1
|
Lu T, Das S, Howlader DR, Picking WD, Picking WL. Shigella Vaccines: The Continuing Unmet Challenge. Int J Mol Sci 2024; 25:4329. [PMID: 38673913 PMCID: PMC11050647 DOI: 10.3390/ijms25084329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Shigellosis is a severe gastrointestinal disease that annually affects approximately 270 million individuals globally. It has particularly high morbidity and mortality in low-income regions; however, it is not confined to these regions and occurs in high-income nations when conditions allow. The ill effects of shigellosis are at their highest in children ages 2 to 5, with survivors often exhibiting impaired growth due to infection-induced malnutrition. The escalating threat of antibiotic resistance further amplifies shigellosis as a serious public health concern. This review explores Shigella pathology, with a primary focus on the status of Shigella vaccine candidates. These candidates include killed whole-cells, live attenuated organisms, LPS-based, and subunit vaccines. The strengths and weaknesses of each vaccination strategy are considered. The discussion includes potential Shigella immunogens, such as LPS, conserved T3SS proteins, outer membrane proteins, diverse animal models used in Shigella vaccine research, and innovative vaccine development approaches. Additionally, this review addresses ongoing challenges that necessitate action toward advancing effective Shigella prevention and control measures.
Collapse
Affiliation(s)
- Ti Lu
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| | - Sayan Das
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
| | - Debaki R. Howlader
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| | - William D. Picking
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| | - Wendy L. Picking
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO 65201, USA; (D.R.H.); (W.D.P.)
| |
Collapse
|
2
|
Wang J, Xiong K, Pan Q, He W, Cong Y. Application of TonB-Dependent Transporters in Vaccine Development of Gram-Negative Bacteria. Front Cell Infect Microbiol 2021; 10:589115. [PMID: 33585268 PMCID: PMC7873555 DOI: 10.3389/fcimb.2020.589115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Multiple scarce nutrients, such as iron and nickel, are essential for bacterial growth. Gram-negative bacteria secrete chelators to bind these nutrients from the environment competitively. The transport of the resulting complexes into bacterial cells is mediated by TonB-dependent transporters (TBDTs) located at the outer membrane in Gram-negative bacteria. The characteristics of TBDTs, including surface exposure, protective immunogenicity, wide distribution, inducible expression in vivo, and essential roles in pathogenicity, make them excellent candidates for vaccine development. The possible application of a large number of TBDTs in immune control of the corresponding pathogens has been recently investigated. This paper summarizes the latest progresses and current major issues in the application.
Collapse
Affiliation(s)
- Jia Wang
- Department of Clinical Laboratory, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Kun Xiong
- Department of Cold Environmental Medicine, Institute of High Altitude Military Medicine, Army Medical University, Chongqiong, China
| | - Qu Pan
- Department of Microbiology, Chengdu Medical College, Chengdu, China
| | - Weifeng He
- Department of Burn, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yanguang Cong
- Department of Clinical Laboratory, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China.,Precision Medicine Center, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Role of a fluid-phase PRR in fighting an intracellular pathogen: PTX3 in Shigella infection. PLoS Pathog 2018; 14:e1007469. [PMID: 30532257 PMCID: PMC6317801 DOI: 10.1371/journal.ppat.1007469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
Shigella spp. are pathogenic bacteria that cause bacillary dysentery in humans by invading the colonic and rectal mucosa where they induce dramatic inflammation. Here, we have analyzed the role of the soluble PRR Pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity. Mice that had been intranasally infected with S. flexneri were rescued from death by treatment with recombinant PTX3. In vitro PTX3 exerts the antibacterial activity against Shigella, impairing epithelial cell invasion and contributing to the bactericidal activity of serum. PTX3 is produced upon LPS-TLR4 stimulation in accordance with the lipid A structure of Shigella. In the plasma of infected patients, the level of PTX3 amount only correlates strongly with symptom severity. These results signal PTX3 as a novel player in Shigella pathogenesis and its potential role in fighting shigellosis. Finally, we suggest that the plasma level of PTX3 in shigellosis patients could act as a biomarker for infection severity. Soluble pattern recognition molecules, PRMs, are components of the humoral arm of innate immunity. The long pentraxin 3, PTX3, is a prototypic soluble PRM that is produced in response to primary inflammatory signals. Shigella spp. are human entero-pathogens which invade colonic and rectal mucosa where they cause deleterious inflammation. We show that PTX3 acts as an ante-antibody and contributes to the clearance of extracellular Shigella. As a countermeasure, Shigella uses invasiveness and low-inflammatory LPS to control PTX3 release in infected cells. This study highlights that the extracellular phase of the invasion process can be considered the “Achille heels” of Shigella pathogenesis.
Collapse
|
4
|
O'Ryan M, Vidal R, del Canto F, Carlos Salazar J, Montero D. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni. Hum Vaccin Immunother 2015; 11:601-19. [PMID: 25715096 DOI: 10.1080/21645515.2015.1011578] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral(®)), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed.
Collapse
Key Words
- CFU, colony-forming units
- CFs, colonization factors
- CT, cholera toxin
- CT-B cholera toxin B subunit
- Campylobacter
- CtdB, cytolethal distending toxin subunit B
- E. coli
- EHEC
- EPEC, enteropathogenic E. coli
- ETEC
- ETEC, enterotoxigenic E. coli
- GEMS, Global enterics multicenter study
- HUS, hemolytic uremic syndrome
- IM, intramuscular
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LEE, locus of enterocyte effacement
- LPS, lipopolysaccharide
- LT, heat labile toxin
- LT-B
- OMV, outer membrane vesicles
- ST, heat stable toxin
- STEC
- STEC, shigatoxin producing E. coli
- STh, human heat stable toxin
- STp, porcine heat stable toxin
- Salmonella
- Shigella
- Stx, shigatoxin
- TTSS, type III secretion system
- V. cholera
- WHO, World Health Organization
- acute diarrhea
- dmLT, double mutant heat labile toxin
- enteric pathogens
- enterohemorrhagic E. coli
- gastroenteritis
- heat labile toxin B subunit
- norovirus
- rEPA, recombinant exoprotein A of Pseudomonas aeruginosa
- rotavirus
- vaccines
Collapse
Affiliation(s)
- Miguel O'Ryan
- a Microbiology and Mycology Program; Institute of Biomedical Sciences; Faculty of Medicine; Universidad de Chile; Santiago, Chile
| | | | | | | | | |
Collapse
|
5
|
Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, Coré M, Sleurs D, Serriari NE, Treiner E, Hivroz C, Sansonetti P, Gougeon ML, Soudais C, Lantz O. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog 2013; 9:e1003681. [PMID: 24130485 PMCID: PMC3795036 DOI: 10.1371/journal.ppat.1003681] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022] Open
Abstract
Mucosal associated invariant T cells (MAIT) are innate T lymphocytes that detect a large variety of bacteria and yeasts. This recognition depends on the detection of microbial compounds presented by the evolutionarily conserved major-histocompatibility-complex (MHC) class I molecule, MR1. Here we show that MAIT cells display cytotoxic activity towards MR1 overexpressing non-hematopoietic cells cocultured with bacteria. The NK receptor, CD161, highly expressed by MAIT cells, modulated the cytokine but not the cytotoxic response triggered by bacteria infected cells. MAIT cells are also activated by and kill epithelial cells expressing endogenous levels of MRI after infection with the invasive bacteria Shigella flexneri. In contrast, MAIT cells were not activated by epithelial cells infected by Salmonella enterica Typhimurium. Finally, MAIT cells are activated in human volunteers receiving an attenuated strain of Shigella dysenteriae-1 tested as a potential vaccine. Thus, in humans, MAIT cells are the most abundant T cell subset able to detect and kill bacteria infected cells. Human Mucosa-Associated Invariant T cells (MAIT) detect microbe-derived compounds presented by the MHC-like molecule, MR1. These foreign antigens are produced by a wide variety of microbes, including commensal and pathogenic bacteria or yeasts. MAIT cells expend shortly after birth and constitute the major antibacterial T cell subset described and, hence, could play important roles in infectious diseases. Here we show that MAIT cells recognize epithelial cells infected by the intestinal pathogen Shigella flexneri in a process requiring endogenous MR1, while the closely related bacterium Salmonella Tyhpimurium is not. Upon recognition, infected epithelial cells are efficiently lysed by MAIT cells. We also show that the triggering of CD161, a natural killer receptor highly expressed by MAIT cells, can modulate the cytokine but not the cytotoxic function of these cells. Finally, we provide evidence that MAIT cells are activated during the course of an experimental enteric infection in humans. Our study provides important insight on the antibacterial function of MAIT cells and their interaction with pathogenic bacterial species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Philippe Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, U786, Paris, France
| | - Marie-Lise Gougeon
- Institut Pasteur, Unité Immunité Antivirale, Biothérapies et Vaccins, Paris, France
| | | | - Olivier Lantz
- Institut curie, Inserm U932, Paris, France
- Center of Clinical Investigations CICBT507 IGR/Curie, Paris, France
- Equipe labellisée de la ligue de lutte contre le cancer, Institut Curie, Paris, France
- * E-mail:
| |
Collapse
|
6
|
Camacho AI, Irache JM, Gamazo C. Recent progress towards development of a Shigella vaccine. Expert Rev Vaccines 2013; 12:43-55. [PMID: 23256738 DOI: 10.1586/erv.12.135] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The burden of dysentery due to shigellosis among children in the developing world is still a major concern. A safe and efficacious vaccine against this disease is a priority, since no licensed vaccine is available. This review provides an update of vaccine achievements focusing on subunit vaccine strategies and the forthcoming strategies surrounding this approach. In particular, this review explores several aspects of the pathogenesis of shigellosis and the elicited immune response as being the basis of vaccine requirements. The use of appropriate Shigella antigens, together with the right adjuvants, may offer safety, efficacy and more convenient delivery methods for massive worldwide vaccination campaigns.
Collapse
|
7
|
Live attenuated Shigella dysenteriae type 1 vaccine strains overexpressing shiga toxin B subunit. Infect Immun 2011; 79:4912-22. [PMID: 21969003 DOI: 10.1128/iai.05814-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella dysenteriae serotype 1 (S. dysenteriae 1) is unique among the Shigella species and serotypes in the expression of Shiga toxin which contributes to more severe disease sequelae and the ability to cause explosive outbreaks and pandemics. S. dysenteriae 1 shares characteristics with other Shigella species, including the capability of causing clinical illness with a very low inoculum (10 to 100 CFU) and resistance to multiple antibiotics, underscoring the need for efficacious vaccines and therapeutics. Following the demonstration of the successful attenuating capacity of deletion mutations in the guaBA operon in S. flexneri 2a vaccine strains in clinical studies, we developed a series of S. dysenteriae 1 vaccine candidates containing the fundamental attenuating mutation in guaBA. All strains are devoid of Shiga toxin activity by specific deletion of the gene encoding the StxA subunit, which encodes enzymatic activity. The StxB subunit was overexpressed in several derivatives by either plasmid-based constructs or chromosomal manipulation to include a strong promoter. All strains are attenuated for growth in vitro in the HeLa cell assay and for plaque formation and were safe in the Serény test and immunogenic in the guinea pigs. Each strain induced robust serum and mucosal anti-S. dysenteriae 1 lipopolysaccharide (LPS) responses and protected against wild-type challenge. Two strains engineered to overexpress StxB induced high titers of Shiga toxin neutralizing antibodies. These candidates demonstrate the potential for a live attenuated vaccine to protect against disease caused by S. dysenteriae 1 and potentially to protect against the toxic effects of other Shiga toxin 1-expressing pathogens.
Collapse
|
8
|
Landraud L, Brisse S. Enterobacteriaceae. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Barnoy S, Jeong KI, Helm RF, Suvarnapunya AE, Ranallo RT, Tzipori S, Venkatesan MM. Characterization of WRSs2 and WRSs3, new second-generation virG(icsA)-based Shigella sonnei vaccine candidates with the potential for reduced reactogenicity. Vaccine 2009; 28:1642-54. [PMID: 19932216 DOI: 10.1016/j.vaccine.2009.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 09/02/2009] [Accepted: 11/03/2009] [Indexed: 11/28/2022]
Abstract
Live, attenuated Shigella vaccine candidates, such as Shigella sonnei strain WRSS1, Shigella flexneri 2a strain SC602, and Shigella dysenteriae 1 strain WRSd1, are attenuated principally by the loss of the VirG(IcsA) protein. These candidates have proven to be safe and immunogenic in volunteer trials and in one study, efficacious against shigellosis. One drawback of these candidate vaccines has been the reactogenic symptoms of fever and diarrhea experienced by the volunteers, that increased in a dose-dependent manner. New, second-generation virG(icsA)-based S. sonnei vaccine candidates, WRSs2 and WRSs3, are expected to be less reactogenic while retaining the ability to generate protective levels of immunogenicity seen with WRSS1. Besides the loss of VirG(IcsA), WRSs2 and WRSs3 also lack plasmid-encoded enterotoxin ShET2-1 and its paralog ShET2-2. WRSs3 further lacks MsbB2 that reduces the endotoxicity of the lipid A portion of the bacterial LPS. Studies in cell cultures and in gnotobiotic piglets demonstrate that WRSs2 and WRSs3 have the potential to cause less diarrhea due to loss of ShET2-1 and ShET2-2 as well as alleviate febrile symptoms by loss of MsbB2. In guinea pigs, WRSs2 and WRSs3 were as safe, immunogenic and efficacious as WRSS1.
Collapse
Affiliation(s)
- S Barnoy
- Division of Bacterial & Rickettsial Diseases, Walter Reed Army Institute of Research 503, Robert Grant Avenue, Silver Spring, MD 208914, United States
| | | | | | | | | | | | | |
Collapse
|
10
|
The European effort towards the development of mucosal vaccines for poverty-related diseases. Vaccine 2009; 27:2641-8. [DOI: 10.1016/j.vaccine.2009.02.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/10/2009] [Accepted: 02/18/2009] [Indexed: 12/20/2022]
|
11
|
Launay O, Sadorge C, Jolly N, Poirier B, Béchet S, van der Vliet D, Seffer V, Fenner N, Dowling K, Giemza R, Johnson J, Ndiaye A, Vray M, Sansonetti P, Morand P, Poyart C, Lewis D, Gougeon ML. Safety and immunogenicity of SC599, an oral live attenuated Shigella dysenteriae type-1 vaccine in healthy volunteers: results of a Phase 2, randomized, double-blind placebo-controlled trial. Vaccine 2009; 27:1184-91. [PMID: 19135496 DOI: 10.1016/j.vaccine.2008.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/05/2008] [Accepted: 12/17/2008] [Indexed: 11/16/2022]
Abstract
SC599 vaccine is a live Shigella dysenteriae 1 strain attenuated by deletion of invasion [icsA], iron chelation [ent, fep] and shiga toxin A subunit [stxA] genes. In a preliminary Phase 1 single dose prospective study, we showed that SC599 vaccine was well tolerated, and the maximum tolerable dose was greater than 10(8) CFU [Sadorge C, Ndiaye A, Beveridge N, Frazer S, Giemza R, Jolly N, et al. Phase 1 clinical trial of live attenuated Shigella dysenteriae type-1 DeltaicsA Deltaent Deltafep DeltastxA:HgR oral vaccine SC599 in healthy human adult volunteers. Vaccine 2008; 26(7):978-8]. In this Phase 2 trial, three groups of volunteers ingested a single dose of SC599 [10(5) CFU, n=38; 10(7) CFU, n=36] or placebo [n=37]. Both 10(5) and 10(7) CFU doses were immunogenic, inducing significant IgA and IgG LPS-specific ASCs and antibody responses, comparable in magnitude to those of other strains that prevented illness following experimental challenge. In the intention to treat analysis, 34.2% and 44.4% IgA ASC responders were detected in the 10(5) and 10(7) CFU groups respectively (p<0001 vs placebo for both groups), as well as 31.6% and 33.3% serum IgA responders (p<001 and p<0.001 vs placebo for 10(5) and 10(7) CFU groups, respectively). No difference between the two vaccine groups was observed. No stxB-specific antibody response was detected in the vaccines. SC599 excretion occurred in 23.7 and 30.6% of subjects in the 10(5) and 10(7) CFU groups, respectively. SC599 vaccine was well tolerated, and the reported adverse events were mainly digestive. These results indicate that a single oral immunization of SC599 vaccine elicits a significant circulating IgA ASC and serum antibody response that may confer protection against the most severe symptoms of Shigellosis in responders to the vaccine.
Collapse
Affiliation(s)
- Odile Launay
- Université Paris Descartes, INSERM, Assistance Publique-Hôpitaux de Paris, CIC de Vaccinologie Cochin Pasteur (CIC BT505), Groupe Hospitalier Cochin-Saint Vincent de Paul, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The efficacy and immunogenicity of a live transconjugant hybrid strain of Shigella dysenteriae type 1 in two animal models. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9937-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|