1
|
Andrianov AK, Fuerst TR. Immunopotentiating and Delivery Systems for HCV Vaccines. Viruses 2021; 13:v13060981. [PMID: 34070543 PMCID: PMC8227888 DOI: 10.3390/v13060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Development of preventive vaccines against hepatitis C virus (HCV) remains one of the main strategies in achieving global elimination of the disease. The effort is focused on the quest for vaccines capable of inducing protective cross-neutralizing humoral and cellular immune responses, which in turn dictate the need for rationally designed cross-genotype vaccine antigens and potent immunoadjuvants systems. This review provides an assessment of the current state of knowledge on immunopotentiating compounds and vaccine delivery systems capable of enhancing HCV antigen-specific immune responses, while focusing on the synergy and interplay of two modalities. Structural, physico-chemical, and biophysical features of these systems are discussed in conjunction with the analysis of their in vivo performance. Extreme genetic diversity of HCV-a well-known hurdle in the development of an HCV vaccine, may also present a challenge in a search for an effective immunoadjuvant, as the effort necessitates systematic and comparative screening of rationally designed antigenic constructs. The progress may be accelerated if the preference is given to well-defined molecular immunoadjuvants with greater formulation flexibility and adaptability, including those capable of spontaneous self-assembly behavior, while maintaining their robust immunopotentiating and delivery capabilities.
Collapse
Affiliation(s)
- Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA;
- Correspondence:
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
3
|
Dawood RM, Moustafa RI, Abdelhafez TH, El-Shenawy R, El-Abd Y, Bader El Din NG, Dubuisson J, El Awady MK. A multiepitope peptide vaccine against HCV stimulates neutralizing humoral and persistent cellular responses in mice. BMC Infect Dis 2019; 19:932. [PMID: 31690267 PMCID: PMC6833294 DOI: 10.1186/s12879-019-4571-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although DAAs hold promise to significantly reduce rates of chronic HCV infections, its eradication still requires development of an effective vaccine. Prolonged T cell responses and cross neutralizing antibodies are ideal for vaccination against the infection. We aimed to design and synthesize a 6 multi epitope peptide vaccine candidate and provide evidence for production of extended cellular and neutralizing Abs in mice. METHODS Six peptides derived from conserved epitopes in E1, E2 (n = 2),NS4B, NS5A and NS5B were designed, synthesized in a multiple antigenic peptide (MAP) form and administered w/o adjuvant to BALB/c mice as HCVp6-MAP at doses ranging from 800 ng to 16 μg. Humoral responses to structural epitopes were assayed by ELISA at different times after injection. ELISpot assay was used to evaluate IFN ɣ producing CD4+/ CD8+ T- lymphocytes at extended durations i.e. > 20 weeks. Viral neutralization by mice sera was tested for genotypes 2a (JFH1) and a chimeric 2a/4a virus (ED43/JFH1) in HCVcc culture. RESULTS HCVp6-MAP confers potent viral neutralization and specific cellular responses at > 1600 ng/ animal for at least 20 weeks. CONCLUSION We report on a promising anti HCV vaccine for future studies on permissive hosts and in clinical trials.
Collapse
Affiliation(s)
- Reham M Dawood
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt.
| | - Rehab I Moustafa
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL- Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Tawfeek H Abdelhafez
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Reem El-Shenawy
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Yasmine El-Abd
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Noha G Bader El Din
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL- Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Mostafa K El Awady
- Micrbial Biotechnology Department, National Research Center, 33 Tahrir street, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
4
|
Cloning, Expression, and Immunogenicity of Fimbrial-F17A Subunit Vaccine against Escherichia coli Isolated from Bovine Mastitis. BIOMED RESEARCH INTERNATIONAL 2018; 2017:3248483. [PMID: 29333439 PMCID: PMC5733191 DOI: 10.1155/2017/3248483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
There is a need to identify and select new promising immunodominant antigens that have the ability to provide protective immunity against E. coli causing bovine mastitis. Recently we showed that f17a was found to be the most prevalent and crucial virulent factor among the pathogenic E. coli isolated from bovine mastitis. Here, in this report, the recombinant F17A based subunit vaccine adjuvant with MF59 was tested for immunogenicity against E. coli in a murine model. The vaccinated mice did not show any abnormal behavioral changes and histopathological lesions after vaccination. The specific antibody level against F17A was significantly higher in MF59-adjuvant-group, and also lasted for longer duration with a significant (P < 0.01) production level of IgG1 and IgG2a. Moreover, we noted higher survival rate in mice injected with F17A-MF59-adjuvant group after challenging with the clinical E. coli strain. Our findings of bacterial clearance test revealed that elimination rate from liver, spleen, and kidney in MF59-adjuvant-group was significantly higher than the control group. Finally, the proportion of CD4+T cells was increased, while CD8+ was decreased in MF59-adjuvant group. In conclusion, the current study reveals the capability of F17A-MF59 as a potential vaccine candidate against pathogenic E. coli causing mastitis in dairy animals.
Collapse
|
5
|
Riehl M, Harms M, Hanefeld A, Baleeiro RB, Walden P, Mäder K. Combining R-DOTAP and a particulate antigen delivery platform to trigger dendritic cell activation: Formulation development and in-vitro interaction studies. Int J Pharm 2017; 532:37-46. [DOI: 10.1016/j.ijpharm.2017.08.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
|
6
|
Investigation of the stabilizer elimination during the washing step of charged PLGA microparticles utilizing a novel HPLC-UV-ELSD method. Eur J Pharm Biopharm 2015; 94:468-72. [DOI: 10.1016/j.ejpb.2015.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/28/2015] [Accepted: 06/07/2015] [Indexed: 11/24/2022]
|
7
|
Afley P, Dohre SK, Prasad GBKS, Kumar S. Prediction of T cell epitopes of Brucella abortus and evaluation of their protective role in mice. Appl Microbiol Biotechnol 2015; 99:7625-37. [PMID: 26150246 DOI: 10.1007/s00253-015-6787-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 01/18/2023]
Abstract
Brucellae are Gram-negative intracellular bacteria that cause an important zoonotic disease called brucellosis. The animal vaccines are available but have disadvantage of causing abortions in a proportion of pregnant animals. The animal vaccines are also pathogenic to humans. Recent trend in vaccine design has shifted to epitope-based vaccines that are safe and specific. In this study, efforts were made to identify MHC-I- and MHC-II-restricted T cell epitopes of Brucella abortus and evaluate their vaccine potential in mice. The peptides were designed using online available immunoinformatics tools, and five MHC-I- and one MHC-II-restricted T cell peptides were selected on the basis of their ability to produce interferon gamma (IFN-γ) in in vivo studies. The selected peptides were co-administered with poly DL-lactide-co-glycolide (PLG) microparticles and evaluated for immunogenicity and protection in BALB/c mice. Mice immunized with peptides either entrapped in PLG microparticles (EPLG-Pep) or adsorbed on PLG particles (APLG-Pep) showed significantly higher splenocyte proliferation and IFN-γ generation to all selected peptides than the mice immunized with corresponding irrelevant peptides formulated PLG microparticles or phosphate-buffered saline (PBS). A significant protection compared to PBS control was also observed in EPLG-Pep and APLG-Pep groups. A plasmid DNA vaccine construct (pVaxPep) for peptides encoding DNA sequences was generated and injected to mice by in vivo electroporation. Significant protection was observed (1.66 protection units) when compared with PBS and empty vector control group animals. Overall, the MHC-I and MHC-II peptides identified in this study are immunogenic and protective in mouse model and support the feasibility of peptide-based vaccine for brucellosis.
Collapse
Affiliation(s)
- Prachiti Afley
- Defence Research & Development Establishment, Jhansi Road, Gwalior, Madhya Pradesh, 474002, India
| | | | | | | |
Collapse
|
8
|
Versatile polyion complex micelles for peptide and siRNA vectorization to engineer tolerogenic dendritic cells. Eur J Pharm Biopharm 2015; 92:216-27. [DOI: 10.1016/j.ejpb.2015.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/20/2022]
|
9
|
Shawky H, Maghraby AS, Solliman MED, El-Mokadem MT, Sherif MM, Arafa A, Bahgat MM. Expression, immunogenicity and diagnostic value of envelope proteins from an Egyptian hepatitis C virus isolate. Arch Virol 2015; 160:945-58. [PMID: 25631616 DOI: 10.1007/s00705-015-2334-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/02/2015] [Indexed: 12/28/2022]
Abstract
The present work aimed at 1) characterization of the E1 and E2 proteins (HCV-E) from an Egyptian hepatitis C virus genotype 4a (HCV-4a) isolate at the molecular and immunological level, 2) in silico identification of the B- and T-cell epitopes responsible for the immunogenicity of HCV-E, and 3) evaluation of the diagnostic potential of both the recombinant HCV-E and antibodies raised using mammalian expression constructs encoding the protein. The region encoding the E1 and E2 proteins was amplified by RT-PCR from RNA isolated from blood of a human infected with HCV-4 and cloned into the pSC-TA plasmid, and the sequence was verified and used to construct a neighbor-joining phylogenetic tree. The translated nucleotide sequence was used to predict the HCV-E secondary structure using the PREDICT-PROTEIN server and PSI-PRED. A 3D model of HCV-E was generated using the online tool 3Dpro. B- and T-cell epitopes were predicted using the online tools BCPred and Epijen v1.0, respectively. The HCV-E-encoding sequence was later subcloned into the mammalian expression plasmid pQE, and the constructs that were generated were used to immunize mice in the absence and presence of adjuvants of plant origin. The maximum sequence identity obtained by nucleotide and protein BLAST analysis with previously published HCV-E sequences was 85 and 77 %, respectively. The B-cell epitope CFTPSPVVV at position 203 and the T-cell epitope ALSTGLIHL at position 380 were found to be highly conserved among all HCV genotypes. Both ELISA and Western blotting experiments on crude and purified recombinant HCV envelope proteins using mouse antisera raised using the HCV-E mammalian expression construct confirmed the specific antigenicity of the expressed protein. The antibodies raised in mice using the HCV-E-encoding construct could efficiently capture circulating antigens in patients' sera with good sensitivity that correlated with liver enzyme levels (r = 0.4052, P < 0.0001 for ALT; r = -0.5439, P = 0.0019 for AST). Moreover, combining the HCV-E-encoding construct with extracts prepared from Echinacea purpurea and Nigella sativa prior to immunizing mice significantly (P < 0.05) increased both the humoral (14.9- to 20-fold increase in antibodies) and the cellular (CD4(+) and cytotoxic CD8(+)- T lymphocytes) responses compared to mice that received the DNA construct alone or PBS-treated mice. Both recombinant HCV-E protein preparations and antibodies raised using the HCV-E-encoding mammalian expression construct represent useful diagnostic tools that can report on active HCV infection. Also, the immunostimulatory effects induced by the two plant extracts used at the cellular and humoral level highlight the potential of natural products for inducing protection against HCV infection. The neutralizing capacity of the induced antibodies is a subject of future investigations. Furthermore, the predicted B- and T-cell epitopes may be useful for tailoring future diagnostics and candidate vaccines against various HCV genotypes.
Collapse
Affiliation(s)
- Heba Shawky
- The Immunology and Infectious Diseases Laboratory, Therapeutic Chemistry Department, The Center of Excellence for Advanced Sciences, The National Research Centre, Dokki, Giza, 12622, Egypt,
| | | | | | | | | | | | | |
Collapse
|
10
|
McCarthy DP, Hunter ZN, Chackerian B, Shea LD, Miller SD. Targeted immunomodulation using antigen-conjugated nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:298-315. [PMID: 24616452 DOI: 10.1002/wnan.1263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 12/20/2022]
Abstract
The growing prevalence of nanotechnology in the fields of biology, medicine, and the pharmaceutical industry is confounded by the relatively small amount of data on the impact of these materials on the immune system. In addition to concerns surrounding the potential toxicity of nanoparticle (NP)-based delivery systems, there is also a demand for a better understanding of the mechanisms governing interactions of NPs with the immune system. Nanoparticles can be tailored to suppress, enhance, or subvert recognition by the immune system. This 'targeted immunomodulation' can be achieved by delivery of unmodified particles, or by modifying particles to deliver drugs, proteins/peptides, or genes to a specific site. In order to elicit the desired, beneficial immune response, considerations should be made at every step of the design process: the NP platform itself, ligands, and other modifiers, the delivery route, and the immune cells that will encounter the conjugated NPs can all impact host immune responses.
Collapse
Affiliation(s)
- Derrick P McCarthy
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
11
|
Bielinska AU, Makidon PE, Janczak KW, Blanco LP, Swanson B, Smith DM, Pham T, Szabo Z, Kukowska-Latallo JF, Baker JR. Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant. THE JOURNAL OF IMMUNOLOGY 2014; 192:2722-33. [PMID: 24532579 DOI: 10.4049/jimmunol.1301424] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1- and Th-17-balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell-mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Anna U Bielinska
- Division of Allergy, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Saini V, Verma AK, Kushwaha V, Joseph SK, Kalpna Murthy P, Kohli D. Humoral and cell-mediated immune responses elicited by poly (dl-lactide) adjuvanted filarial antigen molecules. Drug Deliv 2013; 21:233-41. [DOI: 10.3109/10717544.2013.848494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2013; 10:321-32. [PMID: 24128651 PMCID: PMC4185908 DOI: 10.4161/hv.26796] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/06/2013] [Accepted: 10/12/2013] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| | - Shabnam Javanzad
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
- Department of genetics; Islamic Azad University; Tehran Medical Branch; Tehran, Iran
| | - Tayebeh Saleh
- Department of Nanobiotechnology; Faculty of Biological Sciences; Tarbiat Modares University; Tehran, Iran
| | - Mehrdad Hashemi
- Department of genetics; Islamic Azad University; Tehran Medical Branch; Tehran, Iran
| | | | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| |
Collapse
|
14
|
Hsu PYJ, Yang YW. Encapsulation of poly(d,l-lactide) microparticles with polyelectrolyte multilayers for antigen delivery. J Microencapsul 2013; 31:262-9. [DOI: 10.3109/02652048.2013.834994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Wang J, Zhu R, Gao B, Wu B, Li K, Sun X, Liu H, Wang S. The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. Biomaterials 2013; 35:466-78. [PMID: 24099705 DOI: 10.1016/j.biomaterials.2013.09.060] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023]
Abstract
Various approaches have been used to improve systemic immune response to infectious disease or virus, and DNA vaccination has been demonstrated to be one of these effective ways to elicit protective immunity against pathogens. Our previous studies showed that layered double hydroxides (LDH) nanoparticles could be efficiently taken up by the MDDCs and had an adjuvant activity for DC maturation. To further enhance the immune adjuvant activity of LDH, core-shell structure SiO2@LDH nanoparticles were synthesized with an average diameter of about 210 nm. And its high transfection efficiency in vitro was demonstrated by using GFP expression plasmid as model DNA. Exposing SiO2@LDH nanoparticles to macrophages caused a higher dose-dependent expression of IFN-γ, IL-6, CD86 and MHC II, compared with SiO2 and LDH respectively. Furthermore, in vivo immunization of BALB/c mice indicated that, DNA vaccine loaded-SiO2@LDH nanoparticles not only induced much higher serum antibody response than naked DNA vaccine and plain nanoparticles, but also obviously promoted T-cell proliferation and skewed T helper to Th1 polarization. Additionally, it was proved that the caveolae-mediated uptake of SiO2@LDH nanoparticles by macrophage lead to macrophages activation via NF-κB signaling pathway. Our results indicate that SiO2@LDH nanoparticles could serve as a potential non-viral gene delivery system.
Collapse
Affiliation(s)
- Jin Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
O'Hagan DT, Ott GS, Nest GV, Rappuoli R, Giudice GD. The history of MF59(®) adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines 2013; 12:13-30. [PMID: 23256736 DOI: 10.1586/erv.12.140] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first clinical trial of an MF59(®)-adjuvanted influenza vaccine (Novartis) was conducted 20 years ago in 1992. The product that emerged (Fluad(®), Novartis) was licensed first in Italy in 1997 and is now licensed worldwide in 30 countries. US licensure is expected in the coming years. By contrast, many alternative adjuvanted vaccines have failed to progress. The key decisions that allowed MF59 to succeed in such a challenging environment are highlighted here and the lessons that were learned along the way are discussed. MF59 was connected to vaccines that did not succeed and was perceived as a 'failure' before it was a success. Importantly, it never failed for safety reasons and was always well tolerated. Even when safety issues have emerged for alternative adjuvants, careful analysis of the substantial safety database for MF59 have shown that there are no significant concerns with widespread use, even in more 'sensitive' populations.
Collapse
Affiliation(s)
- Derek T O'Hagan
- Novartis Vaccines and Diagnostics, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
17
|
Keyvani H, Fazlalipour M, Monavari SHR, Mollaie HR. Hepatitis C Virus - Proteins, Diagnosis, Treatment and New Approaches for Vaccine Development. Asian Pac J Cancer Prev 2012. [DOI: 10.7314/apjcp.2012.13.12.5917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Zhou Y, Zhang Y, Yao Z, Moorman JP, Jia Z. Dendritic cell-based immunity and vaccination against hepatitis C virus infection. Immunology 2012; 136:385-96. [PMID: 22486354 DOI: 10.1111/j.1365-2567.2012.03590.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) has chronically infected an estimated 170 million people worldwide. There are many impediments to the development of an effective vaccine for HCV infection. Dendritic cells (DC) remain the most important antigen-presenting cells for host immune responses, and are capable of either inducing productive immunity or maintaining the state of tolerance to self and non-self antigens. Researchers have recently explored the mechanisms by which DC function is regulated during HCV infection, leading to impaired antiviral T-cell responses and so to persistent viral infection. Recently, DC-based vaccines against HCV have been developed. This review summarizes the current understanding of DC function during HCV infection and explores the prospects of DC-based HCV vaccine. In particular, it describes the biology of DC, the phenotype of DC in HCV-infected patients, the effect of HCV on DC development and function, the studies on new DC-based vaccines against HCV infection, and strategies to improve the efficacy of DC-based vaccines.
Collapse
Affiliation(s)
- Yun Zhou
- Centre of Diagnosis and Treatment for Infectious Diseases of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | | | | | | | | |
Collapse
|
19
|
Jain S, O'Hagan DT, Singh M. The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines 2012; 10:1731-42. [PMID: 22085176 DOI: 10.1586/erv.11.126] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biodegradable polymeric microparticles of poly(lactide-co-glycolide) (PLG) have been extensively evaluated for drug delivery and vaccine applications over the last three decades. Despite a wealth of studies on the use of PLG microparticles in vaccines through controlled release of antigens, there is no commercial PLG-based vaccine as yet. The key challenge that prevented the development of PLG microparticles as commercial vaccines was the instability of encapsulated antigen. Over the years, advancements were made towards maintaining antigen integrity during PLG microparticle preparation and sterilization. In parallel and independently, development of PLG microparticles as therapeutic commercial products established PLG with an excellent safety record in humans, and as a suitable candidate for next-generation vaccines. Through the combination of Toll-like receptor agonist encapsulation and surface adsorption of antigen, PLG microparticles can be used as a vaccine adjuvant to address unmet medical needs, such as vaccines against HIV, malaria and TB. With strategic development of PLG-based vaccines, PLG microparticles can offer advantages over the conventional vaccine adjuvants allowing commercial development of this adjuvant.
Collapse
Affiliation(s)
- Siddhartha Jain
- Novartis Vaccines and Diagnostics, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
20
|
Bailey J. An assessment of the use of chimpanzees in hepatitis C research past, present and future: 1. Validity of the chimpanzee model. Altern Lab Anim 2011; 38:387-418. [PMID: 21105756 DOI: 10.1177/026119291003800501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The USA is the only significant user of chimpanzees in biomedical research in the world, since many countries have banned or limited the practice due to substantial ethical, economic and scientific concerns. Advocates of chimpanzee use cite hepatitis C research as a major reason for its necessity and continuation, in spite of supporting evidence that is scant and often anecdotal. This paper examines the scientific and ethical issues surrounding chimpanzee hepatitis C research, and concludes that claims of the necessity of chimpanzees in historical and future hepatitis C research are exaggerated and unjustifiable, respectively. The chimpanzee model has several major scientific, ethical, economic and practical caveats. It has made a relatively negligible contribution to knowledge of, and tangible progress against, the hepatitis C virus compared to non-chimpanzee research, and must be considered scientifically redundant, given the array of alternative methods of inquiry now available. The continuation of chimpanzee use in hepatitis C research adversely affects scientific progress, as well as chimpanzees and humans in need of treatment. Unfounded claims of its necessity should not discourage changes in public policy regarding the use of chimpanzees in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
21
|
Wintermeyer P, Gehring S, Eken A, Wands JR. Generation of cellular immune responses to HCV NS5 protein through in vivo activation of dendritic cells. J Viral Hepat 2010; 17:705-13. [PMID: 20002303 PMCID: PMC3967848 DOI: 10.1111/j.1365-2893.2009.01228.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic hepatitis C (HCV) infection is a substantial medical problem that leads to progressive liver disease, cirrhosis, and hepatocellular carcinoma (HCC). The aim of this study was to achieve sustained cellular immune responses in vivo to a HCV nonstructural protein using dendritic cell (DC)-based immunization approach. We targeted the HCV NS5 protein to DCs in vivo by injecting microparticles loaded with this antigen. The DC population was expanded in BALB/C mice (H-2(d) ) by hydrodynamic injection of a plasmid pUMVC3-hFLex expressing the secreted portion of the human Fms-like tyrosine kinase receptor-3 ligand (hFlt3). Mice were subsequently injected with microparticles coated with HCV NS5 protein via the tail vein. Cellular immune responses were determined with respect to secretion of INFγ and IL2 by CD4(+) cells and cytotoxic T-lymphocyte (CTL) assays in vitro; inhibition of tumour cell growth was employed for the assessment of CD8(+) generated activity in vivo. We found that Flt3L treatment expanded the DC population in the spleen to 43%, and such cells displayed a striking upregulation of CD86 as well as CD80 and CD40 co-stimulating molecules. Viral antigen-specific T(H) 1 cytokine secretion by splenocytes was generated, and CTL activity against syngeneic NS5 expressing myeloma target cells was observed. In addition, these cells inhibited tumour growth indicating that NS5-specific robust CTL activity was operative in vivo. Thus, the capability of activating DCs in vivo using the methods described is valuable as a therapeutic vaccine strategy for chronic HCV infection.
Collapse
Affiliation(s)
- P. Wintermeyer
- Liver Research Center, Brown Alpert Medical School and Rhode Island Hospital, Providence, RI, USA,HELIOS Klinikum Wuppertal, Children's Hospital, Witten-Herdecke University, Wuppertal, Germany
| | - S. Gehring
- Liver Research Center, Brown Alpert Medical School and Rhode Island Hospital, Providence, RI, USA,Children's Hospital, University of Mainz, Mainz, Germany
| | - A. Eken
- Liver Research Center, Brown Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - J. R. Wands
- Liver Research Center, Brown Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
22
|
Jadav SK, Reddy KS, Rashmi BR, Dechamma HJ, Ganesh K, Suryanarayana VVS, Reddy GR. Improved immune response by ID-pVAC: a secretory DNA vaccine construct delivered by PLG micro particles against foot and mouth disease in guinea pigs. Res Vet Sci 2010; 91:86-89. [PMID: 20884037 DOI: 10.1016/j.rvsc.2010.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 04/07/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Foot and mouth disease (FMD) outbreaks usually have devastating effects on the economy of countries were disease is endemic due to direct and indirect cost; most of them related to international trade embargoes of animals and animal products. Although currently used inactivated vaccine provides protection, it has several drawbacks like short duration of immunity, and the requirement for containment facilities. A DNA vaccine construct which expresses the secretary antigens, delivered through micro particles could be one of the alternate approaches to overcome these limitations. Present study is envisaged to prepare a DNA vaccine construct containing the VP1 sequence of FMDV serotype O in pVAC vector. DNA vaccine was formulated by adsorbing plasmid DNA construct on cationic micro particles and administered in guinea pigs @25 μg DNA vaccine construct per animal intramuscularly. Sera samples collected were analyzed by sandwich ELISA and SNT, shown enhanced immune response in PLG adjuvanted DNA vaccine. MTT and 3H Thymidine incorporation have shown good CMI responses to PLG adjuvanted DNA. When challenged with 100 gpid50 of homologous virus 5 of the six animals were protected.
Collapse
Affiliation(s)
- Sameer K Jadav
- Molecular Virology Lab, Indian Veterinary Research Institute, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
23
|
A new insight into hepatitis C vaccine development. J Biomed Biotechnol 2010; 2010:548280. [PMID: 20625493 PMCID: PMC2896694 DOI: 10.1155/2010/548280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/25/2010] [Accepted: 04/05/2010] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection remains a serious burden to public health worldwide. Currently, HCV-infected patients could undergo antiviral therapy by giving pegylated IFN-α with ribavirin. However, this therapy is only effective in around 50% of patients with HCV genotype 1, which accounts for more than 70% of all HCV infection, and it is not well tolerated for most patients. Moreover, there is no vaccine available. The efforts on identifying protective immunity against HCV have progressed recently. Neutralizing antibodies and robust T cell responses including both CD4+ and CD8+ have been shown to be related to the clearance of HCV, which have shed lights on the potential success of HCV vaccines. There are many vaccines developed and tested before entering clinical trials. Here, we would first discuss strategies of viral immune evasion and correlates of protective host immunity and finally review some prospective vaccine approaches against chronic HCV infection.
Collapse
|
24
|
Saini V, Jain V, Sudheesh MS, Dixit S, Gaur RL, Sahoo MK, Joseph SK, Verma SK, Jaganathan KS, Murthy PK, Kohli D. Humoral and cell-mediated immune-responses after administration of a single-shot recombinant hepatitis B surface antigen vaccine formulated with cationic poly(l-lactide) microspheres. J Drug Target 2009; 18:212-22. [DOI: 10.3109/10611860903386920] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Babiuk S, Babiuk LA, van Drunen Littel-van den Hurk S. Editorial: DNA Vaccination: A Simple Concept with Challenges Regarding Implementation. Int Rev Immunol 2009; 25:51-81. [PMID: 16818365 DOI: 10.1080/08830180600743008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Nyangoga H, Zecheru T, Filmon R, Baslé MF, Cincu C, Chappard D. Synthesis and use of pHEMA microbeads with human EA.hy 926 endothelial cells. J Biomed Mater Res B Appl Biomater 2009; 89:501-507. [PMID: 18937265 DOI: 10.1002/jbm.b.31240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer has become a major problem in public health and the resulting bone metastases a worsening factor. Facing it, different strategies have been proposed and mechanisms involved in tumor angiogenesis are being studied. Enhanced permeability retention (EPR) effect is a key step in designing new anticancer drugs. We have prepared poly 2-hydroxyethyl methacrylate (pHEMA) microbeads to target human endothelial EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells. Microbeads were synthesized by emulsion precipitation method and carried positive or negative charges. EA.hy 926 cells were cultured in 24-well plates and microbeads were deposited on cells at various times. Scanning and transmission electron microscopy, flow cytometry, confocal microscopy, and three-dimensional (3D) reconstruction were used to characterize microbeads and their location outside and inside cells. Microbeads were uptaken by endothelial cells with a better internalization for negatively charged microbeads. 3D reconstruction of confocal optical sections clearly evidenced the uptake and internalization of microbeads by endothelial cells. pHEMA microbeads could represent potential drug carrier in tumor model of metastases.
Collapse
Affiliation(s)
- Hervé Nyangoga
- INSERM, U922-LHEA, Faculté de Médecine, 49045 Angers Cedex, France
| | - Teodora Zecheru
- INSERM, U922-LHEA, Faculté de Médecine, 49045 Angers Cedex, France.,Department of Macromolecular Compounds, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 010072, Romania
| | - Robert Filmon
- INSERM, U922-LHEA, Faculté de Médecine, 49045 Angers Cedex, France
| | | | - Corneliu Cincu
- INSERM, U922-LHEA, Faculté de Médecine, 49045 Angers Cedex, France.,Department of Macromolecular Compounds, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 010072, Romania
| | - Daniel Chappard
- INSERM, U922-LHEA, Faculté de Médecine, 49045 Angers Cedex, France
| |
Collapse
|
27
|
Yu W, Liu C, Ye J, Zou W, Zhang N, Xu W. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery. NANOTECHNOLOGY 2009; 20:215102. [PMID: 19423923 DOI: 10.1088/0957-4484/20/21/215102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.
Collapse
Affiliation(s)
- Wangyang Yu
- School of Pharmaceutical Sciences, Shandong University, Ji'nan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Caputo A, Castaldello A, Brocca-Cofano E, Voltan R, Bortolazzi F, Altavilla G, Sparnacci K, Laus M, Tondelli L, Gavioli R, Ensoli B. Induction of humoral and enhanced cellular immune responses by novel core-shell nanosphere- and microsphere-based vaccine formulations following systemic and mucosal administration. Vaccine 2009; 27:3605-15. [PMID: 19464541 DOI: 10.1016/j.vaccine.2009.03.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 03/12/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
Abstract
Anionic surfactant-free polymeric core-shell nanospheres and microspheres were previously described with an inner core constituted by poly(methylmethacrylate) (PMMA) and a highly hydrophilic outer shell composed of a hydrosoluble co-polymer (Eudragit L100-55). The outer shell is tightly linked to the core and bears carboxylic groups capable of adsorbing high amounts (antigen loading ability of up to 20%, w/w) of native basic proteins, mainly by electrostatic interactions, while preserving their activity. In the present study we have evaluated in mice the safety and immunogenicity of new vaccine formulations composed of these nano- and microspheres and the HIV-1 Tat protein. Vaccines were administered by different routes, including intramuscular, subcutaneous or intranasal and the results were compared to immunization with Tat alone or with Tat delivered with the alum adjuvant. The data demonstrate that the nano- and microspheres/Tat formulations are safe and induce robust and long-lasting cellular and humoral responses in mice after systemic and/or mucosal immunization. These delivery systems may have great potential for novel Tat protein-based vaccines against HIV-1 and hold promise for other protein-based vaccines.
Collapse
Affiliation(s)
- Antonella Caputo
- Department of Histology, University of Padova, Via A. Gabelli 63, 35122 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nguyen DN, Green JJ, Chan JM, Longer R, Anderson DG. Polymeric Materials for Gene Delivery and DNA Vaccination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:847-867. [PMID: 28413262 PMCID: PMC5391878 DOI: 10.1002/adma.200801478] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gene delivery holds great potential for the treatment of many different diseases. Vaccination with DNA holds particular promise, and may provide a solution to many technical challenges that hinder traditional vaccine systems including rapid development and production and induction of robust cell-mediated immune responses. However, few candidate DNA vaccines have progressed past preclinical development and none have been approved for human use. This Review focuses on the recent progress and challenges facing materials design for nonviral DNA vaccine drug delivery systems. In particular, we highlight work on new polymeric materials and their effects on protective immune activation, gene delivery, and current efforts to optimize polymeric delivery systems for DNA vaccination.
Collapse
Affiliation(s)
- David N Nguyen
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Jordan J Green
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Juliana M Chan
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Robert Longer
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| |
Collapse
|
30
|
Efficient Modulation of T-cell Response by Dual-mode, Single-carrier Delivery of Cytokine-targeted siRNA and DNA Vaccine to Antigen-presenting Cells. Mol Ther 2008; 16:2011-21. [DOI: 10.1038/mt.2008.206] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
31
|
Benko S, Magyarics Z, Szabó A, Rajnavölgyi E. Dendritic cell subtypes as primary targets of vaccines: the emerging role and cross-talk of pattern recognition receptors. Biol Chem 2008; 389:469-85. [PMID: 18953714 DOI: 10.1515/bc.2008.054] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Preventive vaccination is the most successful approach against infectious diseases and has a great impact on world health. Vaccines operate through the activation of innate immunity that helps to stimulate antigen-specific T- and B-lymphocytes. These events are orchestrated by dendritic cells (DCs) that are able to sample foreign structures and concomitantly sense 'danger signals'. Thus, DCs provide a functional link between innate and acquired immunity, and due to their regulatory potential are referred to as natural adjuvants. Human conventional and plasmacytoid DCs express different sets of well-characterized Toll-like membrane receptors (TLRs) that recognize a broad range of conserved molecular patterns of pathogens. The recently discovered cytosolic Nod-like receptors (NLRs) and RIG-like helicases (RLHs) also turned out to participate in pathogen recognition and modulation of immune responses through interacting signaling pathways. As a result of their collaboration, the TLR, NLR and RLH recognition systems induce the secretion of different combinations of cytokines that play a fundamental role in T-cell activation and instruction. Ligands of the innate recognition systems emerge as new adjuvants for vaccine design, whereas manipulation of the signaling pathways mediated by these receptors offers new avenues for fine tuning immune responses and optimizing immunotherapies.
Collapse
Affiliation(s)
- Szilvia Benko
- Institute of Immunology, Medical and Health Science Centre, University of Debrecen, H-4032 Debrecen, Hungary
| | | | | | | |
Collapse
|
32
|
Abstract
Isolation of measles virus in tissue culture by Enders and colleagues in the 1960s led to the development of the first measles vaccines. An inactivated vaccine provided only short-term protection and induced poor T cell responses and antibody that did not undergo affinity maturation. The response to this vaccine primed for atypical measles, a more severe form of measles, and was withdrawn. A live attenuated virus vaccine has been highly successful in protection from measles and in elimination of endemic measles virus transmission with the use of two doses. This vaccine is administered by injection between 9 and 15 months of age. Measles control would be facilitated if infants could be immunized at a younger age, if the vaccine were thermostable, and if delivery did not require a needle and syringe. To these ends, new vaccines are under development using macaques as an animal model and various combinations of the H, F, and N viral proteins. Promising studies have been reported using DNA vaccines, subunit vaccines, and virus-vectored vaccines.
Collapse
Affiliation(s)
- D E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. Rm E5132 Baltimore, MD 21205, USA.
| | | |
Collapse
|
33
|
Induction of broad CD4+ and CD8+ T-cell responses and cross-neutralizing antibodies against hepatitis C virus by vaccination with Th1-adjuvanted polypeptides followed by defective alphaviral particles expressing envelope glycoproteins gpE1 and gpE2 and nonstructural proteins 3, 4, and 5. J Virol 2008; 82:7492-503. [PMID: 18508900 DOI: 10.1128/jvi.02743-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Broad, multispecific CD4(+) and CD8(+) T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8(+) T-cell responses but low CD4(+) T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4(+) T helper responses but no CD8(+) T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4(+) T helper responses but no CD8(+) T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4(+) and CD8(+) T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen.
Collapse
|
34
|
Schultze V, D'Agosto V, Wack A, Novicki D, Zorn J, Hennig R. Safety of MF59 adjuvant. Vaccine 2008; 26:3209-22. [PMID: 18462843 DOI: 10.1016/j.vaccine.2008.03.093] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 03/12/2008] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
The need to enhance the immunogenicity of purified subunit antigens has prompted the development of new adjuvants. The adjuvant emulsion MF59 has been tested in animals in combination with different antigens and finally evaluated in humans. It was licensed after the successful outcome of preclinical and clinical testing. This paper summarizes the main characteristics of the MF59 adjuvant, including animal testing, clinical experience with various vaccines, and information from current postmarketing surveillance data. This review supports the hypothesis that MF59 is a safe adjuvant for human use.
Collapse
|
35
|
Combadière B, Mahé B. Particle-based vaccines for transcutaneous vaccination. Comp Immunol Microbiol Infect Dis 2008; 31:293-315. [PMID: 17915323 DOI: 10.1016/j.cimid.2007.07.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 01/12/2023]
Abstract
Immunization concepts evolve with increasing knowledge of how the immune system works and the development of new vaccination methods. Traditional vaccines are made of live, attenuated, killed or fragmented pathogens. New vaccine strategies can take advantage of particulate compounds--microspheres or nanoparticles--to target antigen-presenting cells better, which must subsequently reach the secondary lymphoid organs, which are the sites of the immune response. The use of the skin as a target organ for vaccine delivery stems from the fact that immature dendritic cells (DCs), which are professional antigen-presenting cells can be found at high density in the epidermis and dermis of human or animal skin. This has led to design various methods of dermal or transcutaneous vaccination. The quality and duration of the humoral and cellular responses to vaccination depend on the appropriate targeting of antigen-presenting cells, of the vaccine dose, route of administration and use of adjuvant. In this review, we will focus on the use of micro- and nano-particles to target the skin antigen-presenting cells and will discuss recent advances in the field of transcutaneous vaccination in animal models and humans.
Collapse
Affiliation(s)
- Behazine Combadière
- Institut National de la Santé et de la Recherche Médicale (INSERM) U543, Université Pierre et Marie Curie-Paris6, 91 Boulevard de l'Hôpital, 75634 Paris, France.
| | | |
Collapse
|
36
|
Dose-dependent protection against or exacerbation of disease by a polylactide glycolide microparticle-adsorbed, alphavirus-based measles virus DNA vaccine in rhesus macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:697-706. [PMID: 18287579 DOI: 10.1128/cvi.00045-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Measles remains an important cause of vaccine-preventable child mortality. Development of a low-cost, heat-stable vaccine for infants under the age of 6 months could improve measles control by facilitating delivery at the time of other vaccines and by closing a window of susceptibility prior to immunization at 9 months of age. DNA vaccines hold promise for development, but achieving protective levels of antibody has been difficult and there is an incomplete understanding of protective immunity. In the current study, we evaluated the use of a layered alphavirus DNA/RNA vector encoding measles virus H (SINCP-H) adsorbed onto polylactide glycolide (PLG) microparticles. In mice, antibody and T-cell responses to PLG-formulated DNA were substantially improved compared to those to naked DNA. Rhesus macaques received two doses of PLG/SINCP-H delivered either intramuscularly (0.5 mg) or intradermally (0.5 or 0.1 mg). Antibody and T-cell responses were induced but not sustained. On challenge, the intramuscularly vaccinated monkeys did not develop rashes and had lower viremias than vector-treated control monkeys. Monkeys vaccinated with the same dose intradermally developed rashes and viremia. Monkeys vaccinated intradermally with the low dose developed more severe rashes, with histopathologic evidence of syncytia and intense dermal and epidermal inflammation, eosinophilia, and higher viremia compared to vector-treated control monkeys. Protection after challenge correlated with gamma interferon-producing T cells and with early production of high-avidity antibody that bound wild-type H protein. We conclude that PLG/SINCP-H is most efficacious when delivered intramuscularly but does not provide an advantage over standard DNA vaccines for protection against measles.
Collapse
|
37
|
|
38
|
Helson R, Olszewska W, Singh M, Megede JZ, Melero JA, O'Hagan D, Openshaw PJM. Polylactide-co-glycolide (PLG) microparticles modify the immune response to DNA vaccination. Vaccine 2007; 26:753-61. [PMID: 18191308 DOI: 10.1016/j.vaccine.2007.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/16/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
Priming with the major surface glycoprotein G of respiratory syncytial virus (RSV) expressed by recombinant vaccinia leads to strong Th2 responses and lung eosinophilia during viral challenge. We now show that DNA vaccination in BALB/c mice with plasmids encoding G attenuated RSV replication but also enhanced disease with lung eosinophilia and increased IL-4/5 production. However, formulating the DNA with PLG microparticles reduced the severity of disease during RSV challenge without significantly lessening protection against viral replication. PLG formulation greatly reduced lung eosinophilia and prevented the induction of IL-4 and IL-5 during challenge, accompanied by a less marked CD4+ T cell response and a restoration of the CD8+ T cell recruitment seen during infection of non-vaccinated animals. After RSV challenge, lung eosinophilia was enhanced and prolonged in mice vaccinated with DNA encoding a secreted form of G; this effect was virtually prevented by PLG formulation. Therefore, PLG microparticulate formulation modifies the pattern of immune responses induced by DNA vaccination boosts CD8+ T cell priming and attenuates Th2 responses. We speculate that PLG microparticles affect antigen uptake and processing, thereby influencing the outcome of DNA vaccination.
Collapse
Affiliation(s)
- Rebecca Helson
- Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College, St. Mary's Campus, Paddington, London W2 1PG, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
O'Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines 2007; 6:699-710. [PMID: 17931151 DOI: 10.1586/14760584.6.5.699] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In preclinical studies, MF59 adjuvant offered improved protection against influenza virus challenge and significantly reduced the viral load in the lungs of challenged mice. In humans, MF59 is a safe and potent vaccine adjuvant that has been licensed in more than 20 countries (Fluad [Novartis Vaccines and Diagnostics Inc., MA, USA]). The safety profile of an MF59-adjuvanted vaccine is well established through a large safety database. MF59 adjuvant has had a significant impact on the immunogenicity of influenza vaccines in the elderly and in adults who are chronically ill. MF59 has also been shown to have a significant impact on the immunogenicity of pandemic influenza vaccines. MF59 allows for broader cross-reactivity against viral strains not included in the vaccine. MF59 has been shown to be more potent for both antibody and T-cell responses than aluminum-based adjuvants. MF59 has broad potential to be used as a safe and effective vaccine adjuvant for a wide range of vaccine types.
Collapse
Affiliation(s)
- Derek T O'Hagan
- Novartis Vaccines and Diagnostics, Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
40
|
Liman M, Peiser L, Zimmer G, Pröpsting M, Naim HY, Rautenschlein S. A genetically engineered prime-boost vaccination strategy for oculonasal delivery with poly(D,L-lactic-co-glycolic acid) microparticles against infection of turkeys with avian Metapneumovirus. Vaccine 2007; 25:7914-26. [PMID: 17920166 DOI: 10.1016/j.vaccine.2007.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 07/11/2007] [Accepted: 09/02/2007] [Indexed: 11/24/2022]
Abstract
In this study we demonstrated the use of an oculonasally delivered poly(D,L-lactic-co-glycolic acid) microparticle (PLGA-MP)-based and genetically engineered vaccination strategy in the avian system. An avian Metapneumovirus (aMPV) fusion (F) protein-encoding plasmid vaccine and the corresponding recombinant protein vaccine were produced and bound to or encapsulated by PLGA-MP, respectively. The PLGA-MP as the controlled release system was shown in vitro to not induce any cytopathic effects and to efficiently deliver the F protein-based aMPV-vaccines to avian cells for further processing. Vaccination of turkeys was carried out by priming with an MP-bound F protein-encoding plasmid vaccine and a booster-vaccination with an MP-encapsulated recombinant F protein. Besides the prime-boost F-specific vaccinated birds, negative control birds inoculated with a mock-MP prime-boost regimen as well as non-vaccinated birds and live vaccinated positive control birds were included in the study. The MP-based immunization of turkeys via the oculonasal route induced systemic humoral immune reactions as well as local and systemic cellular immune reactions, and had no adverse effects on the upper respiratory tract. The F protein-specific prime-boost strategy induced partial protection. After challenge the F protein-specific MP-vaccinated birds showed less clinical signs and histopathological lesions than control birds of mock MP-vaccinated and non-vaccinated groups did. The vaccination improved viral clearance and induced accumulation of local and systemic CD4+ T cells when compared to the mock MP-vaccination. It also induced systemic aMPV-neutralizing antibodies. The comparison of mock- and F protein-specific MP-vaccinated birds to non-vaccinated control birds suggests that aMPV-specific effects as well as adjuvant effects mediated by MP may have contributed to the overall protective effect.
Collapse
Affiliation(s)
- Martin Liman
- Clinic of Poultry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Wintermeyer P, Wands JR. Vaccines to prevent chronic hepatitis C virus infection: current experimental and preclinical developments. J Gastroenterol 2007; 42:424-32. [PMID: 17671756 DOI: 10.1007/s00535-007-2057-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 02/04/2023]
Affiliation(s)
- Philip Wintermeyer
- The Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
42
|
Basarkar A, Devineni D, Palaniappan R, Singh J. Preparation, characterization, cytotoxicity and transfection efficiency of poly(DL-lactide-co-glycolide) and poly(DL-lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA. Int J Pharm 2007; 343:247-54. [PMID: 17611054 PMCID: PMC6186392 DOI: 10.1016/j.ijpharm.2007.05.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 05/12/2007] [Accepted: 05/14/2007] [Indexed: 11/26/2022]
Abstract
The objective of this study was to investigate the effect of formulation parameters (i.e. polymer molecular weight and homogenization speed) on various physicochemical and biological properties of cationic nanoparticles. Cationic nanoparticles were prepared using different molecular weights of poly(DL-lactide-co-glycolide) (PLGA) and poly(DL-lactic acid) (PLA) by double emulsion solvent evaporation at two different homogenization speeds, and were characterized in terms of size, surface charge, morphology, loading efficiency, plasmid release, plasmid integrity, cytotoxicity, and transfection efficiency. Cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used to provide positive charge on the surface of nanoparticles. Reporter plasmid gWIZ Beta-gal was loaded on the surface of nanoparticles by incubation. Use of higher homogenization speed and lower molecular weight polymer led to a decrease in mean particle size, increase in zeta potential, increase in plasmid loading efficiency, and a decrease in burst release. The nanoparticles displayed good morphology as evident from scanning electron micrographs. In vitro cytotoxicity study by MTT assay showed a low toxicity. Structural integrity of the pDNA released from nanoparticles was maintained. Transfecting human embryonic kidney (HEK293) cells with nanoparticles prepared from low molecular weight PLGA and PLA resulted in an increased expression of beta-galactosidase as compared to those prepared from high molecular weight polymer. Our results demonstrate that the PLGA and PLA cationic nanoparticles can be used to achieve prolonged release of pDNA, and the plasmid release rate and transfection efficiency are dependent on the formulation variables.
Collapse
Affiliation(s)
- Ashwin Basarkar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Dilip Devineni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341, USA
| | - Ravi Palaniappan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Fargo, ND 58105, USA
- Corresponding author: Telephone: (701) 231-7943; Facsimile: (701) 231-8333;
| |
Collapse
|
43
|
Fischer S, Uetz-von Allmen E, Waeckerle-Men Y, Groettrup M, Merkle HP, Gander B. The preservation of phenotype and functionality of dendritic cells upon phagocytosis of polyelectrolyte-coated PLGA microparticles. Biomaterials 2007; 28:994-1004. [PMID: 17118442 DOI: 10.1016/j.biomaterials.2006.10.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 10/31/2006] [Indexed: 11/29/2022]
Abstract
Biodegradable microparticles (MP) represent a promising and efficient delivery system for parenteral vaccination. Recently, MP have also been explored as tool for the ex vivo antigen loading of professional antigen-presenting cells such as dendritic cells (DC) to be used as cellular vaccines. The purpose of this study was to investigate various polycationic coatings on poly(lactide-co-glycolide) (PLGA) MP, with regard to their effect on phenotypic and functional maturation of monocyte-derived DC (MoDC) that had previously been loaded with the MP in vitro. The preparation and concomitant coating of the PLGA was performed by means of a solvent extraction/evaporation method using a recently developed microextrusion-based technique. The polyelectrolytes tested for MP coating encompassed aminodextran, chitosan, poly(ethylene imine) (PEI), poly(L-lysine) and protamine. Uncoated and differently coated PLGA MP were fed to immature MoDC, which ingested efficiently the different MP types irrespective of their surface coating. The MP-loaded immature MoDC were then matured with the help of a cytokine/PGE-2 maturation cocktail. Here, the presence of the ingested MP did not affect the MoDC maturation in terms of expression of the surface markers CD80, CD83, CD86, HLA-DR and MMR, irrespective of the MP surface coating. Importantly, none of the PLGA MP types alone induced significant maturation of MoDC in the absence of the maturation cocktail. MP-loaded and subsequently matured MoDC expressed high levels of the chemokine receptor CCR7, whose functional activity was evidenced by the migration of MoDC towards CCL21, irrespective of the presence of ingested MP. Further, MP-loaded and subsequently matured MoDC also secreted comparable amounts of IL-10 and IL-12p70, irrespective of the presence of ingested MP except for PEI-coated PLGA MP, which enhanced significantly the secretion of IL-12p70 in mature MoDC. In conclusion, phenotypic and functional maturation of MoDC by means of a maturation cocktail remained unchanged irrespective of the presence of previously ingested differently coated PLGA MP. This offers interesting perspectives for using these particulate systems together with entrapped antigens for ex vivo loading of MoDC in view of cellular immunotherapy.
Collapse
Affiliation(s)
- Stefan Fischer
- Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
O'Hagan DT, Singh M, Ulmer JB. Microparticle-based technologies for vaccines. Methods 2007; 40:10-9. [PMID: 16997709 DOI: 10.1016/j.ymeth.2006.05.017] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 05/12/2006] [Indexed: 11/19/2022] Open
Abstract
Microparticles have been effectively used for many years as delivery systems for drugs and therapeutic proteins. Their application to the delivery of vaccines is not as extensive, but is growing. Utility has been demonstrated for the delivery of various types of vaccines (e.g., recombinant proteins, plasmid DNA, and peptides) and other vaccine components (e.g., immune potentiators). With respect to delivery of immune potentiators, synergistic effects are often observed whereby much more potent immune responses are induced with a combination than with either component alone. Hence, the prospects for broad application of microparticle-based delivery systems for vaccines are excellent.
Collapse
Affiliation(s)
- Derek T O'Hagan
- Vaccines Research, Novartis Vaccines and Diagnostics, Inc., 4560 Horton Street, Mail Stop 4.3, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
45
|
Capone S, Zampaglione I, Vitelli A, Pezzanera M, Kierstead L, Burns J, Ruggeri L, Arcuri M, Cappelletti M, Meola A, Ercole BB, Tafi R, Santini C, Luzzago A, Fu TM, Colloca S, Ciliberto G, Cortese R, Nicosia A, Fattori E, Folgori A. Modulation of the immune response induced by gene electrotransfer of a hepatitis C virus DNA vaccine in nonhuman primates. THE JOURNAL OF IMMUNOLOGY 2007; 177:7462-71. [PMID: 17082666 DOI: 10.4049/jimmunol.177.10.7462] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Induction of multispecific, functional CD4+ and CD8+ T cells is the immunological hallmark of acute self-limiting hepatitis C virus (HCV) infection in humans. In the present study, we showed that gene electrotransfer (GET) of a novel candidate DNA vaccine encoding an optimized version of the nonstructural region of HCV (from NS3 to NS5B) induced substantially more potent, broad, and long-lasting CD4+ and CD8+ cellular immunity than naked DNA injection in mice and in rhesus macaques as measured by a combination of assays, including IFN-gamma ELISPOT, intracellular cytokine staining, and cytotoxic T cell assays. A protocol based on three injections of DNA with GET induced a substantially higher CD4+ T cell response than an adenovirus 6-based viral vector encoding the same Ag. To better evaluate the immunological potency and probability of success of this vaccine, we have immunized two chimpanzees and have compared vaccine-induced cell-mediated immunity to that measured in acute self-limiting infection in humans. GET of the candidate HCV vaccine led to vigorous, multispecific IFN-gamma+CD8+ and CD4+ T lymphocyte responses in chimpanzees, which were comparable to those measured in five individuals that cleared spontaneously HCV infection. These data support the hypothesis that T cell responses elicited by the present strategy could be beneficial in prophylactic vaccine approaches against HCV.
Collapse
Affiliation(s)
- Stefania Capone
- Istituto di Ricerche di Biologia Molecolare, P. Angeletti, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vajdy M, Selby M, Medina-Selby A, Coit D, Hall J, Tandeske L, Chien D, Hu C, Rosa D, Singh M, Kazzaz J, Nguyen S, Coates S, Ng P, Abrignani S, Lin YL, Houghton M, O'Hagan DT. Hepatitis C virus polyprotein vaccine formulations capable of inducing broad antibody and cellular immune responses. J Gen Virol 2006; 87:2253-2262. [PMID: 16847121 DOI: 10.1099/vir.0.81849-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although approximately 3 % of the world's population is infected with Hepatitis C virus (HCV), there is no prophylactic vaccine available. This study reports the design, cloning and purification of a single polyprotein comprising the HCV core protein and non-structural proteins NS3, NS4a, NS4b, NS5a and NS5b. The immunogenicity of this polyprotein, which was formulated in alum, oil-in-water emulsion MF59 or poly(dl-lactide co-glycolide) in the presence or absence of CpG adjuvant, was then determined in a murine model for induction of B- and T-cell responses. The addition of adjuvants or a delivery system to the HCV polyprotein enhanced serum antibody and T-cell proliferative responses, as well as IFN-gamma responses, by CD4+ T cells. The antibody responses were mainly against the NS3 and NS5 components of the polyprotein and relatively poor responses were elicited against NS4 and the core components. IFN-gamma responses, however, were induced against all of the individual components of the polyprotein. These data suggest that the HCV polyprotein delivered with adjuvants induces broad B- and T-cell responses and could be a vaccine candidate against HCV.
Collapse
Affiliation(s)
- Michael Vajdy
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Mark Selby
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | | | - Doris Coit
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - John Hall
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Laura Tandeske
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - David Chien
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Celine Hu
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Domenico Rosa
- Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy
| | - Manmohan Singh
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Jina Kazzaz
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Steve Nguyen
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Steve Coates
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | - Philip Ng
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | | | - Yin-Ling Lin
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| | | | - Derek T O'Hagan
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA
| |
Collapse
|
47
|
Wischke C, Borchert HH, Zimmermann J, Siebenbrodt I, Lorenzen DR. Stable cationic microparticles for enhanced model antigen delivery to dendritic cells. J Control Release 2006; 114:359-68. [PMID: 16889866 DOI: 10.1016/j.jconrel.2006.06.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/13/2006] [Accepted: 06/19/2006] [Indexed: 11/29/2022]
Abstract
The objectives of this work were (i) to prepare physically stable cationic microparticles and (ii) to study the impact of the surface properties on microparticle phagocytosis and the phenotype of dendritic cells (DC). Protein loaded biodegradable microparticles from poly(lactic-co-glycolic acid) [PLGA] were produced in a micromixer-based w/o/w solvent evaporation procedure. Anionic particles were obtained by using polyvinyl alcohol (PVA) as stabilizing agent; for cationic surfaces cetyltrimethylammonium bromide (CTAB) and chitosan/PVA or DEAE-dextran/PVA blends were evaluated. In phagocytosis studies human monocytes and monocyte-derived DC were incubated with microparticles and analysed by flow cytometry. While CTAB modified microparticles lost their positive charge and aggregated due to CTAB desorption from the particle surface, the modification with chitosan and DEAE-dextran resulted in stable microparticles without cell toxicity. Due to a very low endotoxin content, phagocytosis of anionic and cationic microparticles did not induce an upregulation of maturation-associated surface markers on DC. DEAE-dextran modified microparticles showed an enhanced model protein delivery into phagocytic cells. Overall, PLGA microparticles are suitable vehicles for protein delivery to DC, which might be used for DC-based cell therapies.
Collapse
Affiliation(s)
- Christian Wischke
- Department of Pharmacy, Free University of Berlin, Kelchstrasse 31, D-12169 Berlin, Germany
| | | | | | | | | |
Collapse
|
48
|
Majid AM, Ezelle H, Shah S, Barber GN. Evaluating replication-defective vesicular stomatitis virus as a vaccine vehicle. J Virol 2006; 80:6993-7008. [PMID: 16809305 PMCID: PMC1489030 DOI: 10.1128/jvi.00365-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have generated replication-competent (VSV-C/E1/E2) and nonpropagating (VSVDeltaG-C/E1/E2) vesicular stomatitis virus (VSV) contiguously expressing the structural proteins of hepatitis C virus (HCV; core [C] and glycoproteins E1 and E2) and report on their immunogenicity in murine models. VSV-C/E1/E2 and VSVDeltaG-C/E1/E2 expressed high levels of HCV C, E1, and E2, which were authentically posttranslationally processed. Both VSV-expressed HCV E1-E2 glycoproteins were found to form noncovalently linked heterodimers and appeared to be correctly folded, as confirmed by coimmunoprecipitation analysis using conformationally sensitive anti-HCV-E2 monoclonal antibodies (MAbs). Intravenous or intraperitoneal immunization of BALB/c mice with VSV-C/E1/E2 or VSVDeltaG-C/E1/E2 resulted in significant and surprisingly comparable HCV core or E2 antibody responses compared to those of control mice. In addition, both virus types generated HCV C-, E1-, or E2-specific gamma interferon (IFN-gamma)-producing CD8(+) T cells, as determined by enzyme-linked immunospot (ELISPOT) analysis. Mice immunized with VSVDeltaG-C/E1/E2 were also protected against the formation of tumors expressing HCV E2 (CT26-hghE2t) and exhibited CT26-hghE2t-specific IFN-gamma-producing and E2-specific CD8(+) T-cell activity. Finally, recombinant vaccinia virus (vvHCV.S) expressing the HCV structural proteins replicated at significantly lower levels when inoculated into mice immunized with VSV-C/E1/E2 or VSVDeltaG-C/E1/E2, but not with control viruses. Our data therefore illustrate that potentially safer replication-defective VSV can be successfully engineered to express high levels of antigenically authentic HCV glycoproteins. In addition, this strategy may therefore serve in effective vaccine and immunotherapy-based approaches to the treatment of HCV-related disease.
Collapse
Affiliation(s)
- Ayaz M Majid
- Department of Microbiology and Immunology, University of Miami School of Medicine, FL 33136, USA
| | | | | | | |
Collapse
|
49
|
Castaldello A, Brocca-Cofano E, Voltan R, Triulzi C, Altavilla G, Laus M, Sparnacci K, Ballestri M, Tondelli L, Fortini C, Gavioli R, Ensoli B, Caputo A. DNA prime and protein boost immunization with innovative polymeric cationic core-shell nanoparticles elicits broad immune responses and strongly enhance cellular responses of HIV-1 tat DNA vaccination. Vaccine 2006; 24:5655-69. [PMID: 16781023 DOI: 10.1016/j.vaccine.2006.05.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/10/2006] [Accepted: 05/16/2006] [Indexed: 11/19/2022]
Abstract
Novel biocompatible core-shell cationic nanoparticles, composed of an inner hard core of poly(methylmethacrylate) (PMMA) and a hydrophilic tentacular shell bearing positively charged groups and poly(ethyleneglycol) chains covalently bound to the core, were prepared by emulsion polymerization and characterized in vitro and in vivo for DNA vaccine applications. The nanoparticles reversibly adsorbed large amounts of DNA, mainly through electrostatic interactions, preserved its functional structure, efficiently delivered it intracellularly, and were not toxic in vitro or in mice. Furthermore, two intramuscular (i.m.) immunizations (4 weeks apart) with a very low dose (1 microg) of the plasmid pCV-tat delivered by these nanoparticles followed by one or two protein boosts induced significant antigen-specific humoral and cellular responses and greatly increased Th1-type T cell responses and CTLs against HIV-1 Tat.
Collapse
Affiliation(s)
- Arianna Castaldello
- Department of Histology, Microbiology and Medical Biotechnology, Section of Microbiology, University of Padova, Via A. Gabelli 63, 35122 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Martin P, Inchauspé G. Hepatitis C vaccines. DRUG DISCOVERY TODAY: THERAPEUTIC STRATEGIES 2006; 3:203-209. [DOI: 10.1016/j.ddstr.2006.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|