1
|
Shi M, Feng F, Zhang J, Jiang H, Wang X. Feasibility study of fracturing flowback fluid degradation by dielectric barrier discharge plasma. Sci Rep 2025; 15:17954. [PMID: 40410269 DOI: 10.1038/s41598-025-01251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
Fracturing flowback fluid, which is the waste fluid generated following the hydraulic fracturing of oil wells, has garnered significant attention in recent years regarding its safe treatment technologies. Low-temperature plasma water treatment technology is particularly notable for its high degradation efficiency and the environmentally benign by-products it produces. This study represents the inaugural application of dielectric barrier discharge (DBD) plasma for the degradation of fracturing flowback fluid. The research investigates the influence of varying voltages and initial pH on degradation efficiency, chemical oxygen demand (COD), pH, and viscosity of the flowback fluid. Furthermore, the mechanism of DBD plasma degradation of fracturing flowback fluid has been proposed. The findings indicate that the optimal parameters for DBD plasma degradation are as follows: a discharge voltage of 18 kV, a frequency of 10 kHz, a discharge duration of 120 min, and an initial solution pH of 7. Under these specified conditions, the degradation efficiency and COD of the flowback fluid were determined to be 71.41% and 104.00 mg/L, respectively. These results suggest that the degradation of fracturing flowback fluid via DBD plasma is a viable approach.
Collapse
Affiliation(s)
- Meiqi Shi
- Key Laboratory of Ministry of Education of China on Enhanced Oil and Gas Recovery, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China
- State Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China
| | - Fuping Feng
- Key Laboratory of Ministry of Education of China on Enhanced Oil and Gas Recovery, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China.
- State Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China.
| | - Jianwei Zhang
- Key Laboratory of Ministry of Education of China on Enhanced Oil and Gas Recovery, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China
- State Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China
| | - Hong Jiang
- College of New Energy & Materials, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China
| | - Xueqin Wang
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, Heilongjiang, China
| |
Collapse
|
2
|
Soufi A, Hajjaoui H, Boumya W, Elmouwahidi A, Baillón-García E, Abdennouri M, Barka N. Recent trends in magnetic spinel ferrites and their composites as heterogeneous Fenton-like catalysts: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121971. [PMID: 39074433 DOI: 10.1016/j.jenvman.2024.121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
In recent years, there has been a growing interest in utilizing spinel ferrite and their nanocomposites as Fenton-like catalysts. The use of these materials offers numerous advantages, including ability to efficiently degrade pollutants and potential for long-term and repeated use facilitated by their magnetic properties that make them easily recoverable. The remarkable catalytic properties, stability, and reusability of these materials make them highly attractive for researchers. This paper encompasses a comprehensive review of various aspects related to the Fenton process and the utilization of spinel ferrite and their composites in catalytic applications. Firstly, it provides an overview of the background, principles, mechanisms, and key parameters governing the Fenton reaction, along with the role of physical field assistance in enhancing the process. Secondly, it delves into the advantages and mechanisms of H2O2 activation induced by different spinel ferrite and their composites for the removal of organic pollutants, shedding light on their efficacy in environmental remediation. Thirdly, the paper explores the application of these materials in various Fenton-like processes, including Fenon-like, photo-Fenton-like, sono-Fenton-like, and electro-Fenton-like, for the effective removal of different types of contaminants. Furthermore, it addresses important considerations such as the toxicity, recovery, and reuse of these materials. Finally, the paper presents the challenges associated with H2O2 activation by these materials, along with proposed directions for future improvements.
Collapse
Affiliation(s)
- Amal Soufi
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Hind Hajjaoui
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Abdelhakim Elmouwahidi
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente - Universidad de Granada (UEQ-UGR), ES18071, Granada, Spain
| | - Esther Baillón-García
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente - Universidad de Granada (UEQ-UGR), ES18071, Granada, Spain
| | - Mohamed Abdennouri
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco.
| |
Collapse
|
3
|
Zhong C, Chen R, He Y, Hou D, Chen F. Interactions between microbial communities and polymers in hydraulic fracturing water cycle: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174412. [PMID: 38977097 DOI: 10.1016/j.scitotenv.2024.174412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Hydraulic fracturing (HF) has substantially boosted global unconventional hydrocarbon production but has also introduced various environmental and operational challenges. Understanding the interactions between abundant and diverse microbial communities and chemicals, particularly polymers used for proppant delivery, thickening, and friction reduction, in HF water cycles is crucial for addressing these challenges. This review primarily examined the recent studies conducted in China, an emerging area for HF activities, and comparatively examined studies from other regions. In China, polyacrylamide (PAM) and its derivatives products became key components in hydraulic fracturing fluid (HFF) for unconventional hydrocarbon development. The microbial diversity of unconventional HF water cycles in China was higher compared to North America, with frequent detection of taxa such as Shewanella, Marinobacter, and Desulfobacter. While biodegradation, biocorrosion, and biofouling were common issues across regions, the mechanisms underlying these microbe-polymer interactions differed substantially. Notably, in HF sites in the Sichuan Basin, the use of biocides gradually decreased its efficiency to mitigate adverse microbial activities. High-throughput sequencing proved to be a robust tool that could identify key bioindicators and biodegradation pathways, and help select optimal polymers and biocides, leading to more efficient HFF systems. The primary aim of this study is to raise awareness about the interactions between microorganisms and polymers, providing fresh insights that can inform decisions related to enhanced chemical use and biological control measures at HF sites.
Collapse
Affiliation(s)
- Cheng Zhong
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China
| | - Rong Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China
| | - Fu Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| |
Collapse
|
4
|
Zhang L, Wang T, Zhang M, Liu Q, She Y, Wu S, Liu B. Synergistic degradation of Tris (2-Chloroethyl) Phosphate (TCEP) by US/Fenton system: Experimental, DFT calculation and toxicity evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39120-39137. [PMID: 38809409 DOI: 10.1007/s11356-024-33815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Organophosphorus esters (OPEs), exemplified by tris (2-chloroethyl) phosphate (TCEP), find extensive application in diverse industries such as construction materials, textiles, chemical manufacturing, and electronics, consequently resulting in an increased concentration of these compounds in industrial wastewater. The fundamental objective of this investigation was to examine the degradation of TCEP through the implementation of US/Fenton oxidation techniques in a solution. The findings revealed that the US/Fenton system effectively facilitated the degradation of TCEP, with the Chan kinetic model precisely elucidating the degradation process. Under optimized reaction conditions, the degradation efficiency of TCEP reached an impressive 93.18%. However, the presence of common co-existing aqueous substrates such as Cl-, HCO3-, H2PO4-, and HA hindered the degradation process. Bursting tests and electron paramagnetic resonance (EPR) studies affirmed ∙OH oxidation as the principal mechanism underlying TCEP degradation. Detailed degradation pathways for TCEP were established through the utilization of density-functional theory (DFT) calculations and GC/MS tests. Moreover, the ecotoxicological evaluation of TCEP and its intermediates was conducted using the Toxicity Estimation Software Tool (T.E.S.T.).
Collapse
Affiliation(s)
- Lucheng Zhang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Tingting Wang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Mingqing Zhang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China.
| | - Qi Liu
- School of Low-Carbon Energy and Power Engineering, China University of Mining & Technology, Xuzhou, 221116, China
| | - Yi She
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Shilong Wu
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - BingFeng Liu
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| |
Collapse
|
5
|
Jaffari ZH, Na S, Abbas A, Park KY, Cho KH. Digital imaging-in-flow (FlowCAM) and probabilistic machine learning to assess the sonolytic disinfection of cyanobacteria in sewage wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133762. [PMID: 38402678 DOI: 10.1016/j.jhazmat.2024.133762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Assessing the cyanobacteria disinfection in sewage and its compliance with international-standards requires determining the concentration and viability, which can be achieve using Imaging Flow Cytometry device called FlowCAM. The objective is to thoroughly investigate the sonolytic morphological changes and disinfection-performance towards toxic cyanobacteria existing in sewage using the FlowCAM. After optimizing the process conditions, over 80% decline in cyanobacterial cell counts was observed, accompanied by an additional 10-15% of cells exhibiting injuries, as confirmed through morphological investigation. Moreover, for the first time, the experimentally collected data was utilized to build deep-learning probabilistic-neural-networks (PNN) and natural-gradient-boosting (NGBoost) models for predicting disinfection efficiency and ABD area as target outputs. The findings suggest that the NGBoost model exhibited superior prediction performance for both targets, with high test coefficient of determination (R2 > 0.87) and lower test errors (RMSE < 7.10, MAE < 4.14). The confidence interval examination in NGBoost prediction performance showed a minute variation from the experimentally calculated values, suggesting a high accuracy in model prediction. Finally, SHAP analysis suggests the sonolytic time alone contributes around 50% to the cyanobacteria disinfection. Overall, the findings demonstrate the effectiveness of the FlowCAM device and the potential of machine-learning modeling in predicting disinfection outcomes.
Collapse
Affiliation(s)
- Zeeshan Haider Jaffari
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seongyeon Na
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Tehchnology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Ather Abbas
- Physical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal, Mecca, Saudi Arabia
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
6
|
Zhang L, Chen F, Wang H, He J, Luo M, Chen H, Zhong C. Starch microsphere silicon-boron crosslinker for low concentration hydroxypropyl guar gum based fracturing fluid. Int J Biol Macromol 2024; 264:130575. [PMID: 38432270 DOI: 10.1016/j.ijbiomac.2024.130575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Hydroxypropyl guar gum (HPG) is a critical thickener to increase viscosity and lubrication to improve the water-based hydraulic fracturing efficiency. However, current crosslinkers require a large amount of HPG (>0.3 wt%) to form gel with sufficient viscosity, and high concentrations of HPG may cause adverse effects to the production and the environment. In this study, a novel starch microsphere silica‑boron crosslinker (SMSB) was developed using starch microspheres as a carrier and γ-aminopropyl triethoxy silane (KH550) as a modifier with an in-house method. Both the rheology and surface reactions of the SMSB-HPG crosslinking system were studied using multiple laboratory experiments and molecular dynamics simulation. The results showed that SMSB crosslinker caused multi-site cross-linking with low concentration (only 0.2 wt%) of HPG molecules, reducing the twisting of single molecular chain in the crosslinking system, enhancing the cross-linking strength between molecular chains, and making HPG molecular chains stretcher in the aqueous solution. The apparent viscosity and viscoelasticity of the HPG system were substantially higher than the organoboron crosslinker, and the temperature resistance of the SMSB-HPG crosslinking system was up to 140 °C. This study provides an alternative green crosslinker for more sustainable industrial applications and provides theoretical basis for the modification of biomaterials.
Collapse
Affiliation(s)
- Lin Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Fu Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China
| | - Heng Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Jie He
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Mina Luo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Hao Chen
- CNPC Greatwall Drilling Company Sichuan Shale Gas Department, Chengdu, Sichuan 610051, China
| | - Cheng Zhong
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China.
| |
Collapse
|