1
|
Santacroce L, Topi S, Cafiero C, Palmirotta R, Jirillo E. The Role of the Immune Response to Helicobacter pylori Antigens and Its Relevance in Gastric Disorders. GASTROINTESTINAL DISORDERS 2025; 7:6. [DOI: 10.3390/gidisord7010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Helicobacter pylori (H.p.) is a Gram-negative bacterium endowed with gastric tropism. H.p. infection is widely spread throughout the world, accounting for various pathologies, such as peptic ulcer, gastric cancer, mucosa-associated lymphoid tissue lymphoma, and extra-gastric manifestations. This bacterium possesses several virulence factors, e.g., lipopolysaccharides (LPS), the toxins CagA and VacA, and adhesins, which elicit a robust immune response during the initial phase of the infection. Of note, the lipid A moiety of the LPS exhibits a lower endotoxic potency than that of other LPSs, thus facilitating infection through a mechanism of immune escape. H.p. colonization of the gastric mucosa induces an initial protective immune response with innate immune cells, e.g., neutrophils, monocytes, and macrophages, which engulf and kill bacteria. Moreover, the same cells, along with gastric epithelial cells, secrete cytokines and chemokines, which recruit T cells [T helper (h)1 and Th17 cells] to the site of infection, thus leading to H.p. eradication. In a large subset of individuals, the perturbation of such an immune equilibrium leads to a harmful response, with an expansion of T regulatory (TREG) cells, which suppress the protective immune response. In fact, TREG cells, via the production of interleukin (IL)-10, downregulate Th1- and Th17-related cytokines, thus allowing H.p. survival and the perpetuation of inflammation. As far as the humoral immune response is concerned, B cells, upon H.p. stimulation, produce autoreactive antibodies, and IgG anti-Lex antibodies are harmful to the gastric mucosa. In this review, the structure and function of H.p. antigenic components and immune mechanisms elicited by this bacterium will be described in relation to gastric damage.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | | | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
2
|
Dore MP, Pes GM. Trained Immunity and Trained Tolerance: The Case of Helicobacter pylori Infection. Int J Mol Sci 2024; 25:5856. [PMID: 38892046 PMCID: PMC11172748 DOI: 10.3390/ijms25115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Trained immunity is a concept in immunology in which innate immune cells, such as monocytes and macrophages, exhibit enhanced responsiveness and memory-like characteristics following initial contact with a pathogenic stimulus that may promote a more effective immune defense following subsequent contact with the same pathogen. Helicobacter pylori, a bacterium that colonizes the stomach lining, is etiologically associated with various gastrointestinal diseases, including gastritis, peptic ulcer, gastric adenocarcinoma, MALT lymphoma, and extra gastric disorders. It has been demonstrated that repeated exposure to H. pylori can induce trained immunity in the innate immune cells of the gastric mucosa, which become more responsive and better able to respond to subsequent H. pylori infections. However, interactions between H. pylori and trained immunity are intricate and produce both beneficial and detrimental effects. H. pylori infection is characterized histologically as the presence of both an acute and chronic inflammatory response called acute-on-chronic inflammation, or gastritis. The clinical outcomes of ongoing inflammation include intestinal metaplasia, gastric atrophy, and dysplasia. These same mechanisms may also reduce immunotolerance and trigger autoimmune pathologies in the host. This review focuses on the relationship between trained immunity and H. pylori and underscores the dynamic interplay between the immune system and the pathogen in the context of gastric colonization and inflammation.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza Blvd, Houston, TX 77030, USA
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
| |
Collapse
|
3
|
Zimmermann J, van Haren SD, Diray-Arce J, Adriawan IR, Wørzner K, Krog RT, Guleed S, Hu T, Mortensen R, Dietrich J, Solbak SMØ, Levy O, Christensen D, Pedersen GK. Co-adjuvanting DDA/TDB liposomes with a TLR7 agonist allows for IgG2a/c class-switching in the absence of Th1 cells. NPJ Vaccines 2023; 8:189. [PMID: 38135685 PMCID: PMC10746746 DOI: 10.1038/s41541-023-00781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Class-switching to IgG2a/c in mice is a hallmark response to intracellular pathogens. T cells can promote class-switching and the predominant pathway for induction of IgG2a/c antibody responses has been suggested to be via stimulation from Th1 cells. We previously formulated CAF®01 (cationic liposomes containing dimethyldioctadecylammonium bromide (DDA) and Trehalose-6,6-dibehenate (TDB)) with the lipidated TLR7/8 agonist 3M-052 (DDA/TDB/3M-052), which promoted robust Th1 immunity in newborn mice. When testing this adjuvant in adult mice using the recombinant Chlamydia trachomatis (C.t.) vaccine antigen CTH522, it similarly enhanced IgG2a/c responses compared to DDA/TDB, but surprisingly reduced the magnitude of the IFN-γ+Th1 response in a TLR7 agonist dose-dependent manner. Single-cell RNA-sequencing revealed that DDA/TDB/3M-052 liposomes initiated early transcription of class-switch regulating genes directly in pre-germinal center B cells. Mixed bone marrow chimeras further demonstrated that this adjuvant did not require Th1 cells for IgG2a/c switching, but rather facilitated TLR7-dependent T-bet programming directly in B cells. This study underlines that adjuvant-directed IgG2a/c class-switching in vivo can occur in the absence of T-cell help, via direct activation of TLR7 on B cells and positions DDA/TDB/3M-052 as a powerful adjuvant capable of eliciting type I-like immunity in B cells without strong induction of Th1 responses.
Collapse
Affiliation(s)
- Julie Zimmermann
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Simon D van Haren
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Katharina Wørzner
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ricki T Krog
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Safia Guleed
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Tu Hu
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Rasmus Mortensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Sara M Ø Solbak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Gabriel K Pedersen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
O'Connor HJ. Forty years of Helicobacter pylori infection and changes in findings at esophagogastroduodenoscopy. Helicobacter 2023; 28:e13026. [PMID: 37818739 DOI: 10.1111/hel.13026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND It is 40 years since the discovery of Helicobacter pylori infection. Over that time major changes have occurred in esophagogastroduodenoscopy (EGD) findings. The aim of this review is to describe these changes, and the important role H. pylori infection has played in their evolution. METHODS References were identified through searches of PubMed using the search terms-endoscopy time trends, peptic ulcer disease, gastroesophageal reflux disease, upper gastrointestinal cancer, gastric polyps, H. pylori, eosinophilic gastrointestinal disorders, and celiac disease, from 1970 through December 2021. RESULTS The prevalence of H. pylori infection has fallen and consequently, H. pylori-positive peptic ulcer disease has become rare. Gastroesophageal reflux disease is now the commonest disorder diagnosed at EGD, and Barrett's esophagus has increased in parallel. Cancer of the distal stomach has fallen while esophageal adenocarcinoma and reflux-related cardia cancer have risen. Gastric polyps have changed from hyperplastic and adenomas to sporadic fundic gland polyps. Antimicrobial resistance has made H. pylori infection more difficult to eradicate. Eosinophilic gastrointestinal disorders, particularly eosinophilic esophagitis, have emerged as important new allergic disorders. Celiac disease has changed and increased. CONCLUSIONS EGD findings appear to have changed from features suggesting a H. pylori-positive "phenotype" 40 years ago to a H. pylori-negative "phenotype" today. These changes have major implications for the management of gastrointestinal disorders.
Collapse
Affiliation(s)
- Humphrey J O'Connor
- Trinity Academic Gastroenterology Group, Trinity Centre for Health Sciences, The University of Dublin, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Ahmed AAQ, Besio R, Xiao L, Forlino A. Outer Membrane Vesicles (OMVs) as Biomedical Tools and Their Relevance as Immune-Modulating Agents against H. pylori Infections: Current Status and Future Prospects. Int J Mol Sci 2023; 24:ijms24108542. [PMID: 37239888 DOI: 10.3390/ijms24108542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Outer membrane vesicles (OMVs) are lipid-membrane-bounded nanoparticles that are released from Gram-negative bacteria via vesiculation of the outer membrane. They have vital roles in different biological processes and recently, they have received increasing attention as possible candidates for a broad variety of biomedical applications. In particular, OMVs have several characteristics that enable them to be promising candidates for immune modulation against pathogens, such as their ability to induce the host immune responses given their resemblance to the parental bacterial cell. Helicobacter pylori (H. pylori) is a common Gram-negative bacterium that infects half of the world's population and causes several gastrointestinal diseases such as peptic ulcer, gastritis, gastric lymphoma, and gastric carcinoma. The current H. pylori treatment/prevention regimens are poorly effective and have limited success. This review explores the current status and future prospects of OMVs in biomedicine with a special focus on their use as a potential candidate in immune modulation against H. pylori and its associated diseases. The emerging strategies that can be used to design OMVs as viable immunogenic candidates are discussed.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Sadeghi Z, Fasihi-Ramandi M, Davoudi Z, Bouzari S. Multi-Epitope Vaccine Candidates Associated with Mannosylated Chitosan and LPS Conjugated Chitosan Nanoparticles Against Brucella Infection. J Pharm Sci 2023; 112:991-999. [PMID: 36623693 DOI: 10.1016/j.xphs.2022.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 01/09/2023]
Abstract
One promising approach to increase protection against infectious diseases is to use adjuvants that can selectively stimulate the immune responses. In this study, multi-epitope antigens associated with LPS loaded chitosan (LLC) as toll-like receptor agonist or mannosylated chitosan nanoparticle (MCN) as vaccine delivery system were evaluated for their ability to stimulate immune responses to Brucella infection in mice model. Our results indicated that the addition of MCN to our vaccine formulations significantly elicited IFN-γ and IL-2 cytokines and antibody titers, in comparison with the non-adjuvanted vaccine candidates. The present results indicated that multi-epitopes and their administration with LLC or MCN induced Th1 immune response. In addition, vaccine candidates containing MCN provided high percentage of protection against B. melitensis and B. abortus infection. Our results provided support to previous reports indicating that MCNs are attractive adjuvants and addition of this adjuvant to multi-epitopes antigens play an important role in the development of vaccine against Brucella.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Davoudi
- Department of Medical Biotechnology, Zanjan University of Medical Science, Zanjan, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Zhu H, Rollier CS, Pollard AJ. Recent advances in lipopolysaccharide-based glycoconjugate vaccines. Expert Rev Vaccines 2021; 20:1515-1538. [PMID: 34550840 DOI: 10.1080/14760584.2021.1984889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The public health burden caused by pathogenic Gram-negative bacteria is increasingly prominent due to antimicrobial resistance. The surface carbohydrates are potential antigens for vaccines against Gram-negative bacteria. The enhanced immunogenicity of the O-specific polysaccharide (O-SP) moiety of LPS when coupled to a carrier protein may protect against bacterial pathogens. However, because of the toxic lipid A moiety and relatively high costs of O-SP isolation, LPS has not been a popular vaccine antigen until recently. AREAS COVERED In this review, we discuss the rationales for developing LPS-based glycoconjugate vaccines, principles of glycoconjugate-induced immunity, and highlight the recent developments and challenges faced by LPS-based glycoconjugate vaccines. EXPERT OPINION Advances in LPS harvesting, LPS chemical synthesis, and newer carrier proteins in the past decade have propelled LPS-based glycoconjugate vaccines toward further development, through to clinical evaluation. The development of LPS-based glycoconjugates offers a new horizon for vaccine prevention of Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research (Nihr) Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
8
|
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020; 10:27. [PMID: 33375694 PMCID: PMC7824444 DOI: 10.3390/cells10010027] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology of Medical University of Lublin, 20-081 Lublin, Poland;
| | | |
Collapse
|
9
|
MohabatiMobarez A, Salmanian AH, Hosseini AZ, Esmaeili D. Clearance of Helicobacter pylori with formulation rCagA and LPS in a mouse model. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Jafarzadeh A, Nemati M, Jafarzadeh S. The important role played by chemokines influence the clinical outcome of Helicobacter pylori infection. Life Sci 2019; 231:116688. [PMID: 31348950 DOI: 10.1016/j.lfs.2019.116688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/30/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
The extended infection with Helicobacter pylori (H. pylori), one of the most frequent infectious agents in humans, may cause gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. During H. pylori infection, different kinds of inflammatory cells such as dendritic cells, macrophages, neutrophils, mast cells, eosinophils, T cells and B cells are accumulated into the stomach. The interactions between chemokines and their respective receptors recruit particular types of the leukocytes that ultimately determine the nature of immune response and therefore, have a main influence on the consequence of infection. The suitable production of chemokines especially in the early stages of H. pylori infection shapes appropriate immune responses that contribute to the H. pylori elimination. The unbalanced expression of the chemokines can contribute in the induction of inappropriate responses that result in the tissue damage or malignancy. Thus, chemokines and their receptors may be promising potential targets for designing the therapeutic strategies against various types H. pylori-related gastrointestinal disorders. In this review, a comprehensive explanation regarding the roles played by chemokines in H. pylori-mediated peptic ulcer, gastritis and gastric malignancies was provided while presenting the potential utilization of these chemoattractants as therapeutic elements.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Ning Y, Ye J, Wen J, Wu D, Chen Z, Lin Y, Hu B, Luo M, Luo J, Ning L, Li Y. Identification of Two Lpp20 CD4 + T Cell Epitopes in Helicobacter pylori-Infected Subjects. Front Microbiol 2018; 9:884. [PMID: 29875738 PMCID: PMC5974113 DOI: 10.3389/fmicb.2018.00884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/17/2018] [Indexed: 12/22/2022] Open
Abstract
Antigen-specific CD4+ T cells play an essential role in effective immunity against Helicobacter pylori (H. pylori) infection. Lpp20, a conserved lipoprotein of H. pylori, has been investigated as one of major protective antigens for vaccination strategies. Our previous study identified two H-2d-restricted CD4+ T cell epitopes within Lpp20 and an epitope vaccine based on these epitopes was constructed, which protected mice in prophylactic and therapeutic vaccination against H. pylori infection. Immunodominant CD4+ T cell response is an important feature of antiviral, antibacterial, and antitumor cellular immunity. However, while many immunodominant HLA-restricted CD4+ T cell epitopes of H. pylori protective antigens have been identified, immunodominant HLA-restricted Lpp20 CD4+ T cell epitope has not been elucidated. In this study, a systematic method was used to comprehensively evaluate the immunodominant Lpp20-specific CD4+ T cell response in H. pylori-infected patients. Using in vitro recombinant Lpp20 (rLpp20)-specific expanded T cell lines from H. pylori-infected subjects and 27 18mer overlapping synthetic peptides spanned the whole Lpp20 protein, we have shown that L55-72 and L79-96 harbored dominant epitopes for CD4+ T cell responses. Then the core sequence within these two 18mer dominant epitopes was screened by various extended or truncated 13mer peptides. The immunodominant epitope was mapped to L57-69 and L83-95. Various Epstein-Barr virus (EBV) transformed B lymphoblastoid cell lines (B-LCLs) with different HLA alleles were used as antigen presenting cell (APC) to present peptides to CD4+ T cells. The restriction molecules were determined by HLA class-antibody blocking. L57-69 was restricted by DRB1-1501 and L83-95 by DRB1-1602. The epitopes were recognized on autologous dendritic cells (DCs) loaded with rLpp20 but also those pulsed with whole cell lysates of H. pylori (HP-WCL), suggesting that these epitopes are naturally processed and presented by APC. CD4+ T cells were isolated from H. pylori-infected patients and stimulated with L57-69 and L83-95. These two epitopes were able to stimulate CD4+ T cell proliferation. This study may be of value for the future development of potential H. pylori vaccine.
Collapse
Affiliation(s)
- Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jianbin Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Junjie Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Danlin Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhongbiao Chen
- Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Yanqing Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bingxin Hu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Meiqun Luo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jun Luo
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijun Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Bhardwaj R, Verma R, Deka D, Dubey PP, Arora JS, Sethi RS, Tolenkhomba TC, Mukhopadhyay CS. Validation of immunomodulatory effects of lipopolysaccharide through expression profiling of Th1 and Th2 biased genes in Newcastle disease virus vaccinated indigenous chicken. Vet World 2018; 11:437-445. [PMID: 29805207 PMCID: PMC5960781 DOI: 10.14202/vetworld.2018.437-445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/05/2018] [Indexed: 11/18/2022] Open
Abstract
Background and Aim Newcastle disease (ND) is considered one of the most important poultry diseases with chicken morbidity and mortality rates up to 100%. Current vaccination programs allow the use of live attenuated vaccines in the field to protect against the disease, which alone is inefficient and requires repeat booster doses. Toll-like receptor agonists (e.g., lipopolysaccharide [LPS]) as adjuvants are the ones, most extensively studied and have shown to be very promising in delivering a robust balanced immune response. In the present study, we have evaluated the potential of LPS to elicit a strong immune response with respect to the elicitation of both Th1 (cell-mediated) and Th2 (humoral) immune arms. Materials and Methods A total of 72 apparently healthy 1-day-old indigenous unvaccinated chicks were randomly divided into six experimental Groups A to F (n=12). At 8-week of age chicks in Group A, C, and E were vaccinated with live attenuated La Sota strain ND vaccine along with LPS, bovine serum albumin, and normal saline solution, respectively, and those in Group B, D, and E were kept separately without vaccination. Sampling was done on days 0, 1, 3, 7, 14, 21, 35, and 60 after vaccination. After vaccination and respective adjuvant application, Th1 and Th2 cytokine expression were measured in mRNA of both blood and tissue samples. Results The results were validated by, hemagglutination inhibition and enzyme-linked immunosorbent assay tests, to check for the humoral as well as cell-mediated immune response in blood serum levels. The results showed an increase in mRNA expression of the Th1 biased cytokines in Group A (LPS+NDV) as compared to the control groups. Similar mRNA expression pattern was seen in blood as well as tissue samples. Validation of results also indicates an increase in Cell-mediated Immunity as well as a humoral immune response in Group A (LPS+NDV). Conclusion The results of the study provided enough evidence to consider LPS as a potential vaccine adjuvants candidate against ND in chicken.
Collapse
Affiliation(s)
- Rabia Bhardwaj
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 001, Punjab, India
| | - Ramneek Verma
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 001, Punjab, India
| | - Dipak Deka
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 001, Punjab, India
| | - P P Dubey
- Department of Animal Genetics and Breeding, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 001, Punjab, India
| | - J S Arora
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 001, Punjab, India
| | - R S Sethi
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 001, Punjab, India
| | - T C Tolenkhomba
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Central Agricultural University, Mizoram, India
| | - C S Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana - 141 001, Punjab, India
| |
Collapse
|
13
|
Mirzaei N, Poursina F, Moghim S, Rashidi N, Ghasemian Safaei H. The study of H. pylori putative candidate factors for single- and multi-component vaccine development. Crit Rev Microbiol 2017; 43:631-650. [PMID: 28581361 DOI: 10.1080/1040841x.2017.1291578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori has grown to colonize inside the stomach of nearly half of the world's population, turning into the most prevalent infections in the universe. Medical care failures noticeably confirm the need for a vaccine to hinder or deal with H. pylori. This review is planned to discuss the most known factors as a vaccine candidate, including single (AhpC, BG, CagA, KatA, Fla, Hsp, HWC, Lpp, LPS, NAP, OMP, OMV, SOD, Tpx, Urease, VacA) and multi-component vaccines. Many promising results in the field of single and multivalent vaccine can be seen, but there is no satisfactory outcome and neither a prophylactic nor a therapeutic vaccine to treat or eradicate the infection in human has been acquired. Hence, selecting suitable antigen is an important factor as an appropriate adjuvant. Taken all together, the development of efficient anti-H. pylori vaccines relies on the fully understanding of the interactions between H. pylori and its host immune system. Therefore, more work should be done on epitope mapping, analysis of molecular structure, and determination of the antigen determinant region as well due to design a vaccine, preferably a multi-component vaccine to elicit specific CD4 T-cell responses that are required for H. pylori vaccine efficacy.
Collapse
Affiliation(s)
- Nasrin Mirzaei
- a Department of Microbiology , Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| | - Farkhondeh Poursina
- b Department of Microbiology , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Sharareh Moghim
- b Department of Microbiology , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Niloufar Rashidi
- c Department of Laboratory Sciences , Ahvaz University of Medical Sciences , Ahvaz , Iran
| | | |
Collapse
|
14
|
Furuta K, Adachi K, Aimi M, Ishimura N, Sato S, Ishihara S, Kinoshita Y. Case-control study of association of eosinophilic gastrointestinal disorders with Helicobacter pylori infection in Japan. J Clin Biochem Nutr 2013; 53:60-2. [PMID: 23874072 PMCID: PMC3705158 DOI: 10.3164/jcbn.13-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/12/2013] [Indexed: 12/17/2022] Open
Abstract
Recent studies have suggested that decrease in Helicobacter pylori infection may predispose to allergic diseases. However, there are few reports of the relationships of eosinophilic gastrointestinal disorders (EGIDs), especially eosinophilic gastroenteritis (EGE), with H. pylori infection. We investigated the possible influence of H. pylori infection on EGIDs in Japanese patients. We performed a case-control study to investigate the prevalence of H. pylori infection in patients with EGIDs. Eighteen with eosinophilic esophagitis (EoE) and 22 with EGE were enrolled. For each patient, 3 age- and gender-matched normal controls (n = 120) were randomly selected from a population who received a medical check-up between April 2010 and December 2011 at the Shimane Institute of Health Science. The mean ages of the EoE and EGE patients were 50.9 ± 17 and 49.2 ± 20 years, respectively. Males were more frequently seen in the EoE group, while there was no significant gender difference in regard to EGE. Of the patients with EoE, 22.3% were infected with H. pylori, as compared to 55.5% of their age- and sex-matched normal controls. The odds ratio for EoE patients to have an H. pylori infection was 0.22 (p<0.05). In addition, 22.7% of the patients with EGE and 48.5% of their matched controls were infected with H. pylori, with odds ratio for EGE patients to have an H. pylori infection shown to be 0.31 (p<0.05). In conclusion, the prevalence of H. pylori infection was significantly lower in EGE and EoE patients in Japan as compared to normal control subjects.
Collapse
Affiliation(s)
- Kenji Furuta
- Second Department of Internal Medicine, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Martínez-Becerra F, Castillo-Rojas G, Ponce de León S, López-Vidal Y. IgG subclasses against Helicobacter pylori isolates: an important tool for disease characterization. Scand J Immunol 2012; 76:26-32. [PMID: 22686508 DOI: 10.1111/j.1365-3083.2012.02699.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori infects around 50% of the world's population and is associated with diverse pathologies. In the most severe cases, the bacterium causes peptic ulcers and gastric cancer. The interplay between H. pylori and the host's immune response may help to determine the specific outcome of the infection. To study the relationship between antibody subclasses and variation in immune recognition, we determined the immunoglobulin G1 and 2 (IgG1 and IgG2) titres of sera obtained from patients with different H. pylori-associated pathologies. IgG1 and IgG2 titres were determined by ELISA in 44 sera of patients with different H. pylori-associated diseases (peptic ulcer, bleeding peptic ulcers, gastric cancer and dyspepsia). Soluble proteins from lysates were obtained from 12 different clinical isolates from similar associated diseases. We found that soluble proteins from lysates of H. pylori strains (SPLHP) recognition patterns in these sera were highly variable. Overall, IgG2 titres were higher than the IgG1 titres in the infected patients. In particular, those with peptic ulcers showed marked elevation in IgG2/IgG1 ratios, while SPLHPs from dyspeptic patients resulted in high IgG1 titres. Our results reveal that correlation of antibody subclass titres with Th1/Th2 markers may aid pathology characterization and show a potential diagnosis that could be formally evaluated in other studies.
Collapse
Affiliation(s)
- F Martínez-Becerra
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | |
Collapse
|
16
|
Chen J, Lin L, Li N, She F. Enhancement of Helicobacter pylori outer inflammatory protein DNA vaccine efficacy by co-delivery of interleukin-2 and B subunit heat-labile toxin gene encoded plasmids. Microbiol Immunol 2012; 56:85-92. [PMID: 22150716 DOI: 10.1111/j.1348-0421.2011.00409.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of an effective vaccine for controlling H. pylori-associated infection, which is present in about half the people in the world, is a priority. The H. pylori outer inflammatory protein (oipA) has been demonstrated to be a potential antigen for a vaccine. In the present study, use of oipA gene encoded construct (poipA) for C57BL/6 mice vaccination was investigated. Whether co-delivery of IL-2 gene encoded construct (pIL-2) and B subunit heat-labile toxin of Escherichia coli gene encoded construct (pLTB) can modulate the immune response and enhance DNA vaccine efficacy was also explored. Our results demonstrated that poipA administered intradermally ('gene gun' immunization) promoted a strong Th2 immune response, whereas co-delivery of either pIL-2 or pLTB adjuvant elicited a Th1-biased immune response. PoipA administered with both pIL-2 and pLTB adjuvants promoted a strong Th1 immune response. Regardless of the different immune responses promoted by the various vaccination regimes, all immunized mice had smaller bacterial loads after H. pylori challenge than did PBS negative and pVAX1 mock controls. Co-delivery of adjuvant(s) enhances poipA DNA vaccine efficacy by shifting the immune response from being Th2 to being Th1-biased, which results in a greater reduction in bacterial load after H. pylori challenge. Both prophylactic and therapeutic vaccination can achieve sterile immunity in some subjects.
Collapse
Affiliation(s)
- Jiansen Chen
- Clinical Laboratory Department, Fujian Medical University Affiliated Union Hospital, Fuzhou 350001, Fujian, China
| | | | | | | |
Collapse
|
17
|
Chen J, Lin M, Li N, Lin L, She F. Therapeutic vaccination with Salmonella-delivered codon-optimized outer inflammatory protein DNA vaccine enhances protection in Helicobacter pylori infected mice. Vaccine 2012; 30:5310-5. [PMID: 22749593 DOI: 10.1016/j.vaccine.2012.06.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/31/2012] [Accepted: 06/16/2012] [Indexed: 02/07/2023]
Abstract
Vaccination had demonstrated as an alternative way to combat Helicobacter pylori challenge. In the present study, codon-optimized outer inflammatory protein gene (oipA) for Mus species codon usage, the inclusion of optimal Kozak sequence, and modified of GC content was applied to construct a novel DNA construct. The Salmonella-delivered wild type oipA construct (SL7207/poipA) and the Salmonella-delivered codon-optimized oipA construct (SL7207/poipA-opt) were prepared and their therapeutic efficacy was evaluated in H. pylori-infected mice. The codon-optimized oipA construct (poipA-opt) expressed almost six-fold higher protein than that of wild type construct (poipA) as normalized to the β-actin expression in AGS cells. Oral therapeutic immunization with SL7207/poipA-opt significantly eliminated H. pylori colonization in the stomach; and protection was related to a robust Th1/Th2 immune response. Therefore, our results suggested that fine therapeutic efficacy was related to sufficient expression of the antigen. It is supposed that codon-optimized oipA gene improves protein expression and consequently enhances the immunogenicity of DNA vaccine, which resulted in a significant reduction of bacterial loads in H. pylori infected mice. The Salmonella-delivered codon-optimized DNA construct could be a candidate vaccine against H. pylori for the clinical application.
Collapse
Affiliation(s)
- Jiansen Chen
- Department of Hospital Infection Control, Union Hospital, Fujian Medical University, Fuzhou 350001, Fujian, China
| | | | | | | | | |
Collapse
|
18
|
Immunological response to parenteral vaccination with recombinant hepatitis B virus surface antigen virus-like particles expressing Helicobacter pylori KatA epitopes in a murine H. pylori challenge model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:268-76. [PMID: 22205658 DOI: 10.1128/cvi.05295-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Virus-like particles (VLPs) based on the small envelope protein of hepatitis B virus (HBsAg-S) are immunogenic at the B- and T-cell level. In this study, we inserted overlapping sequences encoding the carboxy terminus of the Helicobacter pylori katA gene product into HBsAg-S. The HBsAg-S-KatA fusion proteins were able to assemble into secretion-competent VLPs (VLP-KatA). The VLP-KatA proteins were able to induce KatA-specific antibodies in immunized mice. The mean total IgG antibody titers 41 days post-primary immunization with VLP-KatA (2.3 × 10(3)) were significantly greater (P < 0.05) than those observed for vaccination with VLP alone (5.2 × 10(2)). Measurement of IgG isotypes revealed responses to both IgG1 and IgG2a (mean titers, 9.0 × 10(4) and 2.6 × 10(4), respectively), with the IgG2a response to vaccination with VLP-KatA being significantly higher than that for mice immunized with KatA alone (P < 0.05). Following challenge of mice with H. pylori, a significantly reduced bacterial load in the gastric mucosa was observed (P < 0.05). This is the first report describing the use of VLPs as a delivery vehicle for H. pylori antigens.
Collapse
|
19
|
Tag HS, Lee HS, Jung SH, Kim BK, Kim SB, Lee A, Lee JS, Shin SH, Kim YS. Effects of Helicobacter pylori eradication in patients with immune thrombocytopenic purpura. THE KOREAN JOURNAL OF HEMATOLOGY 2010; 45:127-32. [PMID: 21120192 PMCID: PMC2983021 DOI: 10.5045/kjh.2010.45.2.127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 05/19/2010] [Accepted: 05/24/2010] [Indexed: 12/14/2022]
Abstract
Background The relationship between Helicobacter pylori (H. pylori) infection and chronic idiopathic thrombocytopenic purpura (ITP) has been confirmed; however, no clear evidence for the effectiveness of H. pylori eradication on ITP exists thus far. The purpose of this study was to investigate platelet recovery in chronic ITP after H. pylori eradication. Methods A total of 25 patients (18 male, 7 female; the median age of 55 years) diagnosed with ITP, whose platelet counts were less than 100×103/µL, were enrolled. They were tested for H. pylori infection by the rapid urea test or urea breath test. All patients received triple therapy for 7 or 14 days to eradicate H. pylori infection. Results Of the 25 patients, 23 (92%) were diagnosed with H. pylori infection. Of all the ITP patients, 11 (44%) exhibited a complete response (CR) to H. pylori eradication therapy; 6 (24%), a partial response (PR); and 8 (32%) were nonresponsive (NR). Predictive factors of response after H. pylori eradication therapy were platelet counts at the initial response (27.3% responders among patients with platelet counts <100×103/µL vs 100% responders among patients with platelet counts ≥100×103/µL, P<0.001) and H. pylori infectivity (73.9% responders among the H. pylori positive patients vs 0% responders among the H. pylori negative patients, P=0.032). Conclusion This study confirmed the efficacy of H. pylori eradication in increasing the platelet count in ITP patients. Further studies with a larger number of patients are necessary to identify the crucial predictive factors responsible for platelet recovery in chronic ITP patients with the H. pylori infection.
Collapse
Affiliation(s)
- Hee Sang Tag
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
MIAO JF, ZHANG YS, HUANG GQ, MA HT, ZOU SX, ZHU YM. Polysaccharide Nucleic Acid of Bacillus Calmette Guerin Modulates Th1/Th2 Cytokine Gene Expression in Lipopolysaccharide-Induced Mastitis in Rats. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(08)60308-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Cathepsin X prevents an effective immune response against Helicobacter pylori infection. Eur J Cell Biol 2009; 88:461-71. [PMID: 19446361 DOI: 10.1016/j.ejcb.2009.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 03/16/2009] [Accepted: 03/31/2009] [Indexed: 01/24/2023] Open
Abstract
Cathepsin X, a cysteine protease, has been shown to regulate an immune response by activating beta-2 integrin receptors. In this study we demonstrate its role in regulating the immune response to infection with H. pylori. The level of cathepsin X was determined in THP-1 monocyte cells primed with H. pylori antigens isolated from subjects suffering from gastritis, who had either eradicated or not the disease after the antibiotic therapy. We show that the specific clinical outcome of H. pylori eradication therapy correlates strongly with the membrane expression of cathepsin X in stimulated THP-1 cells, being significantly higher after stimulation with H. pylori strains from those subjects who did not respond to antibiotic therapy. The same antigens elicit a more vigorous immune response, increased expression of MHC II, however trigger inadequate cytokine profile (IFN-gamma and IL-4) to eradicate the pathogen. We propose that cathepsin X mediated activation of beta-2 integrin receptor Mac-1 suppresses the stimulatory signal in the form of cytokines. Cathepsin X co-localizes on the membrane of THP-1 cells with Mac-1 integrin receptor and its inhibition increases homotypic aggregation and mononuclear cell proliferation, events that are associated with low Mac-1 activity. Our study highlights the diversity of the innate immune response to H. pylori antigens leading to either successful eradication of the infection or maintenance of chronic inflammation, revealing cathepsin X location and activity as a regulator of the effectiveness of H. pylori eradication.
Collapse
|
22
|
Wong BLW, Zhu SL, Huang XR, Ma J, Xia HHX, Bucala R, Wong BCY, Lan HY. Essential role for macrophage migration inhibitory factor in gastritis induced by Helicobacter pylori. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1319-1328. [PMID: 19286569 PMCID: PMC2671363 DOI: 10.2353/ajpath.2009.080708] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2008] [Indexed: 02/05/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an upstream regulator of immune and inflammatory responses; however, its role in Helicobacter pylori (HP)-associated gastritis remains unknown. We infected MIF knockout (KO) and wild-type mice with SS1 HP and found that 2 weeks after infection, MIF and its receptor CD74 were markedly up-regulated in wild-type mice. This up-regulation preceded the up-regulation of both tumor necrosis factor-alpha and intercellular adhesion molecule-1, as well as the development of moderate gastritis at 8 weeks, as determined by a significant infiltration of neutrophils, T cells, and macrophages. In contrast, KO mice were protected against HP-induced gastritis by preventing the up-regulation of CD74 and Th1-mediated immune injury, including a reduction in the Th1 transcriptional factor T-bet and the expression of interferon-gamma. Additionally, inhibition of skin delayed type hypersensitivity reactions to HP antigens in KO mice also suggested a critical role for MIF in cell-mediated injury. A regulatory role for MIF in Th1-immune responses was further demonstrated by the finding that antigen-primed CD4(+) T cells lacking MIF failed to differentiate into the Th1 phenotype; these cells were instead promoted to Th2 differentiation after challenge with HP antigen in vitro. Results from this study indicated that inhibition of HP-induced innate immune responses and Th1-mediated immune injury may be the key mechanisms by which KO mice failed to develop gastritis after HP infection.
Collapse
Affiliation(s)
- Benny L W Wong
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The seroepidemiology of Helicobacter pylori infection in Australia. Int J Infect Dis 2008; 12:500-4. [PMID: 18400542 DOI: 10.1016/j.ijid.2008.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/25/2008] [Accepted: 01/25/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Infection with Helicobacter pylori is common worldwide and a significant cause of upper gastrointestinal disease. Prevalence of this infection varies in different population groups internationally. Because of the invasiveness of specimen collection for bacteriologic diagnosis and the expense of tests such as labeled urea breath tests, serology is the most feasible means of determining the population epidemiology of H. pylori. The aim of this study was to describe the seroepidemiology of H. pylori infection in Australia. METHODS H. pylori-specific ELISA for the presence of IgG antibodies was performed on a representative sample of 2413 sera from Australia in 2002, using validated serosurveillance methods. RESULTS The overall seroprevalence of H. pylori infection in Australia was 15.1% in 2002, with no statistical difference between genders. Seropositivity rates increased progressively with age, ranging between 4.0% in the 1-4-year-olds and 23.3% in the 50-59-year-olds. CONCLUSIONS The prevalence of infection with H. pylori in Australia was lower than rates reported in other developed countries, at 15.4%. This study provides important baseline measurements for future preventive measures including vaccine research and development. Further studies to determine subgroups at higher risk of infection may help target the more susceptible populations.
Collapse
|
24
|
Stasi R, Provan D. Helicobacter pylori and Chronic ITP. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2008; 2008:206-211. [PMID: 19074084 DOI: 10.1182/asheducation-2008.1.206] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Eradication of Helicobacter pylori infection has been variably associated with a platelet response in patients with immune thrombocytopenic purpura (ITP). Responses occur in approximately half of ITP patients infected with this bacterium, more frequently in Japan and Italy than in other countries. For those with severe ITP (platelet count<30x10(9)/L) and a long duration of disease, eradication therapy seems to be less effective. Despite extensive efforts, distinctive clinical features and factors predicting the response to eradication therapy have not been consistently identified. There is no established mechanism to explain how H pylori could be implicated in the pathogenesis of an immune-mediated platelet destruction. Several theories have been proposed to explain the platelet response to anti-H pylori therapy, including molecular mimicry, platelet aggregation, and the induction of a Th1 phenotype that favors the onset and/or persistence of ITP. The role of bacterium-related factors, such as the CagA (cytotoxin-associated gene A) protein, are still under investigation. Eradication therapy is simple and inexpensive, with limited toxicity and the advantage of avoiding long-term immunosuppressive treatment for those who respond. Although the evidence and follow-up are limited, it appears reasonable to routinely screen patients with ITP for H pylori, particularly in those populations with a high background prevalence of H pylori infection.
Collapse
MESH Headings
- Aging
- Anti-Bacterial Agents/therapeutic use
- Antigens, Bacterial/immunology
- Bacterial Proteins/immunology
- Cross Reactions
- Drug Therapy, Combination
- Gastric Mucosa/microbiology
- Helicobacter Infections/complications
- Helicobacter Infections/drug therapy
- Helicobacter Infections/epidemiology
- Helicobacter Infections/immunology
- Helicobacter pylori/isolation & purification
- Humans
- Italy/epidemiology
- Japan/epidemiology
- Platelet Count
- Platelet Transfusion
- Purpura, Thrombocytopenic, Idiopathic/epidemiology
- Purpura, Thrombocytopenic, Idiopathic/etiology
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Purpura, Thrombocytopenic, Idiopathic/therapy
- Stomach/microbiology
Collapse
Affiliation(s)
- Roberto Stasi
- Department of Medical Sciences, Ospedale Regina Apostolorum, Albano Laziale, Italy.
| | | |
Collapse
|
25
|
Taylor JM, Ziman ME, Canfield DR, Vajdy M, Solnick JV. Effects of a Th1- versus a Th2-biased immune response in protection against Helicobacter pylori challenge in mice. Microb Pathog 2007; 44:20-7. [PMID: 17683897 PMCID: PMC2234601 DOI: 10.1016/j.micpath.2007.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Accepted: 06/13/2007] [Indexed: 12/16/2022]
Abstract
The roles that T helper type 1 (Th1) and T helper type 2 (Th2) Helicobacter pylori-specific immune responses play in protection from H. pylori challenge are poorly understood. It is expected that Th2 immune responses are required for protection against extracellular bacteria, such as H. pylori. However, recent studies have suggested that Th1 immunity is required for protection. The mechanisms by which this might occur are unknown. Our goal in this study was to more clearly define the effects of a Th1- versus a Th2-promoting H. pylori vaccine on immunity and protection. Therefore, we tested a Th1 vaccine consisting of an H. pylori sonicate and CpG oligonucleotides (CpG) and a Th2 vaccine consisting of a lipopolysaccharide (LPS)-depleted H. pylori sonicate combined with cholera toxin (CT). We demonstrate that although the Th2-promoting vaccine induced stronger systemic and local immune responses, only the Th1-promoting vaccine was protective.
Collapse
Affiliation(s)
- Jennifer M. Taylor
- Center for Comparative Medicine, University of California, Davis CA 95616
| | - Melanie E. Ziman
- Center for Comparative Medicine, University of California, Davis CA 95616
| | - Don R. Canfield
- Center for Comparative Medicine, University of California, Davis CA 95616
- California National Primate Research Center, University of California, Davis CA 95616
| | - Michael Vajdy
- Departments of Internal Medicine and Medical Microbiology and Immunology, University of California, Davis CA 95616
| | - Jay V. Solnick
- Center for Comparative Medicine, University of California, Davis CA 95616
- Departments of Internal Medicine and Medical Microbiology and Immunology, University of California, Davis CA 95616
- *Corresponding author Jay V. Solnick, Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, (530) 752-1333 (phone), (530) 752-7914 (fax)
| |
Collapse
|
26
|
Svennerholm AM, Lundgren A. Progress in vaccine development against Helicobacter pylori. ACTA ACUST UNITED AC 2007; 50:146-56. [PMID: 17442014 DOI: 10.1111/j.1574-695x.2007.00237.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Based on the very high prevalence of diseases caused by Helicobacter pylori, particularly in the developing world, and the rapid emergence of antibiotic resistance among clinical isolates, there is a strong rationale for an effective vaccine against H. pylori. In this review we describe recent promising candidate vaccines and prophylactic or therapeutic immunization strategies for use against H. pylori, as well as studies to identify immune responses that are related to protection in experimental animals. We also describe identification of different types of immune responses that may be related to protection against symptoms based on comparisons of H. pylori-infected patients with duodenal ulcers or gastric cancer and asymptomatic carriers. We conclude that there is still a strong need to clarify the main protective immune mechanisms against H. pylori as well as to identify a cocktail of strong protective antigens, or recombinant bacterial strains that express such antigens, that could be administered by a regimen that gives rise to effective immune responses in humans.
Collapse
Affiliation(s)
- Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Institute of Biomedicine, Göteborg University, Göteborg, Sweden.
| | | |
Collapse
|
27
|
Zhang MJ, Meng FL, Ji XY, He LH, Zhang JZ. Adherence and invasion of mouse-adapted H pylori in different epithelial cell lines. World J Gastroenterol 2007; 13:845-50. [PMID: 17352012 PMCID: PMC4065918 DOI: 10.3748/wjg.v13.i6.845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the adhesion and invasion abilities of different mouse adapted H pylori strains in different cell lines in vitro and investigate their effects on the virulence factors cagA and vacA.
METHODS: The adherence and invasion abilities of different H pylori strains in different epithelial cell lines were examined by the gentamycin protection assay. The null mutants of cagA and vacA were processed by direct PCR mutation method. The morphologic changes of different cell lines after H pylori attachment were examined by microscopy.
RESULTS: The densities of adherence to and invasion into cells in vitro were different from those in the mouse infection experiments. 88-3887 strain could invade and adhere to cells stronger than SS1 and X47. All tested strains had better adhering and invasive abilities in SCG-7901 cell. CagA and vacA minus mutants had the same invasion and adherent abilities as their wild types. In all strains and cell lines tested, only AGS cell had the significant hummingbird phenotype after inoculation with the 88-3887 wild-type.
CONCLUSION: Both the host cells and the bacteria play important parts in the invasion and adhesion abilities of H pylori. CagA and VacA are not related to the ability of invasion and adhesion of H pylori in different cell lines in vitro.
Collapse
Affiliation(s)
- Mao-Jun Zhang
- Department of Diagnostics, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PO Box 5, Changping, Beijing 102206, China
| | | | | | | | | |
Collapse
|
28
|
Robinson K, Argent RH, Atherton JC. The inflammatory and immune response to Helicobacter pylori infection. Best Pract Res Clin Gastroenterol 2007; 21:237-59. [PMID: 17382275 DOI: 10.1016/j.bpg.2007.01.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lifelong Helicobacter pylori infection and its associated gastric inflammation underlie peptic ulceration and gastric carcinogenesis. The immune and inflammatory responses to H. pylori are doubly responsible: gastric inflammation is the main mediator of pathology, and the immune and inflammatory response is ineffective, allowing lifelong bacterial persistence. However, despite inducing gastric inflammation, most infections do not cause disease, and bacterial, host and environmental factors determine individual disease risk. Although H. pylori avoids many innate immune receptors, specific virulence factors (including those encoded on the cag pathogenicity island) stimulate innate immunity to increase gastric inflammation and increase disease risk. An acquired T helper 1 response upregulates local immune effectors. The extent to which environmental factors (including parasite infection), host factors and H. pylori itself influence T-helper differentiation and regulatory T-cell responses remains controversial. Finally, effective vaccines have still not been developed: a better understanding of the immune response to H. pylori may help.
Collapse
Affiliation(s)
- Karen Robinson
- Wolfson Digestive Diseases Centre, University of Nottingham, C Floor, South Block, Queen's Medical Centre Campus, Nottingham University Hospital NHS Trust, Nottingham NG7 2UH, UK.
| | | | | |
Collapse
|
29
|
Hamajima N, Naito M, Kondo T, Goto Y. Genetic factors involved in the development of Helicobacter pylori-related gastric cancer. Cancer Sci 2006; 97:1129-38. [PMID: 16879717 PMCID: PMC11158109 DOI: 10.1111/j.1349-7006.2006.00290.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Developmental process to gastric cancer by Helicobacter pylori infection consists of three steps: (1) H. pylori infection; (2) gastric atrophy development; and (3) carcinogenesis. In each step, genetic traits may influence the process, interacting with lifestyle. In the step of H. pylori infection, two lines of genetic polymorphisms were assumed: one influencing gastric acid inhibition interacting with smoking, and the other concerning innate immune response attenuation. The former includes functional polymorphisms of IL-1B (C-31T or tightly linked T-511C), and TNF-A (T-1031C and C-857T), and the latter possibly includes NQO1 C609T. In the step to gastric atrophy, polymorphisms pertaining to the signal transduction from cytotoxin-associated gene A (PTPN11 A/G at intron 3) and to T-cell responses (IL-2 T-330G and IL-13 C-1111T) were hypothesized. There are a limited number of epidemiological genotype studies on the final step of literal carcinogenesis, potentially interacting with smoking, a low vegetable and fruit intake, and salty foods, the well-documented risk factors. In past case-control studies on the associations between genotype and gastric cancer risk, the cases consisted of H. pylori-related and unrelated gastric cancer patients and the controls consisted of individuals including the uninfected (H. pylori unexposed and exposed) and the infected with and without gastric atrophy. Accordingly, it was not clear whether the observed risk was for H. pylori-related or -unrelated gastric cancer, nor which step was involved in the observed associations even when nearly all cases were H. pylori-related. In order to elucidate the genetic traits of H. pylori-related gastric cancer, stepwise evaluation will be required.
Collapse
Affiliation(s)
- Nobuyuki Hamajima
- Department of Preventive Medicine/Biostatistics and Medical Decision Making, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | |
Collapse
|