced mung bean protein isolate gels. Food Chem 2024; 449:139147. [PMID: 38581784 DOI: 10.1016/j.foodchem.2024.139147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Mung bean protein isolate (MBPI) has attracted much attention as an emerging plant protein. However, its application was limited by the poor gelling characteristics. Thus, the effect of sanxan (SAN) on the gelling behavior of MBPI under microbial transglutaminase (MTG)-induced condition were explored in this study. The results demonstrated that SAN remarkably enhanced the storage modulus, water-holding capacity and mechanical strength. Furthermore, SAN changed the microstructure of MBPI gels to become more dense and ordered. The results of zeta potential indicated the electrostatic interactions existed between SAN and MBPI. The incorporation of SAN altered the secondary structure and molecular conformation of MBPI, and hydrophobic interactions and hydrogen bonding were necessary to maintain the network structure. Additionally, in vitro digestion simulation results exhibited that SAN remarkably improved the capability of MBPI gels to deliver bioactive substances. These findings provided a practical strategy to use natural SAN to improve legume protein gels.
Collapse
Affiliation(s)
- Kangning Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
8
|
López-Mártir KU, Armando Ulloa J, Urías-Silvas JE, Rosas-Ulloa P, Ramírez-Ramírez JC, Resendiz-Vazquez JA. Modification of the physicochemical, functional, biochemical and structural properties of a soursop seed (Annona muricata L.) protein isolate treated with high-intensity ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 105:106870. [PMID: 38579570 PMCID: PMC11004696 DOI: 10.1016/j.ultsonch.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
The obtained seeds from fruit processing are considered by-products containing proteins that could be utilized as ingredients in food manufacturing. However, in the specific case of soursop seeds, their usage for the preparation of protein isolates is limited. In this investigation a protein isolate from soursop seeds (SSPI) was obtained by alkaline extraction and isoelectric precipitation methods. The SSPI was sonicated at 200, 400 and 600 W during 15 and 30 min and its effect on the physicochemical, functional, biochemical, and structural properties was evaluated. Ultrasound increased (p < 0.05) up to 5 % protein content, 261 % protein solubility, 60.7 % foaming capacity, 30.2 % foaming stability, 86 % emulsifying activity index, 4.1 % emulsifying stability index, 85.4 % in vitro protein digestibility, 423.4 % albumin content, 83 % total sulfhydryl content, 316 % free sulfhydryl content, 236 % α-helix, 46 % β-sheet, and 43 % β-turn of SSPI, in comparison with the control treatment without ultrasound. Furthermore, ultrasound decreased (p < 0.05) up to 50 % particle size, 37 % molecular flexibility, 68 % surface hydrophobicity, 41 % intrinsic florescence spectrum, and 60 % random coil content. Scanning electron microscopy analysis revealed smooth structures of the SSPI with molecular weights ranging from 12 kDa to 65 kDa. The increase of albumins content in the SSPI by ultrasound was highly correlated (r = 0.962; p < 0.01) with the protein solubility. Improving the physicochemical, functional, biochemical and structural properties of SSPI by ultrasound could contribute to its utilization as ingredient in food industry.
Collapse
Affiliation(s)
- Kevin Ulises López-Mártir
- Maestría en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela, Xalisco 63780, Nayarit, Mexico
| | - José Armando Ulloa
- Maestría en Ciencias Biológico Agropecuarias en el Área de Ciencias Agrícolas, Universidad Autónoma de Nayarit, Carretera Tepic-Compostela, Xalisco 63780, Nayarit, Mexico; Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, Tepic 63155, Nayarit, Mexico.
| | - Judith Esmeralda Urías-Silvas
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Avenida Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| | - Petra Rosas-Ulloa
- Centro de Tecnología de Alimentos, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, Tepic 63155, Nayarit, Mexico
| | - José Carmen Ramírez-Ramírez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nayarit, Carretera Compostela-Chapalilla Km 3.5, Compostela 63700, Nayarit, Mexico
| | - Juan Alberto Resendiz-Vazquez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
| |
Collapse
|
9
|
Zhu H, Wang L, Li X, Shi J, Scanlon M, Xue S, Nosworthy M, Vafaei N. Canola Seed Protein: Pretreatment, Extraction, Structure, Physicochemical and Functional Characteristics. Foods 2024; 13:1357. [PMID: 38731728 PMCID: PMC11083811 DOI: 10.3390/foods13091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The rapid growth of the global population has led to an unprecedented demand for dietary protein. Canola seeds, being a widely utilized oil resource, generate substantial meal by-products following oil extraction. Fortunately, canola meals are rich in protein. In this present review, foremost attention is directed towards summarizing the characteristics of canola seed and canola seed protein. Afterwards, points of discussion related to pretreatment include an introduction to pulsed electric field treatment (PEF), microwave treatment (MC), and ultrasound treatment (UL). Then, the extraction method is illustrated, including alkaline extraction, isoelectric precipitation, acid precipitation, micellization (salt extraction), and dry fractionation and tribo-electrostatic separation. Finally, the structural complexity, physicochemical properties, and functional capabilities of rapeseed seeds, as well as the profound impact of various applications of rapeseed proteins, are elaborated. Through a narrative review of recent research findings, this paper aims to enhance a comprehensive understanding of the potential of canola seed protein as a valuable nutritional supplement, highlighting the pivotal role played by various extraction methods. Additionally, it sheds light on the broad spectrum of applications where canola protein demonstrates its versatility and indispensability as a resource.
Collapse
Affiliation(s)
- Huipeng Zhu
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
| | - Lu Wang
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
| | - Xiaoyu Li
- Nano-Biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China (L.W.)
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Martin Scanlon
- Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Sophia Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Matthew Nosworthy
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (S.X.)
| | - Nazanin Vafaei
- Faculty of Agricultural and Food Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
10
|
Shi R, He Y, Wang Q, Cai J, Gantumur MA, Jiang Z. Insight into the physicochemical characteristics, functionalities and digestion behavior of protein isolate derived from Lactarius volemus (L.volemus): Impacts of microwave-assisted extraction. Food Chem 2024; 431:137070. [PMID: 37579611 DOI: 10.1016/j.foodchem.2023.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The impacts of microwave assisted-extraction (MAE) on the physicochemical characteristics, functionalities, and digestion behavior of Lactarius volemus (L. volemus) protein isolate (LPIs) was investigated. Compared with the conventional water bath assisted-extraction method (WAE), MAE significantly enhanced the extraction rate of LPIs by 30.00% and 47.98% at 20 and 60 min, respectively. Also, MAE unfolded the spatial structure of LPIs, promoting the transformation from ordered structure to disordered structure, exposing its hydrophobic groups and increasing free sulfhydryl content. In addition, LPIs obtained by MAE showed better solubility, emulsifying and foaming characteristics than that by WAE. MAE method can improve the digestibility and the degree of hydrolysis of LPIs compared to WAE, which were increased by 6.06% and 19.78% after 20 min extraction in the small intestine digestion, respectively. This study can provide a potential strategy to produce L. volemus protein isolate with high efficiency and quality.
Collapse
Affiliation(s)
- Ruijie Shi
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, PR China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanting He
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Qingpeng Wang
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Jinyi Cai
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Cao H, Huang Q, Shi J, Guan X, Song H, Zhang Y, Xie J, Fang Y. Effect of conventional and microwave heating treatment on antioxidant activity of quinoa protein after simulated gastrointestinal digestion. Food Chem 2023; 415:135763. [PMID: 36870208 DOI: 10.1016/j.foodchem.2023.135763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Effects of microwave and traditional water bath treatment at different temperatures (70, 80, 90 ℃) on in vitro digestion rate and antioxidant activity of digestion products of quinoa protein were investigated. The results indicated microwave treatment at 70 ℃ produced the highest quinoa protein digestion rate and the strongest antioxidant activities of its digestion products (P < 0.05), which was further verified by the results of free amino, sulfhydryl group, gel electrophoresis, amino acid profiles and the molecular weight distribution of the digestion products. However, limited exposure of active groups induced by water bath treatment might decrease the susceptibility of digestive enzymes and subsequently lower the digestibility and antioxidant activities of quinoa protein. The results suggested that a moderate microwave treatment could be used as a potential way to enhance the in vitro digestion rate of quinoa protein, as well as increase the antioxidant activities of its digestion products.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Qilong Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Junru Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China.
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Jian Xie
- China Grain Wuhan Scientific Research & Design Institute Co. Ltd. Wuhan, PR China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, PR China
| |
Collapse
|
12
|
Chen Y, Tian G, Wang L, Sang Y, Sun J. Effects of ultrasound-assisted high temperature-pressure treatment on the structure and allergenicity of tropomyosin from clam ( Mactra veneriformis). Food Chem X 2023; 18:100740. [PMID: 37342821 PMCID: PMC10277455 DOI: 10.1016/j.fochx.2023.100740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023] Open
Abstract
Tropomyosin (TM) is the major allergen in clams. This study aimed to evaluate the effects of ultrasound-assisted high temperature-pressure treatment on the structure and allergenicity of TM from clams. The results showed that the combined treatment significantly affected the structure of TM-converting the α-helix to β-sheet and random coil, and decreasing the sulfhydryl group content, surface hydrophobicity, and particle size. These structural changes caused the unfolding of the protein, disrupting and modifying the allergenic epitopes. The significant reduction in the allergenicity of TM was approximately 68.1% when treated with combined processing (P < 0.05). Notably, an increase in the content of the relevant amino acids and a smaller particle size accelerated the penetration of the enzyme into the protein matrix, resulting in strengthening the gastrointestinal digestibility of TM. These results prove that ultrasound-assisted high temperature-pressure treatment has great potential in reducing allergenicity, benefiting the development of hypoallergenic clam products.
Collapse
|
13
|
Kim W, Wang Y, Ye Q, Yao Y, Selomulya C. Enzymatic cross-linking of pea and whey proteins to enhance emulsifying and encapsulation properties. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
14
|
Zhao L, Chen MH, Bi X, Du J. Physicochemical properties, structural characteristics and in vitro digestion of brown rice–pea protein isolate blend treated by microbial transglutaminase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
15
|
Wang Y, Liu J, Zhang Z, Meng X, Yang T, Shi W, He R, Ma H. Insights into Ultrasonication Treatment on the Characteristics of Cereal Proteins: Functionality, Conformational and Physicochemical Characteristics. Foods 2023; 12:foods12050971. [PMID: 36900488 PMCID: PMC10000784 DOI: 10.3390/foods12050971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND It would be impossible to imagine a country where cereals and their byproducts were not at the peak of foodstuff systems as a source of food, fertilizer, or for fiber and fuel production. Moreover, the production of cereal proteins (CPs) has recently attracted the scientific community's interest due to the increasing demands for physical wellbeing and animal health. However, the nutritional and technological enhancements of CPs are needed to ameliorate their functional and structural properties. Ultrasonic technology is an emerging nonthermal method to change the functionality and conformational characteristics of CPs. Scope and approach: This article briefly discusses the effects of ultrasonication on the characteristics of CPs. The effects of ultrasonication on the solubility, emulsibility, foamability, surface-hydrophobicity, particle-size, conformational-structure, microstructural, enzymatic-hydrolysis, and digestive properties are summarized. CONCLUSIONS The results demonstrate that ultrasonication could be used to enhance the characteristics of CPs. Proper ultrasonic treatment could improve functionalities such as solubility, emulsibility, and foamability, and is a good method for altering protein structures (including surface hydrophobicity, sulfhydryl and disulfide bonds, particle size, secondary and tertiary structures, and microstructure). In addition, ultrasonic treatment could effectively promote the enzymolytic efficiency of CPs. Furthermore, the in vitro digestibility was enhanced after suitable sonication treatment. Therefore, ultrasonication technology is a useful method to modify cereal protein functionality and structure for the food industry.
Collapse
Affiliation(s)
- Yang Wang
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jiarui Liu
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhaoli Zhang
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Correspondence: (Z.Z.); (R.H.); Tel.: +86-(511)-8878-0174 (R.H.)
| | - Xiangren Meng
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Tingxuan Yang
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wangbin Shi
- College of Tourism and Cooking & College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (Z.Z.); (R.H.); Tel.: +86-(511)-8878-0174 (R.H.)
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Gantumur MA, Sukhbaatar N, Shi R, Hu J, Bilawal A, Qayum A, Tian B, Jiang Z, Hou J. Structural, functional, and physicochemical characterization of fermented whey protein concentrates recovered from various fermented-distilled whey. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Insight into binding mechanism between three whey proteins and mogroside V by multi-spectroscopic and silico methods: Impacts on structure and foaming properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Li J, Yang J, Li J, Gantumur MA, Wei X, Oh KC, Jiang Z. Structure and rheological properties of extruded whey protein isolate: Impact of inulin. Int J Biol Macromol 2023; 226:1570-1578. [PMID: 36450303 DOI: 10.1016/j.ijbiomac.2022.11.268] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Impacts of inulin addition (0, 5, 10, 15 %) on structure, functional and rheological properties of whey protein isolate (WPI) after extrusion pretreatment (E-WPI) were investigated. The results proved that after adding 15 % inulin, water holding capacity of gels, emulsifying activity, emulsion stability, foaming ability and foaming stability of E-WPI were the best and increased by 24.38 %, 7.43 %, 12.35 %, 162.97 % and 41.31 %, compared with those of unextruded WPI, respectively. Rheology analysis showed that apparent viscosity and consistency index of all the samples after inulin addition were enhanced and exhibited pseudoplastic fluids. FTIR spectroscopy indicated that E-WPI/WPI and inulin was linked together due to hydrogen bonds and addition of inulin increased the proportion of their β-turn structure. These findings demonstrated that the addition of inulin in combination with extrusion pretreatment could jointly improve the functional properties of WPI. Therefore, E-WPI with the addition of inulin shows potential commercial applications in the production of novel food foaming agents and emulsifiers.
Collapse
Affiliation(s)
- Jinpeng Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajie Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinzhe Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xuan Wei
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Kwang-Chol Oh
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China; Pyongyang Technology College of Food and Commodity, Pyongyang 950003, Democratic People's Republic of Korea
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
19
|
Wang Z, Zhao H, Tao H, Yu B, Cui B, Wang Y. Ultrasound improves the physicochemical and foam properties of whey protein microgel. Front Nutr 2023; 10:1140737. [PMID: 37113296 PMCID: PMC10126503 DOI: 10.3389/fnut.2023.1140737] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Whey protein microgel (WPM) is an emerging multifunctional protein particle and methods to improve its functional properties are continuously being explored. We developed a method to prepare WPM by heat-induced self-assembly under different ultrasound power (160, 320, 480, and 640 W/cm2) and characterized the particle size, surface hydrophobicity, disulfide bond, viscosity, and foam properties of WPM. Ultrasound increased the particle size of WPM-160 W to 31 μm. However, the increase in ultrasound power gradually reduced the average particle size of samples. The intrinsic fluorescence spectrum showed that ultrasound unfolded the structure of whey protein and exposed more hydrophobic groups, which increased the surface hydrophobicity of WPM. In addition, infrared spectroscopy suggested ultrasound decreased the α-helix content of WPM, implying an increase in the flexibility of protein molecules. The disulfide bond of WPM was broken by ultrasound, and the content of the-SH group increased correspondingly. The rheology indicated that the apparent viscosity decreased with the increase of ultrasonic power. Compared with the control, the ultrasonicated WPM displayed higher foam ability. Ultrasound improved the foam stability of WPM-160 W but destroyed the foam stability of other samples. These results suggest that proper ultrasound treatment can improve the physicochemical and foam properties of WPM.
Collapse
Affiliation(s)
- Zhaoxin Wang
- College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Haibo Zhao
- College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Haiteng Tao
- College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Bin Yu
- College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
- *Correspondence: Bin Yu,
| | - Bo Cui
- College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
- Bo Cui,
| | - Yan Wang
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| |
Collapse
|
20
|
Afkhami R, Varidi MJ, Varidi M, Hadizadeh F. Improvement of heat-induced nanofibrils formation of soy protein isolate through NaCl and microwave. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Facile construction of fruit protein based natural hydrogel via intra/inter molecular cross-linking. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Improving modification of structures and functionalities of food macromolecules by novel thermal technologies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Comparison and Characterization of the Structure and Physicochemical Properties of Three Citrus Fibers: Effect of Ball Milling Treatment. Foods 2022; 11:foods11172665. [PMID: 36076847 PMCID: PMC9455636 DOI: 10.3390/foods11172665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Effects of ball milling (BM) on the structure and physicochemical properties of three types of citrus fibers were investigated. With the extension of the grinding time, the particle size of citrus fibers significantly decreased. Fourier transform infrared spectroscopy (FTIR) showed that the three citrus fibers had similar chemical groups, and more -OH and phenolic acid groups were exposed after BM, and pectin and lignin were not degraded. Scanning electron microscope (SEM) results showed that the appearance of particles changed from spherical to fragmented, irregular shapes. The water holding capacity (WHC), oil holding capacity (OHC), and water swelling capacity (WSC) of citrus fibers LM, JK, and FS reached the maximum value after BM of 2 h (increasing by 18.5%), 4 h (increasing by 46.1%), and 10 h (increasing by 38.3%), respectively. After 10 h BM, citrus fibers FS and JK had the highest adsorption capacity of cholesterol and sodium cholate, increasing by 48.3% and 48.6%, respectively. This indicates that BM transforms the spatial structure of citrus fibers and improves their physicochemical properties.
Collapse
|
24
|
Wang W, Hu C, Sun H, Zhao J, Xu C, Ma Y, Ma J, Jiang L, Hou J, Jiang Z. Low-cholesterol-low-fat mayonnaise prepared from soybean oil body as a substitute for egg yolk: The effect of substitution ratio on physicochemical properties and sensory evaluation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Wang W, Xu C, Liu Z, Gu L, Ma J, Hou J, Jiang Z. Physicochemical properties and bioactivity of polysaccharides from Isaria cicadae Miquel with different extraction processes: effects on gut microbiota and immune response in mice. Food Funct 2022; 13:9268-9284. [PMID: 35993148 DOI: 10.1039/d2fo01646j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effect of different extraction processes on the physicochemical characterization, digestibility, antioxidant activity and prebiotic activity of Isaria cicadae Miquel (ICM) fruiting body polysaccharides was studied. Furthermore, the effect of ultrasound-assisted extraction of ICM (U-ICM) on gut microbiota, the intestinal barrier and immune response was deeply explored. This study found that ICMs showed high indigestibility in both α-amylase and artificial gastric juice, indicating that ICMs have the potential as dietary fiber. In contrast, U-ICM had the best antioxidant activity and prebiotic potential. Meanwhile, there was a structure-activity relationship between the antioxidant activity of ICMs and the content of uronic acid, arabinose and galactose. When healthy mice were fed U-ICM for 42 days, the relative abundances of Lactobacillus, Akkermansia, and Bacteroides were found to increase significantly, while that of Clostridium decreased significantly. Meanwhile, U-ICM significantly promotes the expression of tight junction protein and the production of cytokines, indicating that U-ICM had the function of enhancing the intestinal barrier and regulating the host immune response. In conclusion, U-ICM as dietary fiber has the potential to be developed as a gut health-promoting prebiotic component or functional food. This research provided a valuable resource for further exploring the structure-activity relationship and prebiotic activity of ICMs.
Collapse
Affiliation(s)
- Wan Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Cong Xu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhijing Liu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Liya Gu
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| |
Collapse
|
26
|
Okagu IU, Aham EC, Ezeorba TPC, Ndefo JC, Aguchem RN, Udenigwe CC. Osteo‐modulatory dietary proteins and peptides: A concise review. J Food Biochem 2022; 46:e14365. [DOI: 10.1111/jfbc.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Emmanuel Chigozie Aham
- Department of Biochemistry, Faculty of Biological Sciences University of Nigeria Nsukka Nigeria
| | | | - Joseph Chinedum Ndefo
- Department of Science Laboratory Technology Faculty of Physical Sciences, University of Nigeria Nsukka Nigeria
| | - Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences University of Nigeria Nsukka Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
27
|
Liu B, Jin F, Li Y, Wang H, Chi Y, Tian B, Feng Z. Pasteurization of egg white by integrating ultrasound and microwave: Effect on structure and functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Choe U, Chang L, Ohm JB, Chen B, Rao J. Structure modification, functionality and interfacial properties of kidney bean (Phaseolus vulgaris L.) protein concentrate as affected by post-extraction treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Li M, Li J, Huang Y, Gantumur MA, Bilawal A, Qayum A, Jiang Z. Comparison of Oxidative and Physical Stabilities of Conjugated Linoleic Acid Emulsions Stabilized by Glycosylated Whey Protein Hydrolysates via Two Pathways. Foods 2022; 11:foods11131848. [PMID: 35804664 PMCID: PMC9265985 DOI: 10.3390/foods11131848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
The objective of the research was to analyze and compare the oxidative and physical stabilities of conjugated linoleic acid (CLA) emulsions stabilized by two glycosylated hydrolysates (GPP-A and GPP-B) that were formed via two different pathways. This study showed that GPP-A exhibited higher browning intensity and DPPH radical scavenging ability in comparison with GPP-B. Moreover, the CLA emulsion formed by GPP-A exhibited a lower creaming index, average particle size, primary and secondary oxidative products, in comparison with GPP-B-loaded emulsion. However, the GPP-A-loaded emulsion showed a higher absolute potential and fraction of interfacial adsorption than that of the CLA emulsion formed by GPP-B. Therefore, the CLA emulsion formed by GPP-A exhibited stronger stabilities in comparison with the GPP-B-loaded emulsion. These results suggested that GPP-A showed an emulsification-based delivery system for embedding CLA to avoid the loss of biological activities. Additionally, the development of CLA emulsions could exert its physiological functions and prevent its oxidation.
Collapse
|
30
|
Rezvankhah A, Yarmand MS, Ghanbarzadeh B. The effects of combined enzymatic and physical modifications of lentil protein applying Alcalase, Flavourzyme, microbial transglutaminase, and ultrasound: antioxidant, antihypertension, and antidiabetic activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Combination of microwave heating and transglutaminase cross-linking enhances the stability of limonene emulsion carried by whey protein isolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Yu Z, Hu J, Gao S, Han R, Ma L, Chen Y. Joint effects of enzymatic and high-intensity ultrasonic on the emulsifying propertiesof egg yolk. Food Res Int 2022; 156:111146. [DOI: 10.1016/j.foodres.2022.111146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
|
33
|
Zhou X, Wang M, Zhang L, Liu Z, Su C, Wu M, Wei X, Jiang L, Hou J, Jiang Z. Hydroxypropyl methylcellulose (HPMC) reduces the hardening of fructose-containing and maltitol-containing high-protein nutrition bars during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Wang W, Wang M, Xu C, Liu Z, Gu L, Ma J, Jiang L, Jiang Z, Hou J. Effects of Soybean Oil Body as a Milk Fat Substitute on Ice Cream: Physicochemical, Sensory and Digestive Properties. Foods 2022; 11:foods11101504. [PMID: 35627074 PMCID: PMC9141774 DOI: 10.3390/foods11101504] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Soybean oil body (SOB) has potential as a milk fat substitute due to its ideal emulsification, stability and potential biological activity. In this study, SOB was used as a milk fat substitute to prepare ice cream, expecting to reduce the content of saturated fatty acid and improve the quality defects of ice cream products caused by the poor stability of milk fat at low temperatures. This study investigated the effect of SOB as a milk fat substitute (the substitution amount was 10–50%) on ice cream through apparent viscosity, particle size, overrun, melting, texture, sensory and digestive properties. The results show SOB substitution for milk fat significantly increased the apparent viscosity and droplet uniformity and decreased the particle size of the ice cream mixes, indicating that there were lots of intermolecular interactions to improve ice cream stability. In addition, ice cream with 30% to 50% SOB substitution had better melting properties and texture characteristics. The ice cream with 40% SOB substitution had the highest overall acceptability. Furthermore, SOB substitution for milk fat increased unsaturated fatty acid content in ice cream and fatty acid release during digestion, which had potential health benefits for consumers. Therefore, SOB as a milk fat substitute may be an effective way to improve the nutritional value and quality characteristics of dairy products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juncai Hou
- Correspondence: ; Tel.: +86-451-55190710
| |
Collapse
|
35
|
Yu Z, Zhang H, Guo H, Zhang L, Zhang X, Chen Y. High intensity ultrasound-assisted quality enhancing of the marinated egg: Gel properties and in vitro digestion analysis. ULTRASONICS SONOCHEMISTRY 2022; 86:106036. [PMID: 35598513 PMCID: PMC9127680 DOI: 10.1016/j.ultsonch.2022.106036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 05/21/2023]
Abstract
In this study, high intensity ultrasonication (HIU) was employed as an efficient tool to improve the gel property and in vitro digestibility of marinated egg (ME). The effects of HIU treatment at 100 W and 200 W for a series of time periods (0.5 h, 1 h, and 2 h) on the textural profiles, structural changes, and microstructures were also studied. After HIU treatment, the springiness and gumminess of ME white were enhanced. The water holding capacity reached the highest point (66.6%) when 0.5 h 200 W HIU was used. It was observed that 100 W HIU led to the highest zeta potential (-12.0 mV) and hydrophobicity (175.35 μg) of ME, indicating a high degree of electrostatic repulsion prevented agglomeration. HIU treatment at 100 W affected the dynamic rheological behaviors by boosting non-covalent bonds, which maintains the gel network's homogeneity. Meanwhile, the decreasing formation of α-helix, in contrast to β-turn, altered the aggregation behaviors of egg white gel. The microstructure of the 200 W HIU treated samples had porous colloidal network structures, and the in vitro digestibility (>75%) was increased after HIU. This work demonstrated that HIU could be a green and cost-effective tool for processing the egg product with high quality.
Collapse
Affiliation(s)
- Zhihui Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Insitute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Huirong Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Haoran Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Lixin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Xiaoyu Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yisheng Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Insitute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, Shanxi, China.
| |
Collapse
|
36
|
Li J, Liu Y, Li T, Gantumur MA, Qayum A, Bilawal A, Jiang Z, Wang L. Non-covalent interaction and digestive characteristics between α-lactalbumin and safflower yellow: Impacts of microwave heating temperature. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|