1
|
Batta-Mpouma J, Kandhola G, Kaur J, Foley K, Walters KB, Kotagiri N, Kim JW. Cellulose nanocrystal-based hydrogel microspheres prepared via electrohydrodynamic processes for controlled release of bioactive compounds. Carbohydr Polym 2025; 356:123355. [PMID: 40049949 DOI: 10.1016/j.carbpol.2025.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 05/13/2025]
Abstract
Controlled release systems (CRSs) have been sought after as a compelling platform for site-specific delivery of bioactive compounds (BCs), including traditional drugs and food supplements. However, their potential is often hindered by challenges such as non-uniformity and structural instability. This study utilized an electrohydrodynamic (EHD) process to synthesize composites of cellulose nanocrystals (CNCs) (in two forms: colloidal (c) and crosslinked (x)) and alginate (ALG) to produce uniformly shaped hydrogel microspheres (HMs), serving as pH-sensitive CRSs for BC encapsulation. Hydrophobic and hydrophilic dyes, as model BCs, were loaded in HMs. Bead shapes were assessed by sphericity factors (values ≤0.05). Size depended on applied voltage, as it ranged from ∼1200 μm (voltage-OFF) to 300 μm (voltage-ON). Release mechanism of dye-loaded HMs was studied at pH 2.4 and pH 8.2 (to mimic acidic conditions in stomach and basic conditions in small intestine) using Korsmeyer-Peppas model. Release exponents (n) of dyes for different compositions indicated pH-dependent delivery through non-Fickian diffusion (0.43 ≤ n ≤ 0.85) and case-II transport (n ≥ 0.85) mechanisms. BC-loaded cCNC-ALG and xCNC-ALG composites, prepared via EHDs, demonstrated potential for designing efficient pH-sensitive CRSs for applications in various industries, ranging from nutraceutical and pharmaceutical to food and agriculture.
Collapse
Affiliation(s)
- Joseph Batta-Mpouma
- Bio/Nano Technology Group, Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR 72701, USA; Materials Science & Engineering Program, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Gurshagan Kandhola
- Bio/Nano Technology Group, Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR 72701, USA; Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jaspreet Kaur
- Bio/Nano Technology Group, Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR 72701, USA; Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kayla Foley
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Keisha Bishop Walters
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jin-Woo Kim
- Bio/Nano Technology Group, Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR 72701, USA; Materials Science & Engineering Program, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701, USA; Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
2
|
Naqvi N, Ahuja Y, Zarin S, Alam A, Ali W, Shariq M, Hasnain SE, Ehtesham NZ. BCG's role in strengthening immune responses: Implications for tuberculosis and comorbid diseases. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105703. [PMID: 39667418 DOI: 10.1016/j.meegid.2024.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
The BCG vaccine represents a significant milestone in the prevention of tuberculosis (TB), particularly in children. Researchers have been developing recombinant BCG (rBCG) variants that can trigger lasting memory responses, thereby enhancing protection against TB in adults. The breakdown of immune surveillance is a key link between TB and other communicable and non-communicable diseases. Notably, TB is more prevalent among people with comorbidities such as HIV, diabetes, cancer, influenza, COVID-19, and autoimmune disorders. rBCG formulations have the potential to address both TB and HIV co-pandemics. TB increases the risk of lung cancer and immunosuppression caused by cancer can reactivate latent TB infections. Moreover, BCG's efficacy extends to bladder cancer treatment and blood glucose regulation in patients with diabetes and TB. Additionally, BCG provides cross-protection against unrelated pathogens, emphasizing the importance of BCG-induced trained immunity in COVID-19 and other respiratory diseases. Furthermore, BCG reduced the severity of pulmonary TB-induced influenza virus infections. Recent studies have proposed innovations in BCG delivery, revaccination, and attenuation techniques. Disease-centered research has highlighted the immunomodulatory effects of BCG on TB, HIV, cancer, diabetes, COVID-19, and autoimmune diseases. The complex relationship between TB and comorbidities requires a nuanced re-evaluation to understand the shared attributes regulated by BCG. This review assessed the interconnected relationships influenced by BCG administration in TB and related disorders, recommending the expanded use of rBCG in healthcare. Collaboration among vaccine research stakeholders is vital to enhance BCG's efficacy against global health challenges.
Collapse
Affiliation(s)
- Nilofer Naqvi
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Yashika Ahuja
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Sheeba Zarin
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Anwar Alam
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Waseem Ali
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Hyderabad Campus, Telangana 502329, India
| | - Seyed E Hasnain
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110 016, India..
| | - Nasreen Z Ehtesham
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India.
| |
Collapse
|
3
|
Freudenberger Catanzaro KC, Lahmers KK, Allen IC, Inzana TJ. Alginate microencapsulation of an attenuated O-antigen mutant of Francisella tularensis LVS as a model for a vaccine delivery vehicle. PLoS One 2022; 17:e0259807. [PMID: 35275912 PMCID: PMC8916679 DOI: 10.1371/journal.pone.0259807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Francisella tularensis is the etiologic agent of tularemia and a Tier I Select Agent. Subspecies tularensis (Type A) is the most virulent of the four subspecies and inhalation of as few as 10 cells can cause severe disease in humans. Due to its niche as a facultative intracellular pathogen, a successful tularemia vaccine must induce a robust cellular immune response, which is best achieved by a live, attenuated strain. F. tularensis strains lacking lipopolysaccharide (LPS) O-antigen are highly attenuated, but do not persist in the host long enough to induce protective immunity. Increasing the persistence of an O-antigen mutant may help stimulate protective immunity. Alginate encapsulation is frequently used with probiotics to increase persistence of bacteria within the gastrointestinal system, and was used to encapsulate the highly attenuated LVS O-antigen mutant WbtIG191V. Encapsulation with alginate followed by a poly-L-lysine/alginate coating increased survival of WbtIG191V in complement-active serum. In addition, BALB/c mice immunized intraperitoneally with encapsulated WbtIG191V combined with purified LPS survived longer than mock-immunized mice following intranasal challenge. Alginate encapsulation of the bacteria also increased antibody titers compared to non-encapsulated bacteria. These data suggest that alginate encapsulation provides a slow-release vehicle for bacterial deposits, as evidenced by the increased antibody titer and increased persistence in serum compared to freely suspended cells. Survival of mice against high-dose intranasal challenge with the LVS wildtype was similar between mice immunized within alginate capsules or with LVS, possibly due to the low number of animals used, but bacterial loads in the liver and spleen were the lowest in mice immunized with WbtIG191V and LPS in beads. However, an analysis of the immune response of surviving mice indicated that those vaccinated with the alginate vehicle upregulated cell-mediated immune pathways to a lesser extent than LVS-vaccinated mice. In summary, this vehicle, as formulated, may be more effective for pathogens that require predominately antibody-mediated immunity.
Collapse
Affiliation(s)
- Kelly C. Freudenberger Catanzaro
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kevin K. Lahmers
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Thomas J. Inzana
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Jazayeri SD, Lim HX, Shameli K, Yeap SK, Poh CL. Nano and Microparticles as Potential Oral Vaccine Carriers and Adjuvants Against Infectious Diseases. Front Pharmacol 2021; 12:682286. [PMID: 34149426 PMCID: PMC8206556 DOI: 10.3389/fphar.2021.682286] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces are the first site of infection for most infectious diseases and oral vaccination can provide protection as the first line of defense. Unlike systemic administration, oral immunization can stimulate cellular and humoral immune responses at both systemic and mucosal levels to induce broad-spectrum and long-lasting immunity. Therefore, to design a successful vaccine, it is essential to stimulate the mucosal as well as systemic immune responses. Successful oral vaccines need to overcome the harsh gastrointestinal environment such as the extremely low pH, proteolytic enzymes, bile salts as well as low permeability and the low immunogenicity of vaccines. In recent years, several delivery systems and adjuvants have been developed for improving oral vaccine delivery and immunogenicity. Formulation of vaccines with nanoparticles and microparticles have been shown to improve antigen stability, availability and adjuvanticity as well as immunostimulatory capacity, target delivery and specific release. This review discusses how nanoparticles (NPs) and microparticles (MPs) as oral carriers with adjuvant characteristics can be beneficial in oral vaccine development.
Collapse
Affiliation(s)
| | - Hui Xuan Lim
- Centre for Virus and Vaccine Research, Subang Jaya, Malaysia
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Swee Keong Yeap
- Department of Marine Biotechnology, China-Asean College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Subang Jaya, Malaysia
| |
Collapse
|
5
|
Fabrication of alginate microspheres for drug delivery: A review. Int J Biol Macromol 2020; 153:1035-1046. [DOI: 10.1016/j.ijbiomac.2019.10.233] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/29/2022]
|
6
|
|
7
|
Mosafer J, Sabbaghi AH, Badiee A, Dehghan S, Tafaghodi M. Preparation, characterization and in vivo evaluation of alginate-coated chitosan and trimethylchitosan nanoparticles loaded with PR8 influenza virus for nasal immunization. Asian J Pharm Sci 2018; 14:216-221. [PMID: 32104453 PMCID: PMC7032123 DOI: 10.1016/j.ajps.2018.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/14/2018] [Accepted: 04/06/2018] [Indexed: 11/18/2022] Open
Abstract
For efficient mucosal vaccine delivery, nanoparticulate antigens are better taken by microfold cells in the nasal associated lymphoid tissue and also dendritic cells. Nanoparticles based on polymers such as chitosan (CHT) and its water soluble derivative, trimethylchitosan (TMC), could be successfully used as carrier/adjuvant for this purpose. Sodium alginate, a negatively charged biopolymer, could modify the immunostimulatory properties of CHT and TMC NPs and increase their stability. Sodium alginate (ALG)-coated chitosan (CHT) and trimethylchitosan (TMC) nanoparticles (NPs) loaded with inactivated PR8 influenza virus were successfully prepared by direct coating of the virus with CHT or TMC polymers to evaluate their immunoadjuvant potential after nasal immunization. After nasal immunizations in BALB/c mice, PR8-CHT formulation elicited higher IgG2a and IgG1 antibody titers compared with PR8-TMC. ALG coating of this formulation (PR8-CHT-ALG) significantly decreased the antibody titers and a less immune response was induced than PR8-TMC-ALG formulation. PR8-TMC-ALG formulation showed significantly higher IgG2a/IgG1 ratio, as criteria for Th1-type immune response, compared with PR8-CHT-ALG and PR8 virus alone. Altogether, the PR8-TMC-ALG formulation could be considered as an efficient intranasal antigen delivery system for nasal vaccines.
Collapse
Affiliation(s)
- Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Badiee
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Solmaz Dehghan
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Corresponding author. Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box 9196773117, Mashhad, Iran. Tel.: +98 51 31801337.
| |
Collapse
|
8
|
Speth MT, Repnik U, Griffiths G. Layer-by-layer nanocoating of live Bacille-Calmette-Guérin mycobacteria with poly(I:C) and chitosan enhances pro-inflammatory activation and bactericidal capacity in murine macrophages. Biomaterials 2016; 111:1-12. [PMID: 27716523 DOI: 10.1016/j.biomaterials.2016.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB) is a major disease burden globally causing more than 1.5 million deaths per year. The attenuated live vaccine strain Bacille Calmette-Guérin (BCG), although providing protection against childhood TB, is largely ineffective against adult pulmonary TB. A major aim therefore is to increase the potency of the BCG vaccine to generate stronger and more sustained immunity against TB. Here, we investigated the use of layer-by-layer (LbL) nanocoating of the surface of live BCG with several layers of polyinosinic-polycytidylic acid (poly(I:C)), a strong inducer of cell-mediated immunity, and the biodegradable polysaccharide chitosan to enhance BCG immunogenicity. Nanocoating of live BCG did not affect bacterial viability or growth in vitro but induced killing of the BCG in infected mouse bone marrow-derived macrophages and enhanced macrophage production of pro-inflammatory cytokines and expression of surface co-stimulatory molecules relative to uncoated BCG. In addition, poly(I:C) surface-coated BCG, but not BCG alone or together with soluble poly(I:C), induced high production of nitric oxide (NO) and IL-12. These results argue that BCG and surface absorbed poly(I:C) act in a synergistic manner to elicit pro-inflammatory macrophage activation. In conclusion, nanocoating of live BCG with the immunostimulatory agent poly(I:C) may be an appropriate strategy to enhance and modulate host responses to the BCG vaccine.
Collapse
Affiliation(s)
- Martin Tobias Speth
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| |
Collapse
|
9
|
Effect of Experimental Parameters on Alginate/Chitosan Microparticles for BCG Encapsulation. Mar Drugs 2016; 14:md14050090. [PMID: 27187418 PMCID: PMC4882564 DOI: 10.3390/md14050090] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 01/04/2023] Open
Abstract
The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route.
Collapse
|
10
|
Hosseini M, Dobakhti F, Pakzad SR, Ajdary S. Immunization with Single Oral Dose of Alginate-Encapsulated BCG Elicits Effective and Long-Lasting Mucosal Immune Responses. Scand J Immunol 2016; 82:489-97. [PMID: 26286252 DOI: 10.1111/sji.12351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/10/2015] [Indexed: 12/30/2022]
Abstract
Effective vaccination against pathogens, which enter the body through mucosal surfaces, requires the induction of both mucosal and systemic immune responses. Here, mucosal as well as systemic immune responses in the lung and spleen of BALB/c mice which were orally vaccinated with a single dose of alginate-encapsulated bacille Calmette-Guerin (BCG) were evaluated. Twenty weeks after immunization, the vaccinated mice were challenged intranasally with BCG. Twelve weeks after immunization and 5 weeks after challenge, the immune responses were evaluated. Moreover, immune responses were compared with those of mice that were vaccinated with free BCG by subcutaneous (sc) and oral routes. Twelve weeks after the immunization, serum IgG level was higher in the sc-immunized mice, while serum IgA level was higher in the orally immunized mice with encapsulated BCG. Significant productions of both IgG and IgA were only detected in lungs of mice orally immunized with encapsulated BCG. Proliferative and delayed-type hypersensitivity responses and IFN-γ production were significantly higher in mice immunized orally with encapsulated BCG, compared to mice immunized orally with free BCG. After challenge, the levels of IFN-γ were comparable between sc-immunized mice with free BCG and orally immunized with encapsulated BCG; however, significantly less IL-4 was detected in mice which had received encapsulated BCG via oral route. Moreover, significant control of the bacilli growth in the lung of the immunized mice after intranasal challenge with BCG was documented in mice vaccinated with encapsulated BCG. These results suggest that oral immunization with alginate-encapsulated BCG is an effective mean of inducing mucosal and systemic specific immune responses.
Collapse
Affiliation(s)
- M Hosseini
- Immunology Department, Pasteur Institute of Iran, Tehran, IR, Iran
| | - F Dobakhti
- Mazandaran University of Medical Sciences, Mazandaran, IR, Iran
| | - S R Pakzad
- Vaccine Potency and Standardization Section, Food and Drugs Control Laboratory Research Center, Ministry of Health and Medical Education, Tehran, IR, Iran
| | - S Ajdary
- Immunology Department, Pasteur Institute of Iran, Tehran, IR, Iran
| |
Collapse
|
11
|
Garg NK, Dwivedi P, Jain A, Tyagi S, Sahu T, Tyagi RK. Development of novel carrier(s) mediated tuberculosis vaccine: more than a tour de force. Eur J Pharm Sci 2014; 62:227-242. [PMID: 24909731 DOI: 10.1016/j.ejps.2014.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/05/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023]
Abstract
Despite worldwide availability of the vaccines against most of the infectious diseases, BCG and various programs such as Directly Observed Treatment Short course (DOTS) to prevent tuberculosis still remains one of the most deadly forms of the disease affecting millions of people globally. The evolution of multi drug resistant strains (MDR) has increased the complexity further. Although currently available marketed BCG vaccine has shown sufficient protection against childhood tuberculosis, it has failed to prevent the most common form of disease i.e., pulmonary tuberculosis in adults. However, various vaccine candidates have already entered phase I clinical trials and have shown promising outcomes. The most prominent amongst them is the heterologous prime-boost approach, which shows a great promise towards designing and development of a new efficacious tuberculosis vaccine. It has also been shown that the use of various viral and non-viral vectors as carriers for the potential vaccine candidates will further boost their effect on subsequent immunization. In this review, we briefly summarize the potential of a few novel nano-carriers for developing effective vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Neeraj K Garg
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, 160 014 Chandigarh, India; Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar 470 003, MP, India.
| | - Priya Dwivedi
- Department of Biotechnology, TRS College, Rewa 486001, MP, India
| | - Ashay Jain
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, 160 014 Chandigarh, India; Department of Pharmaceutical Sciences, Dr. H.S. Gour University, Sagar 470 003, MP, India
| | - Shikha Tyagi
- Department of Biotechnology, IMS Engineering College, Ghaziabad, UP Technical University, UP, India
| | - Tejram Sahu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, TW3/3W15, 12735 Twinbrook Pkwy, Rockville, MD, USA
| | - Rajeev K Tyagi
- Department of Periodontics, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
12
|
Park J, Gerber MH, Babensee JE. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells. J Biomed Mater Res A 2014; 103:170-84. [PMID: 24616366 DOI: 10.1002/jbm.a.35150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022]
Abstract
Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses.
Collapse
Affiliation(s)
- Jaehyung Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia, 30332
| | | | | |
Collapse
|
13
|
Chen W, Kim JH, Zhang D, Lee KH, Cangelosi GA, Soelberg SD, Furlong CE, Chung JH, Shen AQ. Microfluidic one-step synthesis of alginate microspheres immobilized with antibodies. J R Soc Interface 2013; 10:20130566. [PMID: 23966617 DOI: 10.1098/rsif.2013.0566] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Micrometre- and submicrometre-size functionalized beads are frequently used to capture targets of interest from a biological sample for biological characterizations and disease diagnosis. The main challenge of the microbead-based assay is in the immobilization of probe molecules onto the microbead surfaces. In this paper, we report a versatile droplet microfluidics method to fabricate alginate microspheres while simultaneously immobilizing anti-Mycobacterium tuberculosis complex IgY and anti-Escherichia coli IgG antibodies primarily on the porous alginate carriers for specific binding and binding affinity tests. The binding affinity of antibodies is directly measured by fluorescence intensity of stained target bacteria on the microspheres. We demonstrate that the functionalized alginate microspheres yield specificity comparable with an enzyme-linked immunosorbent assay. The high surface area-to-volume ratio of the functionalized porous alginate microspheres improves the detection limit. By using the droplet microfluidics, we can easily modify the size and shape of alginate microspheres, and increase the concentration of functionalized alginate microspheres to further enhance binding kinetics and enable multiplexing.
Collapse
Affiliation(s)
- Wanyu Chen
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rosli R, Nograles N, Hanafi A, Nor Shamsudin M, Abdullah S. Mucosal genetic immunization through microsphere-based oral carriers. Hum Vaccin Immunother 2013; 9:2222-7. [PMID: 24051430 DOI: 10.4161/hv.25325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polymeric carriers in the form of cellulose acetate phthalate (CAP) and alginate (ALG) microspheres were used for encapsulation of plasmid DNA for oral mucosal immunization. Access into the intestinal mucosa by pVAX1 eukaryotic expression plasmid vectors carrying gene-coding sequences, either for the cholera enterotoxin B subunit (ctxB) immunostimulatory antigen or the green fluorescent protein (GFP), delivered from both types of microsphere carriers were examined in orally immunized BALB/c mice. Demonstration of transgene protein expression and IgA antibody responses at local mucosal sites suggest immunological response to a potential oral DNA vaccine formulated within the microsphere carriers.
Collapse
Affiliation(s)
- Rozita Rosli
- Genetic Medicine Research Centre; Universiti Putra Malaysia; Selangor, Malaysia; Medical Genetics Laboratory; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Selangor, Malaysia
| | - Nadine Nograles
- Medical Genetics Laboratory; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Selangor, Malaysia
| | - Aimi Hanafi
- Medical Genetics Laboratory; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Selangor, Malaysia
| | - Mariana Nor Shamsudin
- Department of Medical Microbiology and Parasitology; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Selangor, Malaysia
| | - Syahril Abdullah
- Genetic Medicine Research Centre; Universiti Putra Malaysia; Selangor, Malaysia; Medical Genetics Laboratory; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Selangor, Malaysia
| |
Collapse
|
15
|
Poojari R, Srivastava R. Composite alginate microspheres as the next-generation egg-box carriers for biomacromolecules delivery. Expert Opin Drug Deliv 2013; 10:1061-76. [DOI: 10.1517/17425247.2013.796361] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Park J, Babensee JE. Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater 2012; 8:3606-17. [PMID: 22705044 DOI: 10.1016/j.actbio.2012.06.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 06/01/2012] [Accepted: 06/06/2012] [Indexed: 12/18/2022]
Abstract
The immunological outcome of dendritic cell (DC) treatment with different biomaterials was assessed to demonstrate the range of DC phenotypes induced by biomaterials commonly used in combination products. Immature DCs (iDCs) were derived from human peripheral blood monocytes, and treated with different biomaterial films of alginate, agarose, chitosan, hyaluronic acid (HA), or 75:25 poly(lactic-co-glycolic acid) (PLGA) and a comprehensive battery of phenotypic functional outcomes was assessed. Different levels of functional changes in DC phenotype were observed depending on the type of biomaterial films used to treat the DCs. Treatment of DCs with PLGA or chitosan films supported DC maturation, with higher levels of DC allostimulatory capacity, pro-inflammatory cytokine release, and expression of CD80, CD86, CD83, HLA-DQ and CD44 compared with iDCs, and lower endocytic ability compared with iDCs. Alginate film induced pro-inflammatory cytokine release from DCs at levels higher than from iDCs. Dendritic cells treated with HA film expressed lower levels of CD40, CD80, CD86 and HLA-DR compared with iDCs. They also exhibited lower endocytic ability and CD44 expression than iDCs, possibly due to an insolubilized (cross-linked) form of high molecular weight HA. Interestingly, treatment of DCs with agarose film maintained the DC functional phenotype at levels similar to iDCs except for CD44 expression, which was lower than that of iDCs. Taken together, these results can provide selection criteria for biomaterials to be used in immunomodulating applications and can inform potential outcomes of biomaterials within combination products on associated immune responses as desired by the application.
Collapse
|
17
|
Nograles N, Abdullah S, Shamsudin MN, Billa N, Rosli R. Formation and characterization of pDNA-loaded alginate microspheres for oral administration in mice. J Biosci Bioeng 2012; 113:133-40. [DOI: 10.1016/j.jbiosc.2011.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/06/2011] [Accepted: 10/07/2011] [Indexed: 10/15/2022]
|
18
|
Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate. Eur J Pharm Sci 2011; 44:32-40. [DOI: 10.1016/j.ejps.2011.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/25/2011] [Accepted: 05/29/2011] [Indexed: 12/24/2022]
|
19
|
Griffiths G, Nyström B, Sable SB, Khuller GK. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat Rev Microbiol 2010; 8:827-34. [DOI: 10.1038/nrmicro2437] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Murine immune responses to oral BCG immunization in the presence or absence of prior BCG sensitization. Immunol Cell Biol 2009; 88:224-7. [PMID: 19918257 DOI: 10.1038/icb.2009.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oral delivery of live Mycobacterium bovis BCG in a lipid matrix invokes cell-mediated immune (CMI) responses in mice and consequent protection against pulmonary challenge with virulent mycobacteria. To investigate the influence of prior BCG sensitization on oral vaccine efficacy, we assessed CMI responses and BCG colonization of the alimentary tract lymphatics 5 months after oral vaccination, in both previously naive mice and in mice that had been sensitized to BCG by injection 6 months previously. CMI responses did not differ significantly between mice that received subcutaneous BCG followed by oral BCG and those that received either injected or oral BCG alone. In vivo BCG colonization was predominant in the mesenteric lymph nodes after oral vaccination; this colonizing ability was not influenced by prior BCG sensitization. From this murine model study, we conclude that although prior parenteral-route BCG sensitization does not detrimentally affect BCG colonization after oral vaccination, there is no significant immune-boosting effect of the oral vaccine either.
Collapse
|
21
|
Moreno-Mendieta SA, Rocha-Zavaleta L, Rodriguez-Sanoja R. Adjuvants in tuberculosis vaccine development. ACTA ACUST UNITED AC 2009; 58:75-84. [PMID: 20002177 DOI: 10.1111/j.1574-695x.2009.00629.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tuberculosis remains a major public health problem around the world. Because the Mycobacterium bovis Bacilli-Calmette-Guerin (BCG) vaccine fails to protect adults from pulmonary tuberculosis, there is an urgent need for improved vaccine formulations. Unlike BCG, recombinant vaccines purified from bacterial expression vectors, as well as naked DNA, require an additional adjuvant. Recent improvements in our understanding of disease immunopathology, together with advances in biochemical and molecular techniques, have permitted the successful development of promising tuberculosis vaccine delivery and adjuvant combinations for human use. Here, we summarize the current state of adjuvant development and its impact on tuberculosis vaccine progress.
Collapse
Affiliation(s)
- Silvia A Moreno-Mendieta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, México D.F., Mexico
| | | | | |
Collapse
|
22
|
Dobakhti F, Naghibi T, Taghikhani M, Ajdary S, Rafinejad A, Bayati K, Rafiei S, Rafiee-Tehrani M. Adjuvanticity effect of sodium alginate on subcutaneously injected BCG in BALB/c mice. Microbes Infect 2009; 11:296-301. [DOI: 10.1016/j.micinf.2008.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 11/29/2008] [Accepted: 12/04/2008] [Indexed: 12/22/2022]
|
23
|
Ahmad Z, Khuller GK. Alginate-based sustained release drug delivery systems for tuberculosis. Expert Opin Drug Deliv 2008; 5:1323-34. [DOI: 10.1517/17425240802600662] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Clark S, Cross ML, Smith A, Court P, Vipond J, Nadian A, Hewinson RG, Batchelor HK, Perrie Y, Williams A, Aldwell FE, Chambers MA. Assessment of different formulations of oral Mycobacterium bovis Bacille Calmette-Guérin (BCG) vaccine in rodent models for immunogenicity and protection against aerosol challenge with M. bovis. Vaccine 2008; 26:5791-7. [PMID: 18789366 DOI: 10.1016/j.vaccine.2008.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 10/21/2022]
Abstract
Bovine tuberculosis (bTB) caused by infection with Mycobacterium bovis is causing considerable economic loss to farmers and Government in the United Kingdom as its incidence is increasing. Efforts to control bTB in the UK are hampered by the infection in Eurasian badgers (Meles meles) that represent a wildlife reservoir and source of recurrent M. bovis exposure to cattle. Vaccination of badgers with the human TB vaccine, M. bovis Bacille Calmette-Guérin (BCG), in oral bait represents a possible disease control tool and holds the best prospect for reaching badger populations over a wide geographical area. Using mouse and guinea pig models, we evaluated the immunogenicity and protective efficacy, respectively, of candidate badger oral vaccines based on formulation of BCG in lipid matrix, alginate beads, or a novel microcapsular hybrid of both lipid and alginate. Two different oral doses of BCG were evaluated in each formulation for their protective efficacy in guinea pigs, while a single dose was evaluated in mice. In mice, significant immune responses (based on lymphocyte proliferation and expression of IFN-gamma) were only seen with the lipid matrix and the lipid in alginate microcapsular formulation, corresponding to the isolation of viable BCG from alimentary tract lymph nodes. In guinea pigs, only BCG formulated in lipid matrix conferred protection to the spleen and lungs following aerosol route challenge with M. bovis. Protection was seen with delivery doses in the range 10(6)-10(7) CFU, although this was more consistent in the spleen at the higher dose. No protection in terms of organ CFU was seen with BCG administered in alginate beads or in lipid in alginate microcapsules, although 10(7) in the latter formulation conferred protection in terms of increasing body weight after challenge and a smaller lung to body weight ratio at necropsy. These results highlight the potential for lipid, rather than alginate, -based vaccine formulations as suitable delivery vehicles for an oral BCG vaccine in badgers.
Collapse
Affiliation(s)
- Simon Clark
- Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|