1
|
Bryant AE, Shulman ST. Mpox: emergence following smallpox eradication, ongoing outbreaks and strategies for prevention. Curr Opin Infect Dis 2025; 38:222-227. [PMID: 39878084 DOI: 10.1097/qco.0000000000001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
PURPOSE OF REVIEW This review focuses on the temporal relationship between the discontinuation of the global smallpox eradication effort with the rise of mpox in Africa and worldwide. It also discusses the global 2022 clade II mpox epidemic and the current 2024 clade I mpox outbreak. Newer findings on viral evolution and pathogenesis, plus current and future strategies for disease prevention, are reviewed. RECENT FINDINGS The temporal association between the incidence of mpox and the World Health Organization's Global Smallpox Eradication Program (GSEP) is presented. The 2022 global mpox epidemic is discussed. Recent data show that clade IIb monkeypox virus (MPXV)-2022 has novel genetic features supporting a greater propensity for mutations that may be responsible for enhanced human-to-human transmissibility, increased disease severity and accelerated viral evolution. In 2023, another outbreak of mpox began in Africa, this time due to the potentially more virulent MPXV clade Ib strains. This outbreak remains ongoing in Africa, and clade Ib mpox cases have recently been reported elsewhere including the United States and Great Britain. The World Health Organization has deemed mpox to be a global public health emergency. Two smallpox vaccines are approved for mpox prevention in the United States; a third smallpox vaccine and an improved diagnostic test have recently received WHO Emergency Use authorization. Newer mRNA-based vaccines for evolving orthopoxvirus infections are discussed. SUMMARY Vaccination to prevent smallpox provides immunologic cross-protection against infection with other members of genus Orthopoxvirus , including mpox. Discontinuation of the global smallpox eradication program in the 1980s and the subsequent waning of herd immunity contributed to the 2022 multinational epidemic of human clade IIb mpox infections. A second multinational outbreak with clade Ib MPXV is ongoing. Vaccination against smallpox remains the gold standard for mpox prevention, however newer multiepitope mRNA-based vaccines are in development and hold promise for prevention of mpox and other orthopoxvirus outbreaks.
Collapse
Affiliation(s)
| | - Stanford T Shulman
- Division of Pediatric Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Kobiyama K, Utsumi D, Kaku Y, Sasaki E, Yasui F, Okamura T, Onodera T, Tobuse AJ, Sakkour A, Amiry AF, Hayashi T, Temizoz B, Liu K, Negishi H, Toyama-Sorimachi N, Kohara M, Sawasaki T, Takagi J, Sato K, Takahashi Y, Yasutomi Y, Ishii KJ. Immunological analysis of LC16m8 vaccine: preclinical and early clinical insights into mpox. EBioMedicine 2025; 115:105703. [PMID: 40239465 PMCID: PMC12020844 DOI: 10.1016/j.ebiom.2025.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND The global mpox outbreak (2022-2024) highlights the need for effective and safe vaccines, particularly for vulnerable populations. The LC16m8 vaccine, an attenuated vaccinia virus strain for smallpox, shows promise in inducing immunity against the monkeypox virus (MPXV). METHODS We conducted a comprehensive immunological evaluation of LC16m8 in mice, non-human primates, and humans. FINDINGS LC16m8 induced strong humoural responses in BALB/c, C57BL/6J, and CAST/EiJ mice, targeting MPXV H3, A35, and M1R antigens, promoting germinal centre B cells and follicular helper T cells, essential for long-term immunity. Vaccinated CAST/EiJ mice showed reduced lung MPXV viral loads, demonstrating efficacy. In humans, LC16m8 enhanced neutralising antibodies against multiple MPXV clades, suggesting broad protection. In cynomolgus monkeys, systemic administration caused localised pox lesions without significantly affecting weight, temperature, or haematological parameters. INTERPRETATION This cross-species immunological analysis provides preclinical and early clinical insights into LC16m8's efficacy and safety against mpox. While LC16m8 enhanced antibody responses against MPXV clade Ia and Ib, further studies are required to evaluate its efficacy, particularly in naive and immunocompromised populations. FUNDING This research was supported by AMED under Grant Numbers JP243fa727002, JP243fa727001s0703, and JP243fa627001h0003 (K.J.I), JP24jf0126002, JP24fk0108690, JP243fa627001h0003, and JP243fa727002 (K.S), JP243fa727002 (Y.T.), JP243fa727002 and JP243fa627007h0003 (Y.Y.), and by the Research Support Project for Life Science and Drug Discovery (BINDS) from AMED under Grant Number JP23ama121011 (J.T.), and JP23ama121010 (T.S.), and by the Ministry of Education, Culture, Sports, Science and Technology in Japan under Grant Number 23K06577 (E.S.). AMED under Grant Number JP233fa827017 and JP243fa827017 (F.Y.), JP22fk0108501 (M.K.).
Collapse
Affiliation(s)
- Kouji Kobiyama
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Utsumi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Yu Kaku
- Division of Systems Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eita Sasaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asuka Joy Tobuse
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Areej Sakkour
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ahmad Faisal Amiry
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaiwen Liu
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideo Negishi
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kei Sato
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Systems Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Ken J Ishii
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Jones S, Hicks B, Callaby H, Bailey D, Gordon NC, Rampling T, Houlihan C, Jones R, Pond M, Mehta R, Wright D, Oeser C, Tonge S, Linley E, Rowe C, Hallis B, Otter A. Assessment of MpoxPlex, a high-throughput and multiplexed immunoassay: a diagnostic accuracy study. THE LANCET. MICROBE 2025; 6:100987. [PMID: 39832516 PMCID: PMC11959112 DOI: 10.1016/j.lanmic.2024.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND In May, 2022, the first global outbreak of mpox (formerly known as monkeypox) occurred. In response, public health agencies in the UK have made smallpox vaccines available to individuals at the highest risk of infection. With mpox cases still being detected globally, novel tools are required to aid with diagnosis, serosurveillance, and the evaluation of immune responses following infection and immunisation with current and new vaccine candidates. Here, we describe the development of a multiplexed immunoassay, MpoxPlex, able to measure IgG responses to 12 Orthopoxvirus antigens concurrently and distinguish between responses to infection and vaccination. METHODS Using the Luminex (DiaSorin, Saluggia, Italy) platform, antibody responses to vaccinia virus (VACV) antigens B5, A27, and A33 and monkeypox virus (MPXV) antigens E8, B6, B2, M1, A27, A35, H3, A29, and A5 were assessed in serum from individuals after MPXV infection (n=24) and after vaccination (n=75) with modified VACV Ankara-Bavarian Nordic. Assay characteristics and cutoffs were calculated by fitting receiver operating characteristic curves to the median fluorescence intensities of these positive samples and negative samples that were run alongside (n=435). P values were calculated using non-parametric Mann-Whitney, Kruskal-Wallis, and Dunn's multiple comparisons tests. FINDINGS Using the results from a combination of eight antigens, we were able to distinguish samples as either post-vaccination or post-infection from negative samples with a sensitivity of 98% and a specificity of 95%. IgG responses to MPXV antigen A27 were able to distinguish post-MPXV infection with a sensitivity of 88% and a specificity of 97%. VACV antigen A27 and MPXV antigens A29 and A5 provided little diagnostic advantage. INTERPRETATION With additional benefits over current serological assays, we believe this assay will provide substantial insight into the current global outbreak of mpox. MpoxPlex shows use for both serosurveillance and immunological studies of vaccination and infection. FUNDING Grant-in-aid funding to the Emerging Pathogen Serology Group at Porton Down, UK Health Security Agency.
Collapse
Affiliation(s)
- Scott Jones
- Emerging Pathogen Serology Group, Vaccine Development Evaluation and Preparedness Centre, UK Health Security Agency, Wiltshire, UK.
| | - Bethany Hicks
- Emerging Pathogen Serology Group, Vaccine Development Evaluation and Preparedness Centre, UK Health Security Agency, Wiltshire, UK
| | - Helen Callaby
- Rare and Imported Pathogens Laboratory, UK Health Security Agency, Wiltshire, UK; Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Daniel Bailey
- Rare and Imported Pathogens Laboratory, UK Health Security Agency, Wiltshire, UK
| | - N Claire Gordon
- Rare and Imported Pathogens Laboratory, UK Health Security Agency, Wiltshire, UK
| | - Tommy Rampling
- Rare and Imported Pathogens Laboratory, UK Health Security Agency, Wiltshire, UK
| | - Catherine Houlihan
- Rare and Imported Pathogens Laboratory, UK Health Security Agency, Wiltshire, UK
| | - Rachael Jones
- Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Marcus Pond
- Imperial College Healthcare NHS Trust, London, UK
| | - Ravi Mehta
- Imperial College Healthcare NHS Trust, London, UK
| | - Deborah Wright
- Research and Development, Porton Down, UK Health Security Agency, Wiltshire, UK
| | - Clarissa Oeser
- Immunisation and Vaccine Preventable Diseases Division, UK Health Security Agency, Colindale, London, UK
| | - Simon Tonge
- Seroepidemiology Unit, UK Health Security Agency, Manchester, UK
| | - Ezra Linley
- Seroepidemiology Unit, UK Health Security Agency, Manchester, UK
| | - Cathy Rowe
- Emerging Pathogen Serology Group, Vaccine Development Evaluation and Preparedness Centre, UK Health Security Agency, Wiltshire, UK
| | - Bassam Hallis
- Emerging Pathogen Serology Group, Vaccine Development Evaluation and Preparedness Centre, UK Health Security Agency, Wiltshire, UK
| | - Ashley Otter
- Emerging Pathogen Serology Group, Vaccine Development Evaluation and Preparedness Centre, UK Health Security Agency, Wiltshire, UK
| |
Collapse
|
4
|
Laidlaw SM, Ulaeto D, Lonsdale S, Clark G, Sumner R, Edwards T, Adams E, Logist AS, Van Holm B, Maluquer de Motes C, Horby P, Maes P, Carroll MW. Detection of mpox and other orthopoxviruses using a lateral flow device as a point-of-care diagnostic. Microbiol Spectr 2025; 13:e0245624. [PMID: 40008874 PMCID: PMC11960085 DOI: 10.1128/spectrum.02456-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 02/27/2025] Open
Abstract
In 2022, the World Health Organization declared the worldwide outbreak of mpox to be a public health emergency of international concern. The causative monkeypox virus (MPXV) belonged to clade IIb and is transmitted through sexual contact with a low case fatality rate (0.1%), which, together with under-detection, all contributed to a rapid global spread particularly within the MSM (men who have sex with men) community. As MPXV clade II remains circulating worldwide, a new outbreak of the more fatal clade I disease has been declared in Central and East Africa, and remains uncontrolled in part due to the lack of point-of-care (POC) diagnostics for rapid decisions on treatment and self-isolation. To address the lack of POC solutions for mpox, we have designed and evaluated an orthopoxvirus-specific lateral flow device (LFD) that could be used for the diagnosis of mpox. Using an LFD comprising four monoclonal antibodies against the A27 protein, we demonstrate sensitivity to 3 × 105 pfu/mL. This sensitivity is expected to be sufficient for the detection of MPXV from lesion sites and may also be sufficient for other sample types such as saliva and urine. We found that the presence of guanidinium thiocyanate, a common ingredient in inactivating viral transport media, masked the LFD antigen, resulting in false negatives. POC diagnosis of mpox may be possible using an LFD to reduce delays arising from sample shipment to centralized laboratory testing facilities. In order to achieve this, our work demonstrates that an LFD-optimized buffer is required, as the sample collection buffer may have a detrimental impact on sensitivity for clinical material.IMPORTANCEMpox cases have dramatically increased both in traditionally monkeypox virus endemic countries and also worldwide. This increase comes at a time when immunity derived from smallpox vaccination is no longer available. Diagnosis of mpox is complicated due to both disease presentation and the availability of local diagnostic laboratories. The availability of a point-of-care diagnostic tool such as an lateral flow device (LFD) would play an important role to both diagnose and prevent onward transmission. This manuscript provides developers and assessors with key data for defining true sensitivity and specificity of a successful LFD in addition to buffer conditions for sample collection.
Collapse
Affiliation(s)
- Stephen M. Laidlaw
- Pandemic Sciences Institute (PSI), University of Oxford, Oxford, United Kingdom
- Centre for Human Genetics (CHG), University of Oxford, Oxford, United Kingdom
| | | | | | | | - Rebecca Sumner
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Thomas Edwards
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily Adams
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Global Access Diagnostics, Bedford, United Kingdom
| | - Anne-Sophie Logist
- Laboratory of Clinical and Epidemiological Virology (Rega Institute), Ku Leuven, Leuven, Belgium
| | - Bram Van Holm
- Laboratory of Clinical and Epidemiological Virology (Rega Institute), Ku Leuven, Leuven, Belgium
| | | | - Peter Horby
- Pandemic Sciences Institute (PSI), University of Oxford, Oxford, United Kingdom
| | - Piet Maes
- Laboratory of Clinical and Epidemiological Virology (Rega Institute), Ku Leuven, Leuven, Belgium
| | - Miles W. Carroll
- Pandemic Sciences Institute (PSI), University of Oxford, Oxford, United Kingdom
- Centre for Human Genetics (CHG), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Jadhav V, Paul A, Trivedi V, Bhatnagar R, Bhalsinge R, Jadhav SV. Global epidemiology, viral evolution, and public health responses: a systematic review on Mpox (1958-2024). J Glob Health 2025; 15:04061. [PMID: 40048320 DOI: 10.7189/jogh.15.04061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Abstract
Background Monkeypox (Mpox), a zoonotic viral disease caused by the Mpox virus (MPOXV), was first identified in 1958 and remained largely confined to Central and West Africa for decades. While it usually exhibited limited international transmission, recent outbreaks, including in the USA in 2003 and globally in 2024, highlight significant epidemiological shifts. We aimed to systematically evaluate the evolution of Mpox from 1958 to 2024, focussing on its epidemiology, viral evolution, and public health responses. Methods We conducted a systematic review using data from global health reports, surveillance databases, and published literature. The analysis covered key outbreaks, transmission patterns, geographic distribution, public health responses, and the roles of viral mutations and vaccination in disease management. Results The 2022 Mpox outbreak, declared a Public Health Emergency of International Concern by the World Health Organization (WHO), was characterised by an unprecedented international spread of the virus. By July 2024, a total of 102 997 confirmed cases and 223 deaths were reported across 121 countries. Two distinct viral clades were identified: Central African (clade I) and West African (clade II), with the latter being the primary agent of global transmission. Research on Mpox has highlighted the protective effects of smallpox vaccination and emerging risk factors such as human-animal interactions and international travel. Conclusions Mpox has evolved from a regionally contained zoonotic disease to a global public health challenge. Enhanced surveillance, international collaboration, and targeted interventions in non-endemic regions are critical for mitigating future outbreaks and managing ongoing epidemiological changes.
Collapse
Affiliation(s)
- Vivekanand Jadhav
- Department of Microbiology, Pacific Medical College and Hospital, Pacific Medical University, Bhilonka Bedla, Sukher, Udaipur, Rajasthan, India
| | - Arundhuti Paul
- Department of Microbiology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India
| | - Vivek Trivedi
- Department of Microbiology, Pacific Medical College and Hospital, Pacific Medical University, Bhilonka Bedla, Sukher, Udaipur, Rajasthan, India
| | - Ritu Bhatnagar
- Department of Microbiology, Pacific Medical College and Hospital, Pacific Medical University, Bhilonka Bedla, Sukher, Udaipur, Rajasthan, India
| | - Rahul Bhalsinge
- Department of Pharmacology, L.N. Medical College and JK Hospital, Bhopal, Madhya Pradesh, India
| | - Savita V Jadhav
- Department of Microbiology, Pacific Medical College and Hospital, Pacific Medical University, Bhilonka Bedla, Sukher, Udaipur, Rajasthan, India
| |
Collapse
|
6
|
Ganesan A, Arunagiri T, Mani S, Kumaran VR, Kannaiah KP, Chanduluru HK. From pox to protection: understanding Monkeypox pathophysiology and immune resilience. Trop Med Health 2025; 53:33. [PMID: 40011970 DOI: 10.1186/s41182-025-00708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
The Monkeypox virus (MPXV), which causes Monkeypox (Mpox) is an invasive ailment with global implications. MPXV, categorized within the Orthopoxvirus genus, exhibits diverse clades with varying fatality rates. Initially discovered in monkeys and later in humans, the disease predominantly affects regions across West and Central Africa. Clinical manifestations encompass a spectrum from mild flu-like symptoms to severe eruptions. This article aims to give the scientific community a comprehensive overview of Mpox Pathophysiology and delve into the intricate landscape of host immune responses against MPXV infection. It offers crucial insights into the virus's Pathophysiology, spanning its entry, replication, dissemination, and elicited host responses. The immune reaction to Mpox involves innate immunity, B-cell immunity, and T-cell immunity. Moreover, this review underscores the immunological response and resistance mechanisms against MPXV. It also highlights imperative research areas warranting prioritization to devise more efficacious treatments for controlling viral propagation within healthcare systems. In addition, it gives us a look into possible futures that could help the progress of immunotherapies and cutting-edge biotechnological solutions for protecting against MPXV.
Collapse
Affiliation(s)
- Alagammai Ganesan
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Thirumalai Arunagiri
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Suganandhini Mani
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Vamsi Ravi Kumaran
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Kanaka Parvathi Kannaiah
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Hemanth Kumar Chanduluru
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
7
|
Shen-Gunther J, Cai H, Wang Y. Genomic and Antigenic Differences Between Monkeypox Virus and Vaccinia Vaccines: Insights and Implications for Vaccinology. Int J Mol Sci 2025; 26:1428. [PMID: 40003895 PMCID: PMC11855751 DOI: 10.3390/ijms26041428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Amid the current multi-country mpox outbreak, analyzing monkeypox virus (MPXV) and vaccinia virus (VACV) genomes is vital for understanding evolutionary processes that may impact vaccine efficacy and design. This study aimed to elucidate the phylogenetic relationships and structural features of viral antigens, which are crucial for developing effective vaccines. By aligning 1903 MPXV genomes from the NCBI Virus repository (released between 2022 and 2024), an increase in phylogenetic diversity was observed compared to previous studies. These genomes were grouped into Clade I (25 genomes) and Clade IIB (1898 genomes), with a new Clade I sub-lineage emerging from samples collected in Sud-Kivu province, Democratic Republic of the Congo (DRC). Comparing six key MPXV neutralization determinants (A29, A35, B6, E8, H3, and M1) of a novel 2024 Clade I MPXV isolate to those of the 1996 Zaire isolate revealed remarkable sequence conservation despite spanning 28 years. Homology-based modeling of the Clade I MPXV antigens (A29, A35, E8, H3, and M1) showed high-match identities (84% to 99%) with VACV templates (current mpox vaccine), with several amino acid variants near potential antibody binding sites. Phylogenomic analysis, combined with structural modeling and variant profiling, has yielded valuable insights into the virus and vaccine, guiding vaccine design and functional studies.
Collapse
Affiliation(s)
- Jane Shen-Gunther
- Gynecologic Oncology & Molecular Medicine, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hong Cai
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
8
|
Mahmoodi S, Amirzakaria JZ, Ghasemian A. A novel multi-epitope peptide vaccine targeting immunogenic antigens of Ebola and monkeypox viruses with potential of immune responses provocation in silico. Biotechnol Appl Biochem 2025; 72:58-74. [PMID: 39128888 DOI: 10.1002/bab.2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
The emergence or reemergence of monkeypox (Mpox) and Ebola virus (EBOV) agents causing zoonotic diseases remains a huge threat to human health. Our study aimed at designing a multi-epitope vaccine (MEV) candidate to target both the Mpox and EBOV agents using immunoinformatics tools. Viral protein sequences were retrieved, and potential nonallergenic, nontoxic, and antigenic epitopes were obtained. Next, cytotoxic and helper T-cell (CTL and HTL, respectively) and B-cell (BCL) epitopes were predicted, and those potential epitopes were fused utilizing proper linkers. The in silico cloning and expression processes were implemented using Escherichia coli K12. The immune responses were prognosticated using the C-ImmSim server. The MEV construct (29.53 kDa) included four BCL, two CTL, and four HTL epitopes and adjuvant. The MEV traits were pertinent in terms of antigenicity, non-allergenicity, nontoxicity, physicochemical characters, and stability. The MEV candidate was also highly expressed in E. coli K12. The strong affinity of MEV-TLR3 was confirmed using molecular docking and molecular dynamics simulation analyses. Immune simulation analyses unraveled durable activation and responses of cellular and humoral arms alongside innate immune responses. The designed MEV candidate demonstrated appropriate traits and was promising in the prediction of immune responses against both Mpox and EBOV agents. Further experimental assessments of the MEV are required to verify its efficacy.
Collapse
Affiliation(s)
- Shirin Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Zamani Amirzakaria
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
9
|
Goh E, Chavatte JM, Lin RTP, Ng LFP, Rénia L, Oon HH. Vaccines in Dermatology-Present and Future: A Review. Vaccines (Basel) 2025; 13:125. [PMID: 40006672 PMCID: PMC11860801 DOI: 10.3390/vaccines13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Dermatological vaccines have emerged as critical tools in preventing and managing a wide spectrum of skin conditions ranging from infectious diseases to malignancies. By synthesizing evidence from existing literature, this review aims to comprehensively evaluate the efficacy, safety, and immunogenicity of vaccines used in dermatology, including both approved vaccines and those currently being researched. Vaccines discussed in this paper include those targeting dermatoses and malignancies (e.g., acne vulgaris, atopic dermatitis, and melanoma); infectious diseases (e.g., human papillomavirus (HPV); varicella zoster virus (VZV); herpes zoster (HZ); warts; smallpox; mpox (monkeypox); hand, foot, and mouth disease (HFMD); candidiasis and Group B Streptococcus (GBS); and neglected tropical diseases (e.g., Buruli ulcer, leprosy, and leishmaniasis). Through this review, we aim to provide a detailed understanding of the role of vaccines in dermatology, identify knowledge gaps, and propose areas for future research.
Collapse
Affiliation(s)
- Eyan Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
| | - Jean-Marc Chavatte
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
| | - Raymond T. P. Lin
- National Public Health Laboratory, Singapore 308442, Singapore; (J.-M.C.); (R.T.P.L.)
- National University Hospital Singapore, Singapore 119077, Singapore
| | - Lisa F. P. Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Laurent Rénia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- A*STAR Infectious Diseases Labs (A*STAR IDL), Agency for Science, Technology, and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hazel H. Oon
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (E.G.); (L.F.P.N.); (L.R.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National Skin Centre and Skin Research Institute of Singapore, Singapore 308205, Singapore
| |
Collapse
|
10
|
Yasui F, Munekata K, Fujiyuki T, Kuraishi T, Yamaji K, Honda T, Gomi S, Yoneda M, Sanada T, Ishii K, Sakoda Y, Kida H, Hattori S, Kai C, Kohara M. Single Dose of Attenuated Vaccinia Viruses Expressing H5 Hemagglutinin Affords Rapid and Long-Term Protection Against Lethal Infection with Highly Pathogenic Avian Influenza A H5N1 Virus in Mice and Monkeys. Vaccines (Basel) 2025; 13:74. [PMID: 39852853 PMCID: PMC11769126 DOI: 10.3390/vaccines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES In preparation for a potential pandemic caused by the H5N1 highly pathogenic avian influenza (HPAI) virus, pre-pandemic vaccines against several viral clades have been developed and stocked worldwide. Although these vaccines are well tolerated, their immunogenicity and cross-reactivity with viruses of different clades can be improved. METHODS To address this aspect, we generated recombinant influenza vaccines against H5-subtype viruses using two different strains of highly attenuated vaccinia virus (VACV) vectors. RESULTS rLC16m8-mcl2.2 hemagglutinin (HA) and rLC16m8-mcl2.3.4 HA consisted of a recombinant LC16m8 vector encoding the HA protein from clade 2.2 or clade 2.3.4 viruses (respectively); rDIs-mcl2.2 HA consisted of a recombinant DIs vector encoding the HA protein from clade 2.2. A single dose of rLC16m8-mcl2.2 HA showed rapid (1 week after vaccination) and long-term protection (20 months post-vaccination) in mice against the HPAI H5N1 virus. Moreover, cynomolgus macaques immunized with rLC16m8-mcl2.2 HA exhibited long-term protection when challenged with a heterologous clade of the HPAI H5N1 virus. Although the DIs strain is unable to grow in most mammalian cells, rDIs-mcl2.2 HA also showed rapid and long-lasting effects against HPAI H5N1 virus infection. Notably, the protective efficacy of rDIs-mcl2.2 HA was comparable to that of rLC16m8-mcl2.2 HA. Furthermore, these vaccines protected animals previously immunized with VACVs from a lethal challenge with the HPAI H5N1 virus. CONCLUSIONS These results suggest that both rLC16m8-mcl2.2 HA and rDIs-mcl2.2 HA are effective in preventing HPAI H5N1 virus infection, and rDIs-mcl2.2 HA is a promising vaccine candidate against H5 HA-subtype viruses.
Collapse
Affiliation(s)
- Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Keisuke Munekata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Tomoko Fujiyuki
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takeshi Kuraishi
- Animal Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima 894-1531, Japan
| | - Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sumiko Gomi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Misako Yoneda
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Koji Ishii
- Center for Quality Management Systems, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroshi Kida
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Shosaku Hattori
- Animal Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima 894-1531, Japan
| | - Chieko Kai
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
11
|
Beiras CG, Malembi E, Escrig-Sarreta R, Ahuka S, Mbala P, Mavoko HM, Subissi L, Abecasis AB, Marks M, Mitjà O. Concurrent outbreaks of mpox in Africa-an update. Lancet 2025; 405:86-96. [PMID: 39674184 DOI: 10.1016/s0140-6736(24)02353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 12/16/2024]
Abstract
In this Review, we examine the concurrent outbreaks of mpox in Africa, focusing on clade 1a, the newly emerged clade 1b, and clade 2b lineage A, and how they differ from the 2022 global outbreak caused by clade 2b lineage B.1. Historically, clades 1a and 2a have caused sporadic, small outbreaks in central and west Africa, respectively, primarily through zoonotic transmission. Clade 2b first caused an outbreak in Nigeria in 2017, and later spread globally via sexual contact in 2022. In August, 2024, WHO declared a global health emergency due to the newly identified clade 1b outbreak in eastern Democratic Republic of the Congo. This outbreak has now expanded to several other countries and is spreading through direct and sexual contact in urban centres and refugee camps. Clades, route of exposure, infectious dose, and host immune response are the main factors influencing clinical presentation of mpox. For clades 1a and 2a, zoonotic transmission plays an important role, whereas for clades 1b and 2b, the spread occurs through sustained human-to-human transmission without zoonotic exposure. For both clades 1a and 2a, lesions have a generalised centrifugal distribution, whereas for clade 2b they are mainly localised to the anogenital area. For clade 1b, data are still emerging, but current cases show a mix of localised lesions and centrifugal distribution. The severity of the disease is higher for clade 1a (case fatality rate up to 12%) compared with other clades (case fatality rates 0-3·6%). Diagnostic challenges include false negative results for clade 1b with existing PCR assays and poor testing access in remote areas. Tecovirimat, the primary antiviral during the 2022 outbreak, has shown reduced effectiveness against clade 1a in preliminary study results, whereas its efficacy against other clades is still under investigation. The modified vaccinia Ankara-Bavarian Nordic vaccine has been shown to be up to 90% effective against clade 2b after two doses and is safe for children, although its effectiveness drops to 20% when used as post-exposure prophylaxis. Given the evolving nature of the monkeypox virus, ongoing research and strong public health responses are key to managing potential future outbreaks.
Collapse
Affiliation(s)
- Camila G Beiras
- Skin Neglected Tropical Diseases and Sexually Transmitted Infections Section, Fight Infectious Diseases Foundation, University Hospital Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Emile Malembi
- Program National Lutte Contre MPX-VHF, Kinshasa, Democratic Republic of the Congo
| | - Roser Escrig-Sarreta
- Skin Neglected Tropical Diseases and Sexually Transmitted Infections Section, Fight Infectious Diseases Foundation, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Steve Ahuka
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Placide Mbala
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Hypolite M Mavoko
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Ana B Abecasis
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Michael Marks
- London School of Hygiene and Tropical Medicine, London, UK
| | - Oriol Mitjà
- Skin Neglected Tropical Diseases and Sexually Transmitted Infections Section, Fight Infectious Diseases Foundation, University Hospital Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autónoma de Barcelona, Bellaterra, Spain; Infectious Diseases Department, Universitat de Vic-Universitat Central de Catalunya, Vic, Spain.
| |
Collapse
|
12
|
Kumar S, Guruparan D, Karuppanan K, Kumar KJS. Comprehensive Insights into Monkeypox (mpox): Recent Advances in Epidemiology, Diagnostic Approaches and Therapeutic Strategies. Pathogens 2024; 14:1. [PMID: 39860962 PMCID: PMC11768232 DOI: 10.3390/pathogens14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Monkeypox (mpox) is a viral infection closely related to smallpox, manifesting as a milder febrile rash in affected individuals. Over the past two decades, the incidence of mpox has surged, possibly linked to a declining immunity against the smallpox vaccine worldwide. Recent outbreaks of mpox in multiple countries have sparked concerns regarding altered transmission patterns and the potential for a global menace. In this article, we present a multidimensional review encompassing the latest scientific discoveries, illuminating the intricate structure of the human mpox virus. Key findings include advancements in understanding the virus's molecular mechanisms, which highlight its genetic adaptability and potential for zoonotic spillover. Diagnostic innovations, such as improved molecular assays, have enhanced detection accuracy, while novel therapeutic strategies, including antiviral drugs and vaccines, show promise in mitigating outbreaks. Our conclusions emphasize the importance of robust surveillance systems, vaccination programs, and rapid response strategies to curb mpox's spread. Future recommendations include strengthening global collaboration for zoonotic disease surveillance, advancing the research on host-pathogen interactions, and developing next-generation therapeutics to address this emerging public health threat effectively.
Collapse
Affiliation(s)
- Suresh Kumar
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40100, Malaysia; (S.K.); (D.G.)
| | - Dhanyashri Guruparan
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam 40100, Malaysia; (S.K.); (D.G.)
| | - Kalimuthu Karuppanan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India;
| | - K. J. Senthil Kumar
- Center for General Education, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
13
|
Aryaloka S, Khairullah AR, Kusala MKJ, Fauziah I, Hidayatik N, Agil M, Yuliani MGA, Novianti AN, Moses IB, Purnama MTE, Wibowo S, Fauzia KA, Raissa R, Furqoni AH, Awwanah M, Riwu KHP. Navigating monkeypox: identifying risks and implementing solutions. Open Vet J 2024; 14:3144-3163. [PMID: 39927376 PMCID: PMC11799651 DOI: 10.5455/ovj.2024.v14.i12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 02/11/2025] Open
Abstract
Monkeypox is a zoonotic disease caused by the orthopox virus, a double-stranded DNA virus that belongs the Poxviridae virus family. It is known to infect both animals (especially monkeys and rodents) and humans and causes a rash similar to smallpox. Humans can become infected with monkeypox virus (MPXV) when they get in close contact with infected animals (zoonotic transmission) or other infected people (human-human transmission) through their body fluids such as mucus, saliva, or even skin sores. Frequently observed symptoms of this disease include fever, headaches, muscle aches, and a rash that initially looks like a tiny bump before becoming a lump that is filled with fluid. Monkeypox symptoms also include an incubation period of 5-21 days, divided into prodromal and eruption phases. Several contributing factors, such as smallpox vaccine discontinuation, widespread intake of infected animal products as a source of protein, and high population density, amongst others, have been linked to an increase in the frequency of monkeypox outbreaks. The best course of action for diagnosing individuals who may be suffering from active monkeypox is to collect a sample of skin from the lesion and perform PCR molecular testing. Monkeypox does not presently have a specific therapy; however, supportive care can assist in managing symptoms, such as medication to lower body temperature and pain. Three major orthopoxvirus vaccines have been approved to serve as a preventive measure against monkeypox: LC16, JYNNEOS, and ACAM2000. The discovery that the monkeypox outbreak is communicable both among humans and within a population has sparked new public health worries on the possibility of the outbreak of another viral pandemic. Research and studies are still being conducted to gain a deeper understanding of this zoonotic viral disease. This review is therefore focused on deciphering monkeypox, its etiology, pathogenesis, transmission, risk factors, and control.
Collapse
Affiliation(s)
- Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Nanik Hidayatik
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Agil
- Division of Veterinary Clinic Reproduction and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - M. Gandul Atik Yuliani
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Arindita Niatazya Novianti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Abdul Hadi Furqoni
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mo Awwanah
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
14
|
Garcia-Atutxa I, Mondragon-Teran P, Huerta-Saquero A, Villanueva-Flores F. Advancements in monkeypox vaccines development: a critical review of emerging technologies. Front Immunol 2024; 15:1456060. [PMID: 39464881 PMCID: PMC11502315 DOI: 10.3389/fimmu.2024.1456060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Monkeypox (mpox) is a zoonotic illness caused by the monkeypox virus (MPXV), with higher health concerns among people who are pregnant, children, and persons who are immunocompromised, including people with untreated and advanced HIV disease. Significant progress has been made in developing vaccines against mpox, yet critical challenges and limitations persist in ensuring their effectiveness, safety, and accessibility. The pertinence of this review is highlighted by the World Health Organization's declaration of a global health emergency on August 14, 2024, due to the recent mpox outbreak, underscoring the critical necessity for effective vaccine solutions in the face of a rapidly evolving virus. Here, we comprehensively analyze various vaccine platforms utilized in mpox prevention, including attenuated and non-replicating virus vaccines, viral vector-based vaccines, recombinant protein vaccines, and DNA and mRNA vaccines. We evaluate the advantages and limitations of each platform, highlighting the urgent need for ongoing research and innovation to enhance vaccine efficacy and safety. Recent advancements, such as incorporating immunostimulatory sequences, improved delivery systems, and developing polyvalent vaccines, are explored for their potential to offer broader protection against diverse orthopoxvirus strains. This work underscores the need to optimize currently available vaccines and investigate novel vaccination strategies to address future public health emergencies effectively. By focusing on these advanced methodologies, we aim to contribute to the development of robust and adaptable vaccine solutions for mpox and other related viral threats.
Collapse
Affiliation(s)
- Igor Garcia-Atutxa
- Computer Science Department, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Paul Mondragon-Teran
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| | - Alejandro Huerta-Saquero
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Ensenada, Mexico
| | - Francisca Villanueva-Flores
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Xochitepec, Morelos, Mexico
| |
Collapse
|
15
|
Kajal, Pandey A, Mishra S. From ancient remedies to modern miracles: tracing the evolution of vaccines and their impact on public health. 3 Biotech 2024; 14:242. [PMID: 39319014 PMCID: PMC11417089 DOI: 10.1007/s13205-024-04075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
This review traces the development of vaccines from ancient times to the present, highlighting major milestones and challenges. It covers the significant impact of vaccines on public health, including the eradication of diseases such as smallpox and the reduction of others such as polio, measles, and influenza. The review provides an in-depth look at the COVID-19 vaccines, which were developed at unprecedented speeds due to the urgent global need. The study emphasizes the ongoing potential of vaccine development to address future global health challenges, demonstrating the critical role vaccines play in disease prevention and public health. Moreover, it discusses the evolution of vaccine technology, from live-attenuated and inactivated vaccines to modern recombinant and mRNA vaccines, showcasing the advancements that have enabled rapid responses to emerging infectious diseases. The review underscores the importance of continued investment in research and development, global collaboration, and the adoption of new technologies to enhance vaccine efficacy and coverage. By exploring historical and contemporary examples, the article illustrates how vaccines have transformed medical practice and public health outcomes, providing valuable insights into future directions for vaccine innovation and deployment.
Collapse
Affiliation(s)
- Kajal
- School of Biosciences & Technology, Galgotias University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 203201 India
| | - Achyut Pandey
- School of Biosciences & Technology, Galgotias University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 203201 India
| | - Shruti Mishra
- School of Biosciences & Technology, Galgotias University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 203201 India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
16
|
Su C, Li S, Wen Y, Geng X, Yin Q, Wang Y, Xiong Y, Liu Z. A Quadrivalent mRNA Immunization Elicits Potent Immune Responses against Multiple Orthopoxviral Antigens and Neutralization of Monkeypox Virus in Rodent Models. Vaccines (Basel) 2024; 12:385. [PMID: 38675767 PMCID: PMC11053415 DOI: 10.3390/vaccines12040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The global outbreak of the 2022 monkeypox virus infection of humans and the 2023 documentation of a more virulent monkeypox in the Democratic Republic of the Congo raised public health concerns about the threat of human-to-human transmission of zoonotic diseases. Currently available vaccines may not be sufficient to contain outbreaks of a more transmissible and pathogenic orthopoxvirus. Development of a safe, effective, and scalable vaccine against orthopoxviruses to stockpile for future emergencies is imminent. In this study, we have developed an mRNA vaccine candidate, ALAB-LNP, expressing four vaccinia viral antigens A27, L1, A33, and B5 in tandem in one molecule, and evaluated the vaccine immunogenicity in rodent models. Immunization of animals with the candidate mRNA vaccine induced a potent cellular immune response and long-lasting antigen-specific binding antibody and neutralizing antibody responses against vaccinia virus. Strikingly, the sera from the vaccine-immunized mice cross-reacted with all four homologous antigens of multiple orthopoxviruses and neutralized monkeypox virus in vitro, holding promise for this mRNA vaccine candidate to be used for protection of humans from the infection of monkeypox and other orthopoxvirus.
Collapse
Affiliation(s)
- Caixia Su
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Sha Li
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Hongshancelu Avenue, Wuhan 430071, China; (S.L.); (Y.W.)
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yang Wen
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Xiya Geng
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Quanyi Yin
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| | - Yun Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Hongshancelu Avenue, Wuhan 430071, China; (S.L.); (Y.W.)
| | - Yelin Xiong
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
- Ab&B Biotech Co., Ltd., Taizhou 225300, China
| | - Zhihua Liu
- Department of Research and Development, Yither Biotech Co., Ltd., Pudong, Shanghai 200120, China
| |
Collapse
|
17
|
Sun Y, Nie W, Tian D, Ye Q. Human monkeypox virus: Epidemiologic review and research progress in diagnosis and treatment. J Clin Virol 2024; 171:105662. [PMID: 38432097 DOI: 10.1016/j.jcv.2024.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Monkeypox virus (MPXV) is responsible for causing a zoonotic disease called monkeypox (mpox), which sporadically infects humans in West and Central Africa. It first infected humans in 1970 and, along with the variola virus, belongs to the genus Orthopoxvirus in the poxvirus family. Since the World Health Organization declared the MPXV outbreak a "Public Health Emergency of International Concern" on July 23, 2022, the number of infected patients has increased dramatically. To control this epidemic and address this previously neglected disease, MPXV needs to be better understood and reevaluated. In this review, we cover recent research on MPXV, including its genomic and pathogenic characteristics, transmission, mutations and mechanisms, clinical characteristics, epidemiology, laboratory diagnosis, and treatment measures, as well as prevention of MPXV infection in light of the 2022 and 2023 global outbreaks. The 2022 MPXV outbreak has been primarily associated with close intimate contact, including sexual activity, with most cases diagnosed among men who have sex with men. The incubation period of MPXV infection usually lasts from 6 to 13 days, and symptoms include fever, muscle pains, headache, swollen lymph nodes, and a characteristic painful rash, including several stages, such as macules, papules, blisters, pustules, scabs, and scab shedding involving the genitals and anus. Polymerase chain reaction (PCR) is usually used to detect MPXV in skin lesion material. Treatment includes supportive care, antivirals, and intravenous vaccinia immune globulin. Smallpox vaccines have been designed with four givens emergency approval for use against MPXV infection.
Collapse
Affiliation(s)
- Yanhong Sun
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Wenjian Nie
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Dandan Tian
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qing Ye
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
18
|
Natami M, Gorgzadeh A, Gholipour A, Fatemi SN, Firouzeh N, Zokaei M, Mohammed Ali SH, Kheradjoo H, Sedighi S, Gholizadeh O, Kalavi S. An overview on mRNA-based vaccines to prevent monkeypox infection. J Nanobiotechnology 2024; 22:86. [PMID: 38429829 PMCID: PMC10908150 DOI: 10.1186/s12951-024-02355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
The human monkeypox virus (Mpox) is classified as a member of the Poxviridae family and belongs to the Orthopoxvirus genus. Mpox possesses double-stranded DNA, and there are two known genetic clades: those originating in West Africa and the Congo Basin, commonly known as Central African clades. Mpox may be treated with either the vaccinia vaccination or the therapeutics. Modifying the smallpox vaccine for treating and preventing Mpox has shown to be beneficial because of the strong link between smallpox and Mpox viruses and their categorization in the same family. Cross-protection against Mpox is effective with two Food and Drug Administration (FDA)-approved smallpox vaccines (ACAM2000 and JYNNEOSTM). However, ACAM2000 has the potential for significant adverse effects, such as cardiac issues, whereas JYNNEOS has a lower risk profile. Moreover, Mpox has managed to resurface, although with modified characteristics, due to the discontinuation and cessation of the smallpox vaccine for 40 years. The safety and efficacy of the two leading mRNA vaccines against SARS-CoV-2 and its many variants have been shown in clinical trials and subsequent data analysis. This first mRNA treatment model involves injecting patients with messenger RNA to produce target proteins and elicit an immunological response. High potency, the possibility of safe administration, low-cost manufacture, and quick development is just a few of the benefits of RNA-based vaccines that pave the way for a viable alternative to conventional vaccines. When protecting against Mpox infection, mRNA vaccines are pretty efficient and may one day replace the present whole-virus vaccines. Therefore, the purpose of this article is to provide a synopsis of the ongoing research, development, and testing of an mRNA vaccine against Mpox.
Collapse
Affiliation(s)
- Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Arsalan Gholipour
- Free Researchers, Biotechnology and Nanobiotechnology, Babolsar, Iran
| | | | - Nima Firouzeh
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Wang X, Gu Z, Sheng S, Song R, Jin R. The Current State and Progress of Mpox Vaccine Research. China CDC Wkly 2024; 6:118-125. [PMID: 38405601 PMCID: PMC10883320 DOI: 10.46234/ccdcw2024.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/21/2024] [Indexed: 02/27/2024] Open
Abstract
On July 23, 2022, the World Health Organization (WHO) declared the monkeypox (mpox) outbreak a "Public Health Emergency of International Concern." Since 2022, outbreaks of mpox in many countries around the world have primarily resulted in fatalities among immunocompromised individuals, such as untreated HIV/AIDS patients. Since the eradication of smallpox was declared by the WHO in 1980, the global vaccination against smallpox has been gradually discontinued. China also stopped routine smallpox vaccination in 1981. The protective effect of the smallpox vaccine has decreased over time due to aging and declining immunity in those who were vaccinated. For individuals, timely vaccination against smallpox is an effective means of protection against mpox. However, due to safety concerns with the smallpox vaccine and the limitations of current mpox vaccines, there is no vaccine that is safe, effective, and has low side effects applied in clinical settings. This article provides a comprehensive review of the development of mpox virus (MPXV) vaccines, their application in special populations, and the current state of vaccine research, considering the etiology, transmission, and prevention of the MPXV. Vaccination, as an effective method of epidemic prevention, can provide long-term immune protection and effectively reduce the severity of infection. However, as there is no licensed specific MPXV vaccine available globally, the vaccines currently used for mpox prevention are mostly smallpox vaccines. These smallpox vaccines can offer some degree of protection against mpox by activating cross-protection in the body.
Collapse
Affiliation(s)
- Xinlong Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhixia Gu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shugui Sheng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ronghua Jin
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Li M, Guo Y, Deng Y, Gao W, Huang B, Yao W, Zhao Y, Zhang Q, Huang M, Liu M, Li L, Guo P, Tian J, Wang X, Lin Y, Gan J, Guo Y, Hu Y, Zhang J, Yang X, Shang B, Yang M, Han Y, Wang Y, Cong P, Li M, Chu Q, Zhang D, Wang Q, Zhang T, Wu G, Tan W, Gao GF, Liu J. Long-lasting humoral and cellular memory immunity to vaccinia virus Tiantan provides pre-existing immunity against mpox virus in Chinese population. Cell Rep 2024; 43:113609. [PMID: 38159277 DOI: 10.1016/j.celrep.2023.113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/17/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Investigating immune memory to vaccinia virus and pre-existing immunity to mpox virus (MPXV) among the population is crucial for the global response to this ongoing mpox epidemic. Blood was sampled from vaccinees inoculated with vaccinia virus Tiantan (VTT) strain born before 1981 and unvaccinated control subjects born since 1982. After at least 40 years of the inoculation, 60% or 5% VTT vaccinees possess neutralizing antibodies (NAbs) to VTT or MPXV, with at least 50% having T cell memory to VTT protein antigens. Notably, 46.7% vaccinees show pre-existing T cell responses to MPXV. Broad pre-existing CD8+ T cell reactivities to MPXV are detected not only against conserved epitopes but also against variant epitopes between VTT and MPXV. Persistent NAbs and T cell memory to VTT among vaccinees, along with pre-existing T cells to MPXV among both vaccinees and the unvaccinated population, indicate a particular immune barrier to mpox.
Collapse
Affiliation(s)
- Min Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yaxin Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Yao Deng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Wenhui Gao
- Chaoyang District for Disease Prevention and Control of Beijing, Beijing 100021, China
| | - Baoying Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Weiyong Yao
- Dongba Community Healthcare Service Center, Chaoyang District, Beijing 100021, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Qing Zhang
- Dongba Community Healthcare Service Center, Chaoyang District, Beijing 100021, China
| | - Mengkun Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Maoshun Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lei Li
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Peipei Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jinmin Tian
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325035, China
| | - Xin Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ying Lin
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jinxian Gan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuanyuan Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuechao Hu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Jianing Zhang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Xiaonan Yang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Bingli Shang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mengjie Yang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yang Han
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325035, China
| | - Yalan Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Peilei Cong
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Mengzhe Li
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Qiaohong Chu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Danni Zhang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Tong Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guizhen Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China.
| | - Wenjie Tan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China.
| | - George F Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China.
| | - Jun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China.
| |
Collapse
|
21
|
Saalbach KP. Treatment and Vaccination for Smallpox and Monkeypox. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:301-316. [PMID: 38801586 DOI: 10.1007/978-3-031-57165-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The smallpox infection with the variola virus was one of the most fatal disorders until a global eradication was initiated in the twentieth century. The last cases were reported in Somalia 1977 and as a laboratory infection in the UK 1978; in 1980, the World Health Organization (WHO) declared smallpox for extinct. The smallpox virus with its very high transmissibility and mortality is still a major biothreat, because the vaccination against smallpox was stopped globally in the 1980s. For this reason, new antivirals (cidofovir, brincidofovir, and tecovirimat) and new vaccines (ACAM2000, LC16m8 and Modified Vaccine Ankara MVA) were developed. For passive immunization, vaccinia immune globulin intravenous (VIGIV) is available. Due to the relationships between orthopox viruses such as vaccinia, variola, mpox (monkeypox), cowpox, and horsepox, the vaccines (LC16m8 and MVA) and antivirals (brincidofovir and tecovirimat) could also be used in the mpox outbreak with positive preliminary data. As mutations can result in drug resistance against cidofovir or tecovirimat, there is need for further research. Further antivirals (NIOCH-14 and ST-357) and vaccines (VACΔ6 and TNX-801) are being developed in Russia and the USA. In conclusion, further research for treatment and prevention of orthopox infections is needed and is already in progress. After a brief introduction, this chapter presents the smallpox and mpox disease and thereafter full overviews on antiviral treatment and vaccination including the passive immunization with vaccinia immunoglobulins.
Collapse
Affiliation(s)
- Klaus P Saalbach
- Biosecurity Research at Section Political Science of the Department of Cultural and Social Sciences, University of Osnabrueck, Osnabrueck, Germany.
| |
Collapse
|
22
|
Kalaba MH, El-Sherbiny GM, Sharaf MH, Farghal EE. Biological Characteristics and Pathogenesis of Monkeypox Virus: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:91-109. [PMID: 38801573 DOI: 10.1007/978-3-031-57165-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Although the smallpox virus has been eradicated worldwide, the World Health Organization (WHO) has issued a warning about the virus's potential to propagate globally. The WHO labeled monkeypox a world public health emergency in July 2022, requiring urgent prevention and treatment. The monkeypox virus is a part of the Poxviridae family, Orthopoxvirus genus, and is accountable for smallpox, which has killed over a million people in the past. Natural hosts of the virus include squirrels, Gambian rodents, chimpanzees, and other monkeys. The monkeypox virus has transmitted to humans through primary vectors (various animal species) and secondary vectors, including direct touch with lesions, breathing particles from body fluids, and infected bedding. The viral particles are ovoid or brick-shaped, 200-250 nm in diameter, contain a single double-stranded DNA molecule, and reproduce only in the cytoplasm of infected cells. Monkeypox causes fever, cold, muscle pains, headache, fatigue, and backache. The phylogenetic investigation distinguished between two genetic clades of monkeypox: the more pathogenic Congo Basin clade and the West Africa clade. In recent years, the geographical spread of the human monkeypox virus has accelerated despite a paucity of information regarding the disease's emergence, ecology, and epidemiology. Using lesion samples and polymerase chain reaction (PCR), the monkeypox virus was diagnosed. In the USA, the improved Ankara vaccine can now be used to protect people who are at a higher risk of getting monkeypox. Antivirals that we have now work well against smallpox and may stop the spread of monkeypox, but there is no particular therapy for monkeypox.
Collapse
Affiliation(s)
- Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohammed H Sharaf
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Eman E Farghal
- Clinical and Chemical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
23
|
Grabenstein JD, Hacker A. Vaccines against mpox: MVA-BN and LC16m8. Expert Rev Vaccines 2024; 23:796-811. [PMID: 39188013 DOI: 10.1080/14760584.2024.2397006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Global outbreaks involving mpox clade IIb began in mid-2022. Today, clade IIb and clade I outbreaks continue. Reliable mpox vaccines can prevent serious mpox disease and death. AREAS COVERED Globally, two vaccines hold mpox indications, regardless of mpox viral clade: MVA-BN (Bavarian Nordic) and LC16m8 (KM Biologics). This review summarizes the human and pivotal animal data establishing safety and efficacy for MVA-BN and LC16m8, including real-world evidence gathered during mpox outbreaks from 2022 through 2024. EXPERT OPINION Some regulatory decisions for MVA-BN and LC16m8 followed pathways based on surrogate outcomes, including lethal-challenge studies in nonhuman primates, among other atypical aspects. Nonetheless, MVA-BN and LC16m8 hold unencumbered registration in multiple countries. Effectiveness of MVA-BN as primary preventive vaccination (PPV) in humans against clade IIb mpox is clear from real-world studies; effectiveness of LC16m8 against clade IIb is likely from surrogate endpoints. Effectiveness of MVA-BN and LC16m8 as PPV against more-lethal clade I is likely, based on animal-challenge studies with multiple orthopoxvirus species and other studies. Both vaccines have solid safety records. MVA-BN's replication incompetence favors adoption, whereas LC16m8 has more pediatric data. Additional real-world evidence, in additional geographic settings and special populations (e.g. pregnancy, immune suppression, atopic dermatitis), is needed.
Collapse
Affiliation(s)
| | - Adam Hacker
- Coalition for Epidemic Preparedness & Innovation, Oslo, Norway
| |
Collapse
|
24
|
He Y, Tang Y, Wang C, Zhou Z, Li W, Tian M. The Global Health Threat of Monkeypox Virus: Understanding Its Biology, Transmission, and Potential Therapeutic Interventions. Infect Drug Resist 2023; 16:7759-7766. [PMID: 38146310 PMCID: PMC10749784 DOI: 10.2147/idr.s438725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
Monkeypox virus (MPXV), a member of the Orthopoxvirus genus, shares its genus with Variola virus (VARV), the causative agent of smallpox, and Vaccinia virus (VACV), used for smallpox vaccination. While smallpox has been eradicated, MPXV and related poxviruses continue to pose a global health threat. Monkeypox (Mpox), similar in clinical presentation to smallpox but milder, is endemic in Central and West Africa. Sporadic outbreaks emphasize the potential for wider dissemination. Understanding their biology, transmission, immune evasion, and clinical features informs disease control strategies. The intersection of medical innovation and biotechnology with poxviruses underscores their importance in both disease and scientific advancement. Further research is essential to enhance prevention, management, and therapeutic interventions for these viruses.
Collapse
Affiliation(s)
- Yan He
- Department of Infection Management, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Ying Tang
- Department of Ultrasound Diagnostic, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Caiyun Wang
- Department of Respiratory, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zilie Zhou
- Department of Respiratory, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wei Li
- Department of Clinical Research, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Man Tian
- Department of Respiratory, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
25
|
Watanabe S, Yoshikawa T, Kaku Y, Kurosu T, Fukushi S, Sugimoto S, Nishisaka Y, Fuji H, Marsh G, Maeda K, Ebihara H, Morikawa S, Shimojima M, Saijo M. Construction of a recombinant vaccine expressing Nipah virus glycoprotein using the replicative and highly attenuated vaccinia virus strain LC16m8. PLoS Negl Trop Dis 2023; 17:e0011851. [PMID: 38100536 PMCID: PMC10756534 DOI: 10.1371/journal.pntd.0011851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic zoonotic virus that causes severe encephalitis and respiratory diseases and has a high mortality rate in humans (>40%). Epidemiological studies on various fruit bat species, which are natural reservoirs of the virus, have shown that NiV is widely distributed throughout Southeast Asia. Therefore, there is an urgent need to develop effective NiV vaccines. In this study, we generated recombinant vaccinia viruses expressing the NiV glycoprotein (G) or fusion (F) protein using the LC16m8 strain, and examined their antigenicity and ability to induce immunity. Neutralizing antibodies against NiV were successfully induced in hamsters inoculated with LC16m8 expressing NiV G or F, and the antibody titers were higher than those induced by other vaccinia virus vectors previously reported to prevent lethal NiV infection. These findings indicate that the LC16m8-based vaccine format has superior features as a proliferative vaccine compared with other poxvirus-based vaccines. Moreover, the data collected over the course of antibody elevation during three rounds of vaccination in hamsters provide an important basis for the clinical use of vaccinia virus-based vaccines against NiV disease. Trial Registration: NCT05398796.
Collapse
Affiliation(s)
- Shumpei Watanabe
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yoshihiro Kaku
- Division of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Satoko Sugimoto
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yuki Nishisaka
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Hikaru Fuji
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Glenn Marsh
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| | - Ken Maeda
- Division of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Public Health Office, Health and Welfare Bureau, Sapporo Municipal Government, Sapporo, Hokkaido, Japan
| |
Collapse
|
26
|
Ghazy RM, Elrewany E, Gebreal A, ElMakhzangy R, Fadl N, Elbanna EH, Tolba MM, Hammad EM, Youssef N, Abosheaishaa H, Hamouda EEM, Mehana ZEE, Al Zomia AS, A Alnami RA, Salma EAS, Alqahtani AS, Alshehri AF, Hussein M. Systematic Review on the Efficacy, Effectiveness, Safety, and Immunogenicity of Monkeypox Vaccine. Vaccines (Basel) 2023; 11:1708. [PMID: 38006040 PMCID: PMC10674429 DOI: 10.3390/vaccines11111708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The variation in the reported vaccine safety and effectiveness could contribute to the high rates of vaccine hesitancy among the general population and healthcare workers in areas where monkeypox (mpox) is circulating. In this review, our objective was to evaluate the safety, immunogenicity, effectiveness, and efficacy of the mpox vaccines. METHODS An extensive search for articles across multiple databases was performed, including searching six databases (PubMed Central, PubMed Medline, Scopus, Web of Science, Cochrane, ProQuest), two pre-print databases (European PMC Preprint and MedRxiv), and Google Scholar. RESULTS A total of 4290 citations were retrieved from the included databases. Following the removal of duplicates and the initial screening of records, a total of 36 studies were included into the analysis. Additionally, we identified five more studies through manual searches, resulting in a total of 41 eligible articles for qualitative synthesis. The study findings revealed that mpox vaccines demonstrate the ability to generate adequate antibodies; however, their effectiveness may decrease over time, exhibiting varying safety profiles. Most of the included studies consistently reported substantial levels of effectiveness and efficacy against mpox. Interestingly, the number of vaccine doses administered was found to influence the degree of immunogenicity, subsequently impacting the overall effectiveness and efficacy of the vaccines. Furthermore, we found that smallpox vaccines exhibited a form of cross-protection against mpox. CONCLUSIONS Vaccines can be used to prevent mpox and effectively control its spread.
Collapse
Affiliation(s)
- Ramy Mohamed Ghazy
- Tropical Health Department, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt; (R.M.G.); (E.E.)
| | - Ehab Elrewany
- Tropical Health Department, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt; (R.M.G.); (E.E.)
| | - Assem Gebreal
- Alexandria Faculty of Medicine, Alexandria University, Alexandria 21561, Egypt; (A.G.); (E.M.H.); (Z.E.E.M.)
| | - Rony ElMakhzangy
- Family Health Department, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt; (R.E.); (N.F.)
| | - Noha Fadl
- Family Health Department, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt; (R.E.); (N.F.)
| | - Eman Hassan Elbanna
- Health Administration and Behavioral Sciences Department, High Institute of Public Health, Alexandria University, Alexandria 21561, Egypt;
| | - Mahmoud M. Tolba
- Pharmaceutical Division, Ministry of Health and Population, Faiyum City 63723, Egypt;
| | - Elsayed Mohamed Hammad
- Alexandria Faculty of Medicine, Alexandria University, Alexandria 21561, Egypt; (A.G.); (E.M.H.); (Z.E.E.M.)
| | - Naglaa Youssef
- Medical-Surgical Nursing, Faculty of Nursing, Cairo University, Cairo 11562, Egypt;
| | | | | | - Zeyad Elsayed Eldeeb Mehana
- Alexandria Faculty of Medicine, Alexandria University, Alexandria 21561, Egypt; (A.G.); (E.M.H.); (Z.E.E.M.)
| | - Ahmed Saad Al Zomia
- College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (A.S.A.Z.); (R.A.A.A.); (E.A.S.S.); (A.S.A.); (A.F.A.)
| | - Raad Ahmed A Alnami
- College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (A.S.A.Z.); (R.A.A.A.); (E.A.S.S.); (A.S.A.); (A.F.A.)
| | - Emad Ali Saeed Salma
- College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (A.S.A.Z.); (R.A.A.A.); (E.A.S.S.); (A.S.A.); (A.F.A.)
| | - Abdulaziz Saleh Alqahtani
- College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (A.S.A.Z.); (R.A.A.A.); (E.A.S.S.); (A.S.A.); (A.F.A.)
| | - Abdulaziz Fayez Alshehri
- College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (A.S.A.Z.); (R.A.A.A.); (E.A.S.S.); (A.S.A.); (A.F.A.)
| | - Mai Hussein
- Clinical Research Administration, Alexandria Directorate of Health Affairs, Alexandria 21561, Egypt
- Egyptian Ministry of Health and Population, Cairo 11562, Egypt
- Master of Medical Science in Clinical Investigation, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Christodoulidou MM, Mabbott NA. Efficacy of smallpox vaccines against Mpox infections in humans. IMMUNOTHERAPY ADVANCES 2023; 3:ltad020. [PMID: 37886620 PMCID: PMC10598838 DOI: 10.1093/immadv/ltad020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
The Mpox virus (MPXV) is endemic in certain countries in Central and West Africa, where several mammalian species, especially rodents, are natural reservoirs. However, the MPXV can infect nonhuman primates and cause zoonotic infections in humans after close contact with an infected animal. Human-to-human transmission of MPXV can also occur through direct close contact with an infected individual or infected materials. In May 2022 an initial cluster of human Mpox cases was identified in the UK, with the first case confirmed in a patient who had recently travelled to Nigeria. The infection subsequently spread via human-to-human transmission within the UK and Mpox cases began to appear in many other countries around the world where the MPXV is not endemic. No specific treatments for MPXV infection in humans are available. However, data from studies undertaken in Zaire in the 1980s revealed that those with a history of smallpox vaccination during the global smallpox eradication campaign also had good cross-protection against MPXV infection. However, the vaccines used during the global eradication campaign are no longer available. During the 2022 global Mpox outbreak over a million doses of the Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) smallpox vaccine were offered either as pre or postexposure prophylaxis to those at high risk of MPXV infection. Here, we review what has been learned about the efficacy of smallpox vaccines in reducing the incidence of MPXV infections in high-risk close contacts.
Collapse
Affiliation(s)
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
28
|
Lee W, Kim YJ, Lee SJ, Ahn DG, Kim SJ. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for the Re-Emerging Human Monkeypox Virus. J Microbiol Biotechnol 2023; 33:981-991. [PMID: 37519276 PMCID: PMC10468680 DOI: 10.4014/jmb.2306.06033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Monkeypox (Mpox) virus, a member of the Poxviridae family, causes a severe illness similar to smallpox, which is characterized by symptoms such as high fever, rash, and pustules. Human-to-human transmission cases have been reported but remained low since the first recorded case of human infection occurred in the Congo in 1970. Recently, Mpox has re-emerged, leading to an alarming surge in infections worldwide since 2022, originating in the United Kingdom. Consequently, the World Health Organization (WHO) officially declared the '2022-23 Mpox outbreak'. Currently, no specific therapy or vaccine is available for Mpox. Therefore, patients infected with Mpox are treated using conventional therapies developed for smallpox. However, the vaccines developed for smallpox have demonstrated only partial efficacy against Mpox, allowing viral transmission among humans. In this review, we discuss the current epidemiology of the ongoing Mpox outbreak and provide an update on the progress made in diagnosis, treatment, and development of vaccines for Mpox.
Collapse
Affiliation(s)
- Wooseong Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yu-Jin Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Su Jin Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Seong-Jun Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
29
|
Yano R, Terada-Hirashima J, Uemura Y, Tomita N, Shimizu Y, Iwasaki H, Okumura N, Suzuki T, Saito S, Ujiie M, Sugiura W, Ohmagari N. Efficacy and Safety of the Smallpox Vaccine for Postexposure Prophylaxis in Monkeypox: Protocol for an Open-Labeled, Single-Armed Study. JMIR Res Protoc 2023; 12:e46955. [PMID: 37624623 PMCID: PMC10492167 DOI: 10.2196/46955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND In May 2022, a case of monkeypox (currently known as "mpox") with no history of overseas travel was reported in the United Kingdom, followed by reports of infections reported in Europe, the United States, and other countries worldwide. Due to the significant overlap in immune responses among viruses of the genus Orthopoxvirus (including smallpox virus, mpox virus, and vaccinia virus), it is believed that cross-immunity can be achieved by administering the smallpox virus vaccine. In Japan, a smallpox vaccine (LC16m8 strain vaccine) has been approved; however, there was no regulatory approval for the mpox vaccine during the design of this study. Although it is believed that individuals exposed to the mpox virus may receive smallpox vaccination as mpox prophylaxis, the existing evidence is not clear. OBJECTIVE The primary objective was to evaluate the efficacy of the LC16m8 strain vaccine, approved for smallpox in Japan, for postexposure prophylaxis against mpox when administered to close contacts of individuals with mpox. The secondary objective was to investigate the safety of the vaccine for postexposure prophylaxis against mpox. METHODS The study aimed to enroll 100 vaccinated participants who had been identified as close contacts of individuals with mpox. Consent was obtained, and the participants are inoculated with the vaccine. Daily recordings of symptoms (body temperature, headache, rash, and side effects) were made until day 21 and then again on day 28. Furthermore, additional evaluations of adverse events were performed by the investigators on days 7, 14, 21, and 28. Considering that the maximum incubation period for mpox is 21 days, the primary end point is the presence or absence of the disease 21 days after close contact. The primary analysis focused on cases within 4 days of intense contact as it has been reported that vaccination within this timeframe can reduce the incidence of the disease. RESULTS The first trial participant was enrolled on July 28, 2022, and the research period concluded in March 2023. The study results will be published in a peer-reviewed scientific journal. CONCLUSIONS This study allowed us to investigate the efficacy and safety of the LC16m8 strain vaccine in postexposure prophylaxis against mpox. TRIAL REGISTRATION Japan Registry of Clinical Trials jRCTs031220137; https://jrct.niph.go.jp/en-latest-detail/jRCTs031220137. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/46955.
Collapse
Affiliation(s)
- Rina Yano
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Junko Terada-Hirashima
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukari Uemura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Tomita
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Shimizu
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Haruka Iwasaki
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobumasa Okumura
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuya Suzuki
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Sho Saito
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Mugen Ujiie
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Wang Y. Rendezvous with Vaccinia Virus in the Post-smallpox Era: R&D Advances. Viruses 2023; 15:1742. [PMID: 37632084 PMCID: PMC10457812 DOI: 10.3390/v15081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Smallpox was eradicated in less than 200 years after Edward Jenner's practice of cowpox variolation in 1796. The forty-three years of us living free of smallpox, beginning in 1979, never truly separated us from poxviruses. The recent outbreak of monkeypox in May 2022 might well warn us of the necessity of keeping up both the scientific research and public awareness of poxviruses. One of them in particular, the vaccinia virus (VACV), has been extensively studied as a vector given its broad host range, extraordinary thermal stability, and exceptional immunogenicity. Unceasing fundamental biological research on VACV provides us with a better understanding of its genetic elements, involvement in cellular signaling pathways, and modulation of host immune responses. This enables the rational design of safer and more efficacious next-generation vectors. To address the new technological advancement within the past decade in VACV research, this review covers the studies of viral immunomodulatory genes, modifications in commonly used vectors, novel mechanisms for rapid generation and purification of recombinant virus, and several other innovative approaches to studying its biology.
Collapse
Affiliation(s)
- Yuxiang Wang
- Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Wang Y, Yang K, Zhou H. Immunogenic proteins and potential delivery platforms for mpox virus vaccine development: A rapid review. Int J Biol Macromol 2023; 245:125515. [PMID: 37353117 PMCID: PMC10284459 DOI: 10.1016/j.ijbiomac.2023.125515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Since May 2022, the mpox virus (MPXV) has spread worldwide and become a potential threat to global public health. Vaccines are important tools for preventing MPXV transmission and infection in the population. However, there are still no available potent and applicable vaccines specifically for MPXV. Herein, we highlight several potential vaccine targets for MPVX and emphasize potent immunogens, such as M1R, E8L, H3L, A29L, A35R, and B6R proteins. These proteins can be integrated into diverse vaccine platforms to elicit powerful B-cell and T-cell responses, thereby providing protective immunity against MPXV infection. Overall, research on the MPXV vaccine targets would provide valuable information for developing timely effective MPXV-specific vaccines.
Collapse
Affiliation(s)
- Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China.
| |
Collapse
|
32
|
Qudus MS, Cui X, Tian M, Afaq U, Sajid M, Qureshi S, Liu S, Ma J, Wang G, Faraz M, Sadia H, Wu K, Zhu C. The prospective outcome of the monkeypox outbreak in 2022 and characterization of monkeypox disease immunobiology. Front Cell Infect Microbiol 2023; 13:1196699. [PMID: 37533932 PMCID: PMC10391643 DOI: 10.3389/fcimb.2023.1196699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
A new threat to global health re-emerged with monkeypox's advent in early 2022. As of November 10, 2022, nearly 80,000 confirmed cases had been reported worldwide, with most of them coming from places where the disease is not common. There were 53 fatalities, with 40 occurring in areas that had never before recorded monkeypox and the remaining 13 appearing in the regions that had previously reported the disease. Preliminary genetic data suggest that the 2022 monkeypox virus is part of the West African clade; the virus can be transmitted from person to person through direct interaction with lesions during sexual activity. It is still unknown if monkeypox can be transmitted via sexual contact or, more particularly, through infected body fluids. This most recent epidemic's reservoir host, or principal carrier, is still a mystery. Rodents found in Africa can be the possible intermediate host. Instead, the CDC has confirmed that there are currently no particular treatments for monkeypox virus infection in 2022; however, antivirals already in the market that are successful against smallpox may mitigate the spread of monkeypox. To protect against the disease, the JYNNEOS (Imvamune or Imvanex) smallpox vaccine can be given. The spread of monkeypox can be slowed through measures such as post-exposure immunization, contact tracing, and improved case diagnosis and isolation. Final Thoughts: The latest monkeypox epidemic is a new hazard during the COVID-19 epidemic. The prevailing condition of the monkeypox epidemic along with coinfection with COVID-19 could pose a serious condition for clinicians that could lead to the global epidemic community in the form of coinfection.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- RNA Therapeutics Institute, Chan Medical School, University of Massachusetts Worcester, Worcester, MA, United States
| | - Sonia Qureshi
- Krembil Research Institute, University of Health Network, Toronto, ON, Canada
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Muhammad Faraz
- Department of Microbiology, Quaid-I- Azam University, Islamabad, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Saadh MJ, Ghadimkhani T, Soltani N, Abbassioun A, Daniel Cosme Pecho R, Taha A, Jwad Kazem T, Yasamineh S, Gholizadeh O. Progress and prospects on vaccine development against monkeypox infection. Microb Pathog 2023; 180:106156. [PMID: 37201635 PMCID: PMC10186953 DOI: 10.1016/j.micpath.2023.106156] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The monkeypox virus (MPOX) is an uncommon zoonotic illness brought on by an orthopoxvirus (OPXV). MPOX can occur with symptoms similar to smallpox. Since April 25, 2023, 110 nations have reported 87,113 confirmed cases and 111 fatalities. Moreover, the outspread prevalence of MPOX in Africa and a current outbreak of MPOX in the U.S. have made it clear that naturally occurring zoonotic OPXV infections remain a public health concern. Existing vaccines, though they provide cross-protection to MPOX, are not specific for the causative virus, and their effectiveness in the light of the current multi-country outbreak is still to be verified. Furthermore, as a sequel of the eradication and cessation of smallpox vaccination for four decades, MPOX found a possibility to re-emerge, but with distinct characteristics. The World Health Organization (WHO) suggested that nations use affordable MPOX vaccines within a framework of coordinated clinical effectiveness and safety evaluations. Vaccines administered in the smallpox control program and conferred immunity against MPOX. Currently, vaccines approved by WHO for use against MPOX are replicating (ACAM2000), low replicating (LC16m8), and non-replicating (MVA-BN). Although vaccines are accessible, investigations have demonstrated that smallpox vaccination is approximately 85% efficient in inhibiting MPOX. In addition, developing new vaccine methods against MPOX can help prevent this infection. To recognize the most efficient vaccine, it is essential to assess effects, including reactogenicity, safety, cytotoxicity effect, and vaccine-associated side effects, especially for high-risk and vulnerable people. Recently, several orthopoxvirus vaccines have been produced and are being evaluated. Hence, this review aims to provide an overview of the efforts dedicated to several types of vaccine candidates with different strategies for MPOX, including inactivated, live-attenuated, virus-like particles (VLPs), recombinant protein, nucleic acid, and nanoparticle-based vaccines, which are being developed and launched.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Abbassioun
- Department of Virology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Ali Taha
- Medical Technical College, Al-Farahidi University, Iraq
| | - Tareq Jwad Kazem
- Scientific Affairs Department, Al-Mustaqbal University, 51001, Hillah, Babylon, Iraq
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Stilpeanu RI, Stercu AM, Stancu AL, Tanca A, Bucur O. Monkeypox: a global health emergency. Front Microbiol 2023; 14:1094794. [PMID: 37180247 PMCID: PMC10169603 DOI: 10.3389/fmicb.2023.1094794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
Over the past 2 years, the world has faced the impactful Coronavirus Disease-2019 (COVID-19) pandemic, with a visible shift in economy, medicine, and beyond. As of recent times, the emergence of the monkeypox (mpox) virus infections and the growing number of infected cases have raised panic and fear among people, not only due to its resemblance to the now eradicated smallpox virus, but also because another potential pandemic could have catastrophic consequences, globally. However, studies of the smallpox virus performed in the past and wisdom gained from the COVID-19 pandemic are the two most helpful tools for humanity that can prevent major outbreaks of the mpox virus, thus warding off another pandemic. Because smallpox and mpox are part of the same virus genus, the Orthopoxvirus genus, the structure and pathogenesis, as well as the transmission of both these two viruses are highly similar. Because of these similarities, antivirals and vaccines approved and licensed in the past for the smallpox virus are effective and could successfully treat and prevent an mpox virus infection. This review discusses the main components that outline this current global health issue raised by the mpox virus, by presenting it as a whole, and integrating aspects such as its structure, pathogenesis, clinical aspects, prevention, and treatment options, and how this ongoing phenomenon is being globally approached.
Collapse
Affiliation(s)
- Ruxandra Ilinca Stilpeanu
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana Maria Stercu
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andreea Lucia Stancu
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Antoanela Tanca
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Viron Molecular Medicine Institute, Boston, MA, United States
- Genomics Research and Development Institute, Bucharest, Romania
| |
Collapse
|
35
|
Sethi Y, Agarwal P, Murli H, Waheed S, Matar SG, Baklola M, Chopra H, Emran TB, Hasabo EA. Neuropsychiatric manifestations of monkeypox: A clinically oriented comprehensive review. Brain Behav 2023; 13:e2934. [PMID: 37043648 PMCID: PMC10097072 DOI: 10.1002/brb3.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/25/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Monkeypox (MPX) has emerged as a threatening outbreak in recent months. The understanding of disease pathogenesis and its systemic involvement has evolved with time. Both the virus and its vaccine, like other members of the Orthopoxvirus family, were always expected to have neuropsychiatric consequences. Several neurological complications have been reported with MPX and its vaccines that include but not limited to headaches, myalgia, encephalitis, and coma. Psychiatric complications like anxiety and depression have also been reported; however, we lack evidence to present a direct causality. We conducted a literature review to compile recent evidence on neuropsychiatric manifestations and underline the importance of evolving aspects and complications of MPX. We advocate for better reporting of cases and adverse events, to enhance our understanding of the disease, aiding physicians to make more informed decisions, thus facilitating timely diagnosis and treatment.
Collapse
Affiliation(s)
- Yashendra Sethi
- Department of MedicineGovernment Doon Medical CollegeDehradunIndia
| | - Pratik Agarwal
- Department of MedicineLokmanya Tilak Municipal Medical CollegeMumbaiIndia
| | - Hamsa Murli
- Department of MedicineLokmanya Tilak Municipal Medical CollegeMumbaiIndia
| | - Summaiya Waheed
- Department of MedicineDow Medical College, Dow University Of Health SciencesKarachiPakistan
| | | | | | - Hitesh Chopra
- Chitkara College of PharmacyChitkara UniversityPunjabIndia
| | - Talha Bin Emran
- Department of PharmacyBGC Trust University BangladeshChittagongBangladesh
- Department of Pharmacy, Faculty of Allied Health SciencesDaffodil International UniversityDhakaBangladesh
| | | |
Collapse
|
36
|
Zhang Y, Zhou Y, Pei R, Chen X, Wang Y. Potential threat of human pathogenic orthopoxviruses to public health and control strategies. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023; 5:1-7. [PMID: 36624850 PMCID: PMC9811937 DOI: 10.1016/j.jobb.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Orthopoxviruses (OPXVs) belong to a group of nucleo-cytoplasmic large DNA viruses. Human pathogenic OPXVs (hpOPXVs) include at least five viruses, among which smallpox virus and monkeypox virus are the most dangerous viral pathogens. Both viruses are classified as category-one human infectious pathogens in China. Although smallpox was globally eradicated in the 1980 s, it is still a top biosecurity threat owing to the possibility of either being leaked to the outside world from a laboratory or being weaponized by terrorists. Beginning in early May 2022, a sudden outbreak of monkeypox was concurrently reported in more than 100 disparate geographical areas, representing a public health emergency of international concern, as declared by the World Health Organization (WHO). In this review, we present the reasons for hpOPXVs such as monkeypox virus presenting a potential threat to public health. We then systematically review the historical and recent development of vaccines and drugs against smallpox and monkeypox. In the final section, we highlight the importance of viromics studies as an integral part of a forward defense strategy to eliminate the potential threat to public health from emerging or re-emerging hpOPXVs and their variants.
Collapse
Affiliation(s)
- Yongli Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China,Innovation Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510320, China
| | - Yun Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China,Corresponding author
| |
Collapse
|
37
|
Sah R, Paul D, Mohanty A, Shah A, Mohanasundaram AS, Padhi BK. Monkeypox (Mpox) vaccines and their side effects: the other side of the coin. Int J Surg 2023; 109:215-217. [PMID: 36799858 PMCID: PMC10389550 DOI: 10.1097/js9.0000000000000142] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 02/18/2023]
Affiliation(s)
- Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu
- Dr. D.Y. Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra
| | | | | | - Abhishek Shah
- B.P. Koriala Institute of Health Sciences, Dharan, Nepal
| | | | - Bijay K. Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
38
|
Chandran D, Nandanagopal V, Gopan M, Megha K, Hari Sankar C, Muhammad Aslam M, Savanth VV, Pran M, Nainu F, Yatoo MI, Ebad Ur Rehman M, Chopra H, Emran TB, Dey A, Sharma AK, A. Saied A, Dhama K. Major Advances in Monkeypox Vaccine Research and Development – An Update. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022; 16:3083-3095. [DOI: 10.22207/jpam.16.spl1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Monkeypox (MPX) is a zoonotic disease that is endemic to the western and central regions of Africa and it is caused by monkeypox virus (MPXV), which is classified as a member of the Poxviridae family, specifically the Chordopoxvirinae subfamily, and the Orthopoxvirus genus. The current multiregional outbreak of MPX, which started in May of 2022, has since swiftly spread across the globe and thus has been declared a global public health emergency by the World Health Organization (WHO). Protective immunity against MPXV can be achieved by administering a smallpox vaccination, as the two viruses share antigenic properties. Although smallpox was declared eradicated in 1980, the vaccine campaign was halted the following year, leaving the population with significantly less immunity than it had before. The potential for human-to-human transmission of MPXV has grown as a result. Due to the lack of a particular treatment for MPX infection, anti-viral medications initially designed for the smallpox virus are being employed. However, the prognosis for MPX may vary depending on factors like immunization history, pre-existing illnesses, and comorbidities, even though the majority of persons who develop MPX have a mild, self-limiting illness. Vaccines and antiviral drugs are being researched as potential responses to the latest 2022 MPX epidemic. The first-generation smallpox vaccinations maintained in national stockpiles of several countries are not recommended due to not meeting the current safety and manufacturing criteria, as stated by the WHO. Newer, safer (second- and third-generation) smallpox vaccines, such as JYNNEOSTM, which has been licensed for the prevention of MPX, are indicated as potentially useful in the interim guideline. Studies on vaccines and antiviral drugs are still being investigated as possible remedies to the recent MPX outbreak. This mini-review article serves as a retrospective look at the evolution of smallpox vaccines from their inception in the 1700s to the current trends up to the end of year 2022, specifically for developing monkeypox vaccines.
Collapse
|
39
|
Dashraath P, Nielsen-Saines K, Rimoin A, Mattar CNZ, Panchaud A, Baud D. Monkeypox in pregnancy: virology, clinical presentation, and obstetric management. Am J Obstet Gynecol 2022; 227:849-861.e7. [PMID: 35985514 PMCID: PMC9534101 DOI: 10.1016/j.ajog.2022.08.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/26/2023]
Abstract
The 2022 monkeypox outbreak, caused by the zoonotic monkeypox virus, has spread across 6 World Health Organization regions (the Americas, Africa, Europe, Eastern Mediterranean, Western Pacific, and South-East Asia) and was declared a public health emergency of international concern on July 23, 2022. The global situation is especially concerning given the atypically high rate of person-to-person transmission, which suggests viral evolution to an established human pathogen. Pregnant women are at heightened risk of vertical transmission of the monkeypox virus because of immune vulnerability and natural depletion of population immunity to smallpox among reproductive-age women, and because orthopoxviral cell entry mechanisms can overcome the typically viral-resistant syncytiotrophoblast barrier within the placenta. Data on pregnancy outcomes following monkeypox infection are scarce but include reports of miscarriage, intrauterine demise, preterm birth, and congenital infection. This article forecasts the issues that maternity units might face and proposes guidelines to protect the health of pregnant women and fetuses exposed to the monkeypox virus. We review the pathophysiology and clinical features of monkeypox infection and discuss the obstetrical implications of the unusually high prevalence of anogenital lesions. We describe the use of real-time polymerase chain reaction tests from mucocutaneous and oropharyngeal sites to confirm infection, and share an algorithm for the antenatal management of pregnant women with monkeypox virus exposure. On the basis of the best available knowledge from prenatal orthopoxvirus infections, we discuss the sonographic features of congenital monkeypox and the role of invasive testing in establishing fetal infection. We suggest a protocol for cesarean delivery to avoid the horizontal transmission of the monkeypox virus at birth and address the controversy of mother-infant separation in the postpartum period. Obstetrical concerns related to antiviral therapy with tecovirimat and vaccinia immune globulin are highlighted, including the risks of heart rate-corrected QT-interval prolongation, inaccuracies in blood glucose monitoring, and the predisposition to iatrogenic venous thromboembolism. The possibility of monkeypox vaccine hesitancy during pregnancy is discussed, and strategies are offered to mitigate these risks. Finally, we conclude with a research proposal to address knowledge gaps related to the impact of monkeypox infection on maternal, fetal, and neonatal health.
Collapse
Affiliation(s)
- Pradip Dashraath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, National University Hospital, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Karin Nielsen-Saines
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Anne Rimoin
- Fielding School of Public Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA; University of California Los Angeles-Democratic Republic of the Congo Health Research and Training Program, Kinshasa, Democratic Republic of the Congo
| | - Citra N Z Mattar
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, National University Hospital, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alice Panchaud
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
40
|
Nagarajan P, Howlader A, Louis LRP, Rangarajalu K. Outbreaks of human monkeypox during the COVID-19 pandemic: a systematic review for healthcare professionals. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:778-791. [PMID: 36721435 PMCID: PMC9867619 DOI: 10.18502/ijm.v14i6.11252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ongoing 2022 multicountry monkeypox epidemic has drawn worldwide attention. Human monkeypox is a virus that spreads from animals to humans. It is an endemic disease in the rain forests of Central and West Africa. However, the disease recently emerged in India, and also in United States through imported wild rodents from Africa, even though the world is still struggling to escape from the clutches of the COVID-19 pandemic. Monkeypox is one of the contagious zoonotic diseases caused by the monkeypox virus (MPXV), transmitted to humans by direct contact with an infected person or animal or contact with virus-contaminated material. Its lesions are similar to smallpox in humans with various medical complications including flu-like symptoms, fever, malaise, back pain, headache, and a characteristic rash. Public health experts around the world are very concerned about the rapid spread of the infection, which has intensified efforts to find the source and cause of this phenomenon. Several viral infections with epidemic potential threaten global health security. Early recognition of cases and timely intervention of potential transmission chains are necessary to contain further outbreaks. At this early stage of monkeypox outbreaks, the current review provides updated information on the current worldwide monkeypox outbreak status, disease aetiology, clinical presentation, therapy, and preventive measures worldwide. Our review will also provide useful information to health professionals and the general public.
Collapse
Affiliation(s)
- Prithiviraj Nagarajan
- Multi-Disciplinary Centre for Biomedical Research, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Kirumampakkam, Puducherry, India,Corresponding author: Prithiviraj Nagarajan, Ph.D, Multi-Disciplinary Centre for Biomedical Research, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Kirumampakkam, Puducherry, India. Tel: +91-6380400036 Fax: +91-4272477903
| | - Anusheela Howlader
- Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry, India
| | - Leena Rajathy Port Louis
- Department of Pharmacology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Kirumampakkam, Puducherry, India
| | - Kumar Rangarajalu
- Department of Biochemistry, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Kirumampakkam, Puducherry, India
| |
Collapse
|
41
|
Lin X, Wu X. Monkeypox: Clinical Issues of Concern. J Transl Int Med 2022; 10:297-299. [PMID: 36860630 PMCID: PMC9969573 DOI: 10.2478/jtim-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Xiantian Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, Zhejiang Province, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, Zhejiang Province, China
| |
Collapse
|
42
|
Poland GA, Kennedy RB, Tosh PK. Prevention of monkeypox with vaccines: a rapid review. THE LANCET. INFECTIOUS DISEASES 2022; 22:e349-e358. [PMID: 36116460 PMCID: PMC9628950 DOI: 10.1016/s1473-3099(22)00574-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/09/2023]
Abstract
The largest outbreak of monkeypox in history began in May, 2022, and has rapidly spread across the globe ever since. The purpose of this Review is to briefly describe human immune responses to orthopoxviruses; provide an overview of the vaccines available to combat this outbreak; and discuss the various clinical data and animal studies evaluating protective immunity to monkeypox elicited by vaccinia virus-based smallpox vaccines, address ongoing concerns regarding the outbreak, and provide suggestions for the appropriate use of vaccines as an outbreak control measure. Data showing clinical effectiveness (~85%) of smallpox vaccines against monkeypox come from surveillance studies conducted in central Africa in the 1980s and later during outbreaks in the same area. These data are supported by a large number of animal studies (primarily in non-human primates) with live virus challenge by various inoculation routes. These studies uniformly showed a high degree of protection and immunity against monkeypox virus following vaccination with various smallpox vaccines. Smallpox vaccines represent an effective countermeasure that can be used to control monkeypox outbreaks. However, smallpox vaccines do cause side-effects and the replication-competent, second-generation vaccines have contraindications. Third-generation vaccines, although safer for use in immunocompromised populations, require two doses, which is an impediment to rapid outbreak response. Lessons learned from the COVID-19 pandemic should be used to inform our collective response to this monkeypox outbreak and to future outbreaks.
Collapse
Affiliation(s)
| | | | - Pritish K Tosh
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA,Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
43
|
Huang Y, Mu L, Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention. Signal Transduct Target Ther 2022; 7:373. [PMID: 36319633 PMCID: PMC9626568 DOI: 10.1038/s41392-022-01215-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
Monkeypox is a zoonotic disease that was once endemic in west and central Africa caused by monkeypox virus. However, cases recently have been confirmed in many nonendemic countries outside of Africa. WHO declared the ongoing monkeypox outbreak to be a public health emergency of international concern on July 23, 2022, in the context of the COVID-19 pandemic. The rapidly increasing number of confirmed cases could pose a threat to the international community. Here, we review the epidemiology of monkeypox, monkeypox virus reservoirs, novel transmission patterns, mutations and mechanisms of viral infection, clinical characteristics, laboratory diagnosis and treatment measures. In addition, strategies for the prevention, such as vaccination of smallpox vaccine, is also included. Current epidemiological data indicate that high frequency of human-to-human transmission could lead to further outbreaks, especially among men who have sex with men. The development of antiviral drugs and vaccines against monkeypox virus is urgently needed, despite some therapeutic effects of currently used drugs in the clinic. We provide useful information to improve the understanding of monkeypox virus and give guidance for the government and relative agency to prevent and control the further spread of monkeypox virus.
Collapse
Affiliation(s)
- Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Mu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
44
|
Farasani A. Monkeypox virus: Future role in Human population. J Infect Public Health 2022; 15:1270-1275. [PMID: 36272392 PMCID: PMC9554154 DOI: 10.1016/j.jiph.2022.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Monkeypox viral infection is considered as global public health and a rare disease caused by Monkeypox virus (MPXV), which is caused by smallpox-like virus and it causes pustules all over the body. MPV is an emerging zoonotic infection with sporadic occurrence globally and multiple outbreaks have been reported in African regions. The story of MPXV has been started since 1970 in Democratic republic of Cargo. The high cases of MPXV was majorly detected in Congo Rain Forest region in Africa. Animal-human (Zoonotic) transmission occurred, although the individual infected animal was not recognized. Human-human transmission occurs and is difficult until bodily fluids or respiratory droplets are exchanged. If a specific individual uses an infected person's towels or bed sheets, infection may occur. AIM The aim of this review is to document the methods of diagnosis, treatments (vaccines) and future role of MPXV in human population. OUTPUT The diagnosis is confirmed mainly through clinical diagnosis and then laboratory diagnosis such as cell-culture, serological and Polymerase Chain Reaction tests. Presently, there is no vaccine for MPXV but the smallpox vaccine will protect. The old vaccine includes antivirals approved for use against Orthopoxvirus, such as tecovirimat, which can treat up to 85 % of MPXV in humans. MPXV is now considered as transmission virus which affects from human to humans. The fatality rate was documented to be 3-10 % in children and in adults it is very low. CONCLUSION This review concludes MPXV is not as contagious as COVID-19 but proper measures should be taken as mentioned in this review to avoid MPXV. Presently, controlling MPXV presents unique challenges, and future prospective global studies in antivirals for this disease, as well as an MPXV vaccines, are recommended to eliminate this virus.
Collapse
Affiliation(s)
- Abdullah Farasani
- Medical Research Center, Jazan University, Jazan, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
45
|
Al-Musa A, Chou J, LaBere B. The resurgence of a neglected orthopoxvirus: Immunologic and clinical aspects of monkeypox virus infections over the past six decades. Clin Immunol 2022; 243:109108. [PMID: 36067982 PMCID: PMC9628774 DOI: 10.1016/j.clim.2022.109108] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
Monkeypox is a zoonotic Orthopoxvirus which has predominantly affected humans living in western and central Africa since the 1970s. Type I and II interferon signaling, NK cell function, and serologic immunity are critical for host immunity against monkeypox. Monkeypox can evade host viral recognition and block interferon signaling, leading to overall case fatality rates of up to 11%. The incidence of monkeypox has increased since cessation of smallpox vaccination. In 2022, a global outbreak emerged, predominantly affecting males, with exclusive human-to-human transmission and more phenotypic variability than earlier outbreaks. Available vaccines are safe and effective tools for prevention of severe disease, but supply is limited. Now considered a public health emergency, more studies are needed to better characterize at-risk populations and to develop new anti-viral therapies.
Collapse
Affiliation(s)
- Amer Al-Musa
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA..
| | - Brenna LaBere
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA..
| |
Collapse
|
46
|
Farahat RA, Shrestha AB, Elsayed M, Memish ZA. Monkeypox vaccination: Does it cause neurologic and psychiatric manifestations? - Correspondence. Int J Surg 2022; 106:106926. [PMID: 36126856 PMCID: PMC9481469 DOI: 10.1016/j.ijsu.2022.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 10/26/2022]
Affiliation(s)
| | | | - Mohamed Elsayed
- Department of Psychiatry, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany
| | - Ziad A Memish
- Research and Innovation Center, King Saud Medical City, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
47
|
Iyori M, Blagborough AM, Mizuno T, Abe YI, Nagaoka M, Hori N, Yamagoshi I, Da DF, Gregory WF, Hasyim AA, Yamamoto Y, Sakamoto A, Yoshida K, Mizukami H, Shida H, Yoshida S. Sterile protection and transmission blockade by a multistage anti-malarial vaccine in the pre-clinical study. Front Immunol 2022; 13:1005476. [PMID: 36248835 PMCID: PMC9558734 DOI: 10.3389/fimmu.2022.1005476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The Malaria Vaccine Technology Roadmap 2013 (World Health Organization) aims to develop safe and effective vaccines by 2030 that will offer at least 75% protective efficacy against clinical malaria and reduce parasite transmission. Here, we demonstrate a highly effective multistage vaccine against both the pre-erythrocytic and sexual stages of Plasmodium falciparum that protects and reduces transmission in a murine model. The vaccine is based on a viral-vectored vaccine platform, comprising a highly-attenuated vaccinia virus strain, LC16m8Δ (m8Δ), a genetically stable variant of a licensed and highly effective Japanese smallpox vaccine LC16m8, and an adeno-associated virus (AAV), a viral vector for human gene therapy. The genes encoding P. falciparum circumsporozoite protein (PfCSP) and the ookinete protein P25 (Pfs25) are expressed as a Pfs25-PfCSP fusion protein, and the heterologous m8Δ-prime/AAV-boost immunization regimen in mice provided both 100% protection against PfCSP-transgenic P. berghei sporozoites and up to 100% transmission blocking efficacy, as determined by a direct membrane feeding assay using parasites from P. falciparum-positive, naturally-infected donors from endemic settings. Remarkably, the persistence of vaccine-induced immune responses were over 7 months and additionally provided complete protection against repeated parasite challenge in a murine model. We propose that application of the m8Δ/AAV malaria multistage vaccine platform has the potential to contribute to the landmark goals of the malaria vaccine technology roadmap, to achieve life-long sterile protection and high-level transmission blocking efficacy.
Collapse
Affiliation(s)
- Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Ishikawa, Japan
| | | | - Tetsushi Mizuno
- Department of Parasitology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Yu-ichi Abe
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Ishikawa, Japan
| | - Mio Nagaoka
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Ishikawa, Japan
| | - Naoto Hori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Ishikawa, Japan
| | - Iroha Yamagoshi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Ishikawa, Japan
| | - Dari F. Da
- Département de Biologie Médicale et Santé Publique, Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - William F. Gregory
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ammar A. Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Ishikawa, Japan
| | - Yutaro Yamamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Ishikawa, Japan
| | - Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Ishikawa, Japan
| | - Kunitaka Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Ishikawa, Japan
| | - Hiroaki Mizukami
- Division of Gene Therapy, Jichi Medical University, Tochigi, Japan
| | - Hisatoshi Shida
- Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
48
|
Orlova OV, Glazkova DV, Bogoslovskaya EV, Shipulin GA, Yudin SM. Development of Modified Vaccinia Virus Ankara-Based Vaccines: Advantages and Applications. Vaccines (Basel) 2022; 10:vaccines10091516. [PMID: 36146594 PMCID: PMC9503770 DOI: 10.3390/vaccines10091516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a promising viral vector for vaccine development. MVA is well studied and has been widely used for vaccination against smallpox in Germany. This review describes the history of the origin of the virus and its properties as a vaccine, including a high safety profile. In recent years, MVA has found its place as a vector for the creation of vaccines against various diseases. To date, a large number of vaccine candidates based on the MVA vector have already been developed, many of which have been tested in preclinical and clinical studies. We discuss data on the immunogenicity and efficacy of some of these vaccines.
Collapse
|
49
|
Sakamoto A, Osawa H, Hashimoto H, Mizuno T, Hasyim AA, Abe YI, Okahashi Y, Ogawa R, Iyori M, Shida H, Yoshida S. A replication-competent smallpox vaccine LC16m8Δ-based COVID-19 vaccine. Emerg Microbes Infect 2022; 11:2359-2370. [PMID: 36069348 PMCID: PMC9527789 DOI: 10.1080/22221751.2022.2122580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Viral vectors are a potent vaccine platform for inducing humoral and T-cell immune responses. Among the various viral vectors, replication-competent ones are less commonly used for coronavirus disease 2019 (COVID-19) vaccine development compared with replication-deficient ones. Here, we show the availability of a smallpox vaccine LC16m8Δ (m8Δ) as a replication-competent viral vector for a COVID-19 vaccine. M8Δ is a genetically stable variant of the licensed and highly effective Japanese smallpox vaccine LC16m8. Here, we generated two m8Δ recombinants: one harbouring a gene cassette encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein, named m8Δ-SARS2(P7.5-S)-HA; and one encoding the S protein with a highly polybasic motif at the S1/S2 cleavage site, named m8Δ-SARS2(P7.5-SHN)-HA. M8Δ-SARS2(P7.5-S)-HA induced S-specific antibodies in mice that persisted for at least six weeks after a homologous boost immunization. All eight analysed serum samples displayed neutralizing activity against an S-pseudotyped virus at a level similar to that of serum samples from patients with COVID-19, and more than half (5/8) also had neutralizing activity against the Delta/B.1.617.2 variant of concern. Importantly, most serum samples also neutralized the infectious SARS-CoV-2 Wuhan and Delta/B.1.617.2 strains. In contrast, immunization with m8Δ-SARS2(P7.5-SHN)-HA elicited significantly lower antibody titres, and the induced antibodies had less neutralizing activity. Regarding T-cell immunity, both m8Δ recombinants elicited S-specific multifunctional CD8+ and CD4+ T-cell responses even after just a primary immunization. Thus, m8Δ provides an alternative method for developing a novel COVID-19 vaccine.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hiroaki Osawa
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hinata Hashimoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Tetsushi Mizuno
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan.,Department of Global Infectious Diseases, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Ammar A Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Yu-Ichi Abe
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Yuto Okahashi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Ryohei Ogawa
- Department of Radiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hisatoshi Shida
- Division of Molecular Virology, Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| |
Collapse
|
50
|
Focosi D, Novazzi F, Baj A, Maggi F. Monkeypox: An international epidemic. Rev Med Virol 2022; 32:e2392. [PMID: 36029181 DOI: 10.1002/rmv.2392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/30/2023]
Abstract
Human monkeypox (MPX) is a viral zoonosis caused by the Monkeypox virus. For decades outbreaks exclusively occurred in the tropical rainforests of Africa, with a few imported cases and very limited human-to-human transmission outside Africa. Nevertheless, in the last years sustained outbreaks have emerged, peaking at 4600 cases in 2020 in the Democratic Republic of Congo. Since May 2022, an international epidemic originated at 2 events in Spain and Belgium led to sustained human-to-human transmission across multiple continents, mostly in males having sex with males subjects. We review here clinical presentation, epidemiology, viral evolution, vaccines, and therapeutics against human MPX.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Federica Novazzi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fabrizio Maggi
- Istituto Nazionale Malattie Infettive "Lazzaro Spallanzani", Rome, Italy
| |
Collapse
|