1
|
Saini I, Joshi J, Kaur S. Unleashing the role of potential adjuvants in leishmaniasis. Int J Pharm 2025; 669:125077. [PMID: 39675537 DOI: 10.1016/j.ijpharm.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Leishmaniasis is amongst one of the most neglected tropical disease, caused by an intracellular protozoan of genus Leishmania. Currently, the most promising strategy to combat leishmaniasis, relies on chemotherapy but the toxicity and increasing resistance of the standard drugs, presses the demand for new alternatives. Immunization is arguably the best strategy for cure because an individual once infected becomes immune to the disease. Yet, there is no efficient vaccine capable of providing enduring immunity against the parasite. Achieving the goal of developing highly efficacious and durable vaccine is limited due to lack of an appropriate adjuvant. Adjuvants are recognized as 'immune potentiators' which redirect or amplify the immune response. A number of adjuvants like alum, MPL-A, CpG ODN, GLA-SE, imiquimod, saponins etc. have been used in combination with various classes of Leishmania antigens. However, only few have reached clinical trials. Thus, the choice of an adjuvant is critically dependent on many factors such as the route of administration, the nature of antigen, formulation, the type of required immune response, their mode of action and the immunization schedule. This review provides an updated status on the types of adjuvants used in leishmaniasis so far and their mechanism of action if known.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
A new immunochemotherapy schedule for visceral leishmaniasis in a hamster model. Parasitol Res 2022; 121:2849-2860. [PMID: 35997843 DOI: 10.1007/s00436-022-07628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
The purpose of the present study was to evaluate the efficacy of the treatment with a recombinant cysteine proteinase from Leishmania, rldccys1, associated with allopurinol or miltefosine on Leishmania (Leishmania) infantum chagasi-infected hamsters. Golden Syrian hamsters infected with L. (L.) infantum chagasi were treated with either miltefosine (46 mg/kg) or allopurinol (460 mg/kg) alone by oral route or associated with rldccys1 (150 µg/hamster) by subcutaneous route for 30 days. Infected hamsters were also treated with miltefosine (46 mg/kg) plus rldccys1 (150 µg/hamster) for 30 days (phase 1) followed by two additional doses of rldccys1 (250 µg/hamster) (phase 2). After the end of treatment, the animals were analyzed for parasite load, body weight, serum levels of immunoglobulins, cytokine expression, and drug toxicity. The data showed a significant decrease of parasite load in infected hamsters treated with allopurinol or miltefosine alone or associated with rldccys1, as well as in those treated with rldccys1 alone. Significantly lower levels of serum IgG were detected in hamsters treated with allopurinol plus rldccys1. The treatment with miltefosine associated with rldccys1 prevented relapse observed in animals treated with miltefosine alone. A significant loss of body weight was detected only in some hamsters treated with miltefosine for 1 month and deprived of this treatment for 15 days. There were no significant differences in transcript expression of IFN-γ and IL-10 in any of treated groups. Neither hepatotoxicity nor nephrotoxicity was observed among controls and treated groups. These findings open perspectives to further explore this immunochemotherapeutic schedule as an alternative for treatment of visceral leishmaniasis.
Collapse
|
3
|
Montakhab-Yeganeh H, Shafiei R, Najm M, Masoori L, Aspatwar A, Badirzadeh A. Immunogenic properties of empty pcDNA3 plasmid against zoonotic cutaneous leishmaniasis in mice. PLoS One 2022; 17:e0263993. [PMID: 35167596 PMCID: PMC8846536 DOI: 10.1371/journal.pone.0263993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Leishmania (L) parasite, the causative agent of zoonotic cutaneous leishmaniasis (ZCL), effectively stimulates the mammalian cells to mount strong humoral responses by enhancing T-helper-2 (Th2)-associated cytokines for its survival. The best strategy to decrease the intensity of infection in the host is induction of cellular immunity. Methods We evaluated the effects of the empty bacterial pcDNA3 plasmid on mice infected with L. major and quantified the immune mediators including IFN-γ, IL-4, IL-10, IgG2a, IgG1, arginase activity and nitric oxide (NO) in the mice. Moreover, the footpad lesion size and parasite load were assessed. Results We observed that pcDNA3 could modulate the immune responses in favor of host cells and decrease the disease severity. Th2- associated mediators, including arginase, IL-4, and IL-10 are downregulated, while cellular responses are upregulated in line with an increase in the levels of nitric oxide (NO) and interfero-gamma (IFN-γ). Interestingly, pcDNA3 induced specific Th1-associated antibodies, IgG2a isotype; however, it suppressed the production of humoral IgG1. The stimulation of the immune response by the empty pcDNA3 is able to shift the immune function to predominant cellular responses caused by Th1, and it had a positive effect on the treatment of zoonotic cutaneous leishmaniasis (ZCL). Conclusions Altogether, we introduced the pcDNA3 as a potential interfering factor in the modulation of the immune system against ZCL. Since this vector has been widely used as a control group in different studies, we suggest that the potential function of the empty vector should be deeply assessed, as it exerts anti-parasitic effects on mice infected with L. major.
Collapse
Affiliation(s)
- Hossein Montakhab-Yeganeh
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Najm
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Masoori
- Department of Laboratory Sciences, School of Allied Medical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
4
|
Abstract
Leishmaniasis is caused by protozoan Leishmania parasites that are transmitted through female sandfly bites. The disease is predominantly endemic to the tropics and semi-tropics and has been reported in more than 98 countries. Due to the side effects of anti-Leishmania drugs and the emergence of drug-resistant isolates, there is currently no encouraging prospect of introducing an effective therapy for the disease. Hence, it seems that the key to disease control management is the introduction of an effective vaccine, particularly against its cutaneous form. Advances in understanding underlying immune mechanisms are feasibale using a variety of candidate antigens, including attenuated live parasites, crude antigens, pure or recombinant Leishmania proteins, Leishmania genes encoding protective proteins, as well as immune system activators from the saliva of parasite vectors. However, there is still no vaccine against different types of human leishmaniasis. In this study, we review the works conducted or being performed in this field.
Collapse
|
5
|
da Silva DAM, Santana FR, Katz S, Garcia DM, Teixeira D, Longo-Maugéri IM, Barbiéri CL. Protective Cellular Immune Response Induction for Cutaneous Leishmaniasis by a New Immunochemotherapy Schedule. Front Immunol 2020; 11:345. [PMID: 32194563 PMCID: PMC7062680 DOI: 10.3389/fimmu.2020.00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
The palladacycle complex DPPE 1.2 was previously shown to inhibit Leishmania (Leishmania) amazonensis infection in vitro and in vivo. The present study aimed to evaluate the effect of DPPE 1.2 associated with a recombinant cysteine proteinase, rLdccys1, and the adjuvant Propionibacterium acnes on L. (L.) amazonensis infection in two mouse strains, BALB/c, and C57BL/6. Treatment with this association potentiated the leishmanicidal effect of DPPE 1.2 resulting in a reduction of parasite load in both strains of mice which was higher compared to that found in groups treated with either DPPE 1.2 alone or associated with P. acnes or rLdccys1. The reduction of parasite load in both mice strains was followed by immunomodulation mediated by an increase of memory CD4+ and CD8+ T lymphocytes, IFN-γ levels and reduction of active TGF-β in treated animals. No infection relapse was observed 1 month after the end of treatment in mice which received DPPE 1.2 associated with rLdccys1 or rLdccys1 plus P. acnes in comparison to that exhibited by animals treated with DPPE 1.2 alone. Evaluation of serum levels of AST, ALT, urea, and creatinine showed no alterations among treated groups, indicating that this treatment schedule did not induce hepato or nephrotoxicity. These data indicate the potential use of this association as a therapeutic alternative for cutaneous leishmaniasis caused by L. (L) amazonensis.
Collapse
Affiliation(s)
- Danielle A M da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fabiana R Santana
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Simone Katz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniel M Garcia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Daniela Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ieda M Longo-Maugéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clara L Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Ratnapriya S, Keerti, Sahasrabuddhe AA, Dube A. Visceral leishmaniasis: An overview of vaccine adjuvants and their applications. Vaccine 2019; 37:3505-3519. [PMID: 31103364 DOI: 10.1016/j.vaccine.2019.04.092] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022]
Abstract
Although there has been an extensive research on vaccine development over the last decade and some vaccines have been commercialized for canine visceral leishmaniasis (CVL), but as yet no effective vaccine is available for anthroponotic VL which may partly be due to the absence of an appropriate adjuvant system. Vaccines alone yield poor immunity hence requiring an adjuvant which can boost the immunosuppressed state of VL infected individuals by eliciting adaptive immune responses to achieve required immunological enhancement. Recent studies have documented the continuous efforts that are being made in the field of adjuvants research in an attempt to render vaccines more effective. This review article focuses on adjuvants, particularly particulate and non-particulate ones, which have been assessed with VL vaccine candidates in several preclinical and clinical trials outlining the induction of immune responses obtained from these studies. Moreover, we have emphasized the applicability of multiple adjuvants combination for an improvement in the potential of a VL vaccine.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Keerti
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Amogh A Sahasrabuddhe
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Anuradha Dube
- Division of Parasitology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
7
|
Skin vaccination using microneedles coated with a plasmid DNA cocktail encoding nucleosomal histones of Leishmania spp. Int J Pharm 2017; 533:236-244. [DOI: 10.1016/j.ijpharm.2017.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023]
|
8
|
Paladi CS, da Silva DAM, Motta PD, Garcia DM, Teixeira D, Longo-Maugéri IM, Katz S, Barbiéri CL. Treatment of Leishmania (Leishmania) Amazonensis-Infected Mice with a Combination of a Palladacycle Complex and Heat-Killed Propionibacterium acnes Triggers Protective Cellular Immune Responses. Front Microbiol 2017; 8:333. [PMID: 28321209 PMCID: PMC5337482 DOI: 10.3389/fmicb.2017.00333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
Palladacycle complex DPPE 1.2 was previously reported to inhibit the in vitro and in vivo infection by Leishmania (Leishmania) amazonensis. The aim of the present study was to compare the effect of DPPE 1.2, in association with heat-killed Propionibacterium acnes, on L. (L.) amazonensis infection in two mouse strains, BALB/c and C57BL/6, and to evaluate the immune responses of the treated animals. Foot lesions of L. (L.) amazonensis-infected mice were injected with DPPE 1.2 alone, or associated with P. acnes as an adjuvant. Analysis of T-cell populations in the treated mice and in untreated controls was performed by FACS. Detection of IFN-γ-secreting lymphocytes was carried out by an ELISPOT assay and active TGF-β was measured by means of a double-sandwich ELISA test. The treatment with DPPE 1.2 resulted in a significant reduction of foot lesion sizes and parasite burdens in both mouse strains, and the lowest parasite burden was found in mice treated with DPPE 1.2 plus P. acnes. Mice treated with DPPE 1.2 alone displayed a significant increase of TCD4+ and TCD8+ lymphocytes and IFN-γ secretion which were significantly higher in animals treated with DPPE 1.2 plus P. acnes. A significant reduction of active TGF-β was observed in mice treated with DPPE 1.2 alone or associated with P. acnes. Moreover, DPPE 1.2 associated to P. acnes was non-toxic to treated animals. The destruction of L. (L.) amazonensis by DPPE 1.2 was followed by host inflammatory responses which were exacerbated when the palladacycle complex was associated with P. acnes.
Collapse
Affiliation(s)
- Carolina S Paladi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Danielle A M da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Priscila D Motta
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Daniel M Garcia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Daniela Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Ieda M Longo-Maugéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Simone Katz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Clara L Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
9
|
B-1 cells contribute to susceptibility in experimental infection with Leishmania (Leishmania) chagasi. Parasitology 2016; 142:1506-15. [PMID: 26416198 DOI: 10.1017/s0031182015000943] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The immune response to leishmaniasis is complex, and the result of infection depends on both the genetic composition of the Leishmania species and the immunity of the host. Clinical and experimental evidence suggest that the activation of B cells leads to exacerbation of visceral leishmaniasis. However, the role of B-1 cells (a subtype of B lymphocytes) in the pathogenesis of experimental visceral leishmaniasis has not yet been elucidated. In this study, we investigated the importance of B-1 cells in experimental infection with Leishmania. (L.) chagasi. Our results showed that BALB/XID mice (X-linked immunodeficient mice which are genetically deficient in B-1 cells) infected with L. (L.) chagasi for 45 days had a significant reduction in parasite load in the spleen when compared with control mice. Cytokine analysis showed that the BALB/XID mice had lower amounts of IL-10 in their sera compared with control group. In addition, the transfer of B-1 cells from wild type mice into IL-10KO animals led to an increase in susceptibility to L. (L.) chagasi infection in the IL-10KO mice, suggesting that the IL-10 produced by these cells is important in experimental infection. Our results suggest that B-1 cells may play an important role in susceptibility to L. (L.) chagasi.
Collapse
|
10
|
Kumar A, Samant M. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control. Parasite Immunol 2016; 38:273-81. [DOI: 10.1111/pim.12315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/21/2016] [Indexed: 01/23/2023]
Affiliation(s)
- A. Kumar
- Department of Biotechnology; National Institute of Technology; Raipur Chhattisgarh India
| | - M. Samant
- Cell and Molecular biology laboratory; Department of Zoology; Kumaun University SSJ Campus; Almora Uttarakhand India
| |
Collapse
|
11
|
Shahbazi M, Zahedifard F, Taheri T, Taslimi Y, Jamshidi S, Shirian S, Mahdavi N, Hassankhani M, Daneshbod Y, Zarkesh-Esfahani SH, Papadopoulou B, Rafati S. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis. PLoS One 2015. [PMID: 26197085 PMCID: PMC4509652 DOI: 10.1371/journal.pone.0132794] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Cells, Cultured
- Cysteine Proteases/genetics
- Cysteine Proteases/immunology
- Dog Diseases/immunology
- Dog Diseases/parasitology
- Dog Diseases/prevention & control
- Dogs
- Female
- Gene Expression
- Immunity, Humoral
- Leishmania/enzymology
- Leishmania/genetics
- Leishmania/immunology
- Leishmaniasis Vaccines/immunology
- Leishmaniasis Vaccines/isolation & purification
- Leishmaniasis Vaccines/therapeutic use
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/prevention & control
- Leishmaniasis, Visceral/veterinary
- Male
- Vaccination/methods
- Vaccination/veterinary
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Attenuated/therapeutic use
Collapse
Affiliation(s)
- Mehdi Shahbazi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164, Iran
| | - Shahram Jamshidi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sadegh Shirian
- Department of Molecular and Cytopathology, Daneshbod Pathology Laboratory, Shiraz, Iran
| | - Niousha Mahdavi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Hassankhani
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yahya Daneshbod
- Department of Molecular and Cytopathology, Daneshbod Pathology Laboratory, Shiraz, Iran
| | | | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Québec Research Center and Department of Microbiology, Infectious Disease and Immunology, Laval University, Quebec, QC, Canada
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164, Iran
- * E-mail:
| |
Collapse
|
12
|
Nagill R, Kaur T, Joshi J, Kaur S. Immunogenicity and efficacy of recombinant 78 kDa antigen of Leishmania donovani formulated in various adjuvants against murine visceral leishmaniasis. ASIAN PAC J TROP MED 2015; 8:513-9. [DOI: 10.1016/j.apjtm.2015.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022] Open
|
13
|
Jain K, Jain NK. Vaccines for visceral leishmaniasis: A review. J Immunol Methods 2015; 422:1-12. [PMID: 25858230 DOI: 10.1016/j.jim.2015.03.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 02/21/2015] [Accepted: 03/28/2015] [Indexed: 01/09/2023]
Abstract
Visceral leishmaniasis, which is also known as Kala-Azar, is one of the most severely neglected tropical diseases recognized by the World Health Organization (WHO). The threat of this debilitating disease continues due to unavailability of promising drug therapy or human vaccine. An extensive research is undergoing to develop a promising vaccine to prevent this devastating disease. In this review we compiled the findings of recent research with a view to facilitate knowledge on experimental vaccinology for visceral leishmaniasis. Various killed or attenuated parasite based first generation vaccines, second generation vaccines based on antigenic protein or recombinant protein, and third generation vaccines derived from antigen-encoding DNA plasmids including heterologous prime-boost Leishmania vaccine have been examined for control and prevention of visceral leishmaniasis. Vaccines based on recombinant protein and antigen-encoding DNA plasmids have given promising results and few vaccines including Leishmune®, Leishtec, and CaniLeish® have been licensed for canine visceral leishmaniasis. A systematic investigation of these vaccine candidates can lead to development of promising vaccine for human visceral leishmaniasis, most probably in the near future.
Collapse
Affiliation(s)
- Keerti Jain
- Pharmaceutical Nanotechnology Research Laboratory, ISF College of Pharmacy, Moga, Punjab 142001, India.
| | - N K Jain
- Pharmaceutical Nanotechnology Research Laboratory, ISF College of Pharmacy, Moga, Punjab 142001, India.
| |
Collapse
|
14
|
Ferreira JHL, Silva LDS, Longo-Maugéri IM, Katz S, Barbiéri CL. Use of a recombinant cysteine proteinase from Leishmania (Leishmania) infantum chagasi for the Immunotherapy of canine visceral Leishmaniasis. PLoS Negl Trop Dis 2014; 8:e2729. [PMID: 24625516 PMCID: PMC3953064 DOI: 10.1371/journal.pntd.0002729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/23/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A recombinant cysteine proteinase from Leishmania (Leishmania) infantum chagasi (rLdccys1) was previously shown to induce protective immune responses against murine and canine visceral leishmaniasis. These findings encouraged us to use rLdccys1 in the immunotherapy of naturally infected dogs from Teresina, Piauí, a region of high incidence of visceral leishmaniasis in Brazil. METHODOLOGY/PRINCIPAL FINDINGS Thirty naturally infected mongrel dogs displaying clinical signs of visceral leishmaniasis were randomly divided in three groups: one group received three doses of rLdccys1 in combination with the adjuvant Propionibacterium acnes at one month interval between each dose; a second group received three doses of P. acnes alone; a third group received saline. The main findings were: 1) dogs that received rLdccys1 with P. acnes did not display increase of the following clinical signs: weight loss, alopecia, onychogryphosis, cachexia, anorexia, apathy, skin lesions, hyperkeratosis, ocular secretion, and enlarged lymph nodes; they also exhibited a significant reduction in the spleen parasite load in comparison to the control dogs; 2) rLdccys1-treated dogs exhibited a significant delayed type cutaneous hypersensitivity elicited by the recombinant antigen, as well as high IgG2 serum titers and low IgG1 serum titers; sera from rLdccys1-treated dogs also contained high IFN-γ and low IL-10 concentrations; 3) control dogs exhibited all of the clinical signs of visceral leishmaniasis and had low serum IgG2 and IFN-γ levels and high concentrations of IgG1 and IL-10; 4) all of the dogs treated with rLdccys1 were alive 12 months after treatment, whereas dogs which received either saline or P. acnes alone died within 3 to 7 months. CONCLUSIONS/SIGNIFICANCE These findings illustrate the potential use of rLdccys1 as an additional tool for the immunotherapy of canine visceral leishmaniasis and support further studies designed to improve the efficacy of this recombinant antigen for the treatment of this neglected disease.
Collapse
Affiliation(s)
- Josie Haydée Lima Ferreira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Parasitologia e Microbiologia, Centro de Ciências da Saúde, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | - Ieda Maria Longo-Maugéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Simone Katz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Clara Lúcia Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
15
|
Costa DJ, Carvalho RMDA, Abbehusen M, Teixeira C, Pitombo M, Trigo J, Nascimento F, Amorim L, Abreu-Silva AL, do Socorro Pires Cruz M, Miranda JC, Fukutani K, de Oliveira CI, Barral A, Barral-Netto M, Brodskyn C. Experimental infection of dogs with Leishmania and saliva as a model to study Canine Visceral Leishmaniasis. PLoS One 2013; 8:e60535. [PMID: 23577121 PMCID: PMC3618420 DOI: 10.1371/journal.pone.0060535] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/27/2013] [Indexed: 11/19/2022] Open
Abstract
Background Canine Visceral Leishmaniasis (CVL) is a zoonotic disease caused by Leishmania infantum, transmitted by the bite of Lutzomyia longipalpis sand flies. Dogs are the main domestic reservoir of the parasite. The establishment of an experimental model that partially reproduces natural infection in dogs is very important to test vaccine candidates, mainly regarding those that use salivary proteins from the vector and new therapeutical approaches. Methodology/Principal Findings In this report, we describe an experimental infection in dogs, using intradermal injection of Leishmania infantum plus salivary gland homogenate (SGH) of Lutzomyia longipalpis. Thirty-five dogs were infected with 1×107 parasites combined with five pairs of Lutzomyia longipalpis salivary glands and followed for 450 days after infection and clinical, immunological and parasitological parameters were evaluated. Two hundred and ten days after infection we observed that 31,4% of dogs did not display detectable levels of anti-Leishmania antibodies but all presented different numbers of parasites in the lymph nodes. Animals with a positive xenodiagnosis had at least 3,35×105 parasites in their lymph nodes. An increase of IFN-γ and IL-10 levels was detected during infection. Twenty two percent of dogs developed symptoms of CVL during infection. Conclusion The infection model described here shows some degree of similarity when compared with naturally infected dogs opening new perspectives for the study of CVL using an experimental model that employs the combination of parasites and sand fly saliva both present during natural transmission.
Collapse
Affiliation(s)
| | | | | | | | - Maiana Pitombo
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
| | - Joelma Trigo
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
| | - Flávia Nascimento
- Laboratório de Imunofiosiologia, Departamento de Patologia Universidade Federal do Maranhão, Maranhão, Brazil
| | - Lucilene Amorim
- Laboratório de Imunofiosiologia, Departamento de Patologia Universidade Federal do Maranhão, Maranhão, Brazil
| | | | - Maria do Socorro Pires Cruz
- Departamento de Morfofisiologia Veterinária Centro de Ciências Agrárias, Universidade Federal do Piauí, Piauí, Brazil
| | | | | | - Camila I. de Oliveira
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
- Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Aldina Barral
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Bahia, Brazil
- Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Bahia, Brazil
- Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Cláudia Brodskyn
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ-BA, Bahia, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Bahia, Brazil
- Departamento de Morfofisiologia Veterinária Centro de Ciências Agrárias, Universidade Federal do Piauí, Piauí, Brazil
- * E-mail:
| |
Collapse
|
16
|
Guha R, Das S, Ghosh J, Naskar K, Mandala A, Sundar S, Dujardin JC, Roy S. Heterologous priming-boosting with DNA and vaccinia virus expressing kinetoplastid membrane protein-11 induces potent cellular immune response and confers protection against infection with antimony resistant and sensitive strains of Leishmania (Leishmania) donovani. Vaccine 2013; 31:1905-15. [PMID: 23499564 DOI: 10.1016/j.vaccine.2013.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Emergence of resistance against commonly available drugs poses a major threat in the treatment of visceral leishmaniasis (VL), particularly in the Indian subcontinent. Absence of any licensed vaccine against VL emphasizes the urgent need to develop an effective alternative vaccination strategy. METHODOLOGY We developed a novel heterologous prime boost immunization strategy using kinetoplastid membrane protein-11 (KMP-11) DNA priming followed by boosting with recombinant vaccinia virus (rVV) expressing the same antigen. The efficacy of this vaccination regimen in a murine and hamster model of visceral leishmaniasis caused by both antimony resistant (Sb-R) and sensitive (Sb-S) Leishmania (L.) donovani is examined. RESULT Heterologous prime-boost (KMP-11 DNA/rVV) vaccination was able to protect mice and hamsters from experimental VL induced by both Sb-S and Sb-R-L. (L.) donovani isolates. Parasite burden is kept significantly low in the vaccinated groups even after 60 days post-infection in hamsters, which are extremely susceptible to VL. Protection in mice is correlated with strong cellular and humoral immune responses. Generation of polyfunctional CD8(+) T cell was observed in vaccinated groups, which is one of the most important prerequisite for successful vaccination against VL. Protection was accompanied with generation of antigen specific CD4(+) and CD8(+) cells that produced effector cytokines such as IFN-γ, IL-2 and TNF-α. KMP-11-DNA/rVV vaccination also developed strong cytotoxic response and reversed T-cell impairment to induce antigen specific T cell proliferation. CONCLUSION KMP-11 is a unique antigen with high epitope density. Heterologous prime boost vaccination activates CD4(+) and CD8(+) T-cell mediated immunity to confer resistance to VL. This immunization method also produces high quality T-cells secreting multiple effector cytokines thus enhancing durability of the immune response. Thus the vaccination regime as described in the present study could provide a potent strategy for future anti-leishmanial vaccine development.
Collapse
Affiliation(s)
- Rajan Guha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Passero LFD, Carvalho AK, Bordon MLAC, Bonfim-Melo A, Toyama MH, Corbett CEP, Laurenti MD. Leishmania (Viannia) shawi purified antigens confer protection against murine cutaneous leishmaniasis. Inflamm Res 2011; 61:255-63. [PMID: 22166919 DOI: 10.1007/s00011-011-0407-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/21/2011] [Accepted: 11/28/2011] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Leishmania (Viannia) shawi was characterized only recently, and few studies concerning the immunogenic and protective properties of its antigens have been performed. The present study aimed to evaluate the protective potential of the five antigenic fractions isolated from L. (V.) shawi promastigotes in experimental cutaneous leishmaniasis. MATERIALS AND METHODS Soluble antigen from L. (V.) shawi promastigotes was submitted to reverse phase HPLC to purify F1, F2, F3, F4 and F5 antigens. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 μg protein. After 1 week, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 8 weeks, those same mice were sacrificed and parasite burden as well as the cellular and humoral immune responses were evaluated. RESULTS F1 and F5-immunized mice restrained lesion progression and parasite load in the skin. However, only the F1 group was able to control the parasitism in lymph nodes, which was associated with low IL-4 and high IFN-γ production; IgG2a isotype was increased in this group. Immunizations with F2, F3 and F4 antigens did not protect mice. CONCLUSION The capability of antigens to restrain IL-4 levels and increase IFN-γ was associated with protection, such as in immunization using F1 antigen.
Collapse
Affiliation(s)
- Luiz Felipe Domingues Passero
- Laboratório de Patologia de Moléstias Infecciosas (LIM-50), Departmento de Patologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, SP 01246-903, Brazil.
| | | | | | | | | | | | | |
Collapse
|
18
|
Vaccine candidates for leishmaniasis: A review. Int Immunopharmacol 2011; 11:1464-88. [DOI: 10.1016/j.intimp.2011.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/13/2011] [Accepted: 05/09/2011] [Indexed: 01/08/2023]
|
19
|
Caffrey CR, Lima AP, Steverding D. Cysteine peptidases of kinetoplastid parasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:84-99. [PMID: 21660660 DOI: 10.1007/978-1-4419-8414-2_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We review Clan CA Family C1 peptidases of kinetoplastid parasites (Trypanosoma and Leishmania) with respect to biochemical and genetic diversity, genomic organization and stage-specificity and control of expression. We discuss their contributions to parasite metabolism, virulence and pathogenesis and modulation of the host's immune response. Their applications as vaccine candidates and diagnostic markers as well as their chemical and genetic validation as drug targets are also summarized.
Collapse
Affiliation(s)
- Conor R Caffrey
- Sandler Center for Drug Discovery, California Institute for Quantitative Biosciences, Byers Hall, University of California San Francisco, San Francisco, USA.
| | | | | |
Collapse
|
20
|
de Oliveira LRC, Cezário GAG, de Lima CRG, Nicolete VC, Peresi E, de Síbio MT, Picka MCM, Calvi SA. DNA damage and nitric oxide production in mice following infection with L. chagasi. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 723:177-81. [DOI: 10.1016/j.mrgentox.2011.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/13/2011] [Accepted: 04/28/2011] [Indexed: 01/28/2023]
|
21
|
Carvalho JA, Rodgers J, Atouguia J, Prazeres DMF, Monteiro GA. DNA vaccines: a rational design against parasitic diseases. Expert Rev Vaccines 2010; 9:175-91. [PMID: 20109028 DOI: 10.1586/erv.09.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parasitic diseases are one of the most devastating causes of morbidity and mortality worldwide. Although immunization against these infections would be an ideal solution, the development of effective vaccines has been hampered by specific challenges posed by parasitic pathogens. Plasmid-based DNA vaccines may prove to be promising immunization tools in this area because vectors can be designed to integrate several antigens from different stages of the parasite life cycle or different subspecies; vaccines, formulations and immunization protocols can be tuned to match the immune response that offers protective immunity; and DNA vaccination is an affordable platform for developing countries. Partial and full protective immunity have been reported following DNA vaccination against the most significant parasitic diseases in the world.
Collapse
Affiliation(s)
- Joana A Carvalho
- Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
22
|
In situ immunolocalization and stage-dependent expression of a secretory serine protease in Leishmania donovani and its role as a vaccine candidate. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:660-7. [PMID: 20106998 DOI: 10.1128/cvi.00358-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteases have been found to play essential roles in many biological processes, including the pathogenesis of leishmaniasis. Most parasites rely on their intracellular and extracellular protease repertoire to invade and multiply in mammalian host cells. However, few studies have addressed serine proteases in Leishmania and their role in host pathogenesis. Here we report the intracellular distribution of a novel L. donovani secretory serine protease in the flagellar pocket, as determined by immunogold labeling. Flow cytometry and confocal immunofluorescence analysis revealed that the expression of the protease diminishes sequentially from virulent to attenuated strains of this species and is also highly associated with the metacyclic stage of L. donovani promastigotes. The level of internalization of parasites treated with the anti-115-kDa antibody into host macrophages was significantly reduced from that of non-antibody-treated parasites, suggesting that this serine protease probably plays a role in the infection process. In vivo studies confirmed that this serine protease is a potential vaccine candidate. Altogether, the 115-kDa serine protease might play vital roles in L. donovani pathogenesis and hence could be recognized as a potential candidate for drug design.
Collapse
|
23
|
Fedeli CEC, Ferreira JHL, Mussalem JS, Longo-Maugéri IM, Gentil LG, dos Santos MRM, Katz S, Barbiéri CL. Partial protective responses induced by a recombinant cysteine proteinase from Leishmania (Leishmania) amazonensis in a murine model of cutaneous leishmaniasis. Exp Parasitol 2009; 124:153-8. [PMID: 19735658 DOI: 10.1016/j.exppara.2009.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 08/25/2009] [Accepted: 09/02/2009] [Indexed: 11/29/2022]
Abstract
A 500 bp fragment encoding an isoform of cysteine proteinase from Leishmania (Leishmania) amazonensis was subcloned and expressed in the pHis vector, resulting in a recombinant protein of 24 kDa, rLacys24. In Western blots of L. (L.) amazonensis extracts, antibodies directed to rLacys24 recognized a cysteine proteinase isoform of 30 kDa. Analysis by fluorescence-activated cell sorter showed a significantly higher expression of CD8(+) lymphocytes in animals immunized with rLacys24 plus CFA, whereas a low expression of CD4(+) lymphocytes was observed in these animals. The cytotoxicity of lymphocytes isolated from mice immunized with rLacys24 plus CFA on L. (L.) amazonensis-infected macrophages was significantly higher than that observed in the presence of lymphocytes from control animals. Immunization of BALB/c mice with rLacys24 plus CFA resulted in a low but significant decrease of foot lesions after challenge with L. (L.) amazonensis compared to those exhibited by control mice.
Collapse
|
24
|
Kinetoplastid papain-like cysteine peptidases. Mol Biochem Parasitol 2009; 167:12-9. [DOI: 10.1016/j.molbiopara.2009.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
|
25
|
Pinheiro PHDC, Pinheiro AN, Ferreira JHL, Costa FAL, Katz S, Barbiéri CL. A recombinant cysteine proteinase from Leishmania (Leishmania) chagasi as an antigen for delayed-type hypersensitivity assays and serodiagnosis of canine visceral leishmaniasis. Vet Parasitol 2009; 162:32-9. [PMID: 19269098 DOI: 10.1016/j.vetpar.2009.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 01/06/2009] [Accepted: 02/06/2009] [Indexed: 11/28/2022]
Abstract
A recombinant protein, rLdccys1, produced by expression of the gene encoding a 30kDa cysteine proteinase from Leishmania (Leishmania) chagasi, was used to detect specific antibodies in serum by enzyme-linked immunosorbent assays and to test for reactivity in delayed-type hypersensitivity (DTH) responses of dogs from an endemic region of visceral leishmaniasis (VL), Teresina, Piauí State, Brazil. Amastigote or promastigote extracts were also assayed for comparison. The sensitivity for detection of specific antibodies to L. (L.) chagasi using rLdccys1, lysates from L. (L.) chagasi promastigotes and amastigotes was 96%, 68%, and 69%, respectively. No cross-reactivity between rLdccys1 and Chagas disease was observed, and little reactivity was found with sera from dogs with babesiosis and ehrlichiosis. Among 106 sera from symptomatic dogs and 22 from non-infected controls, no false negatives and only two false positive sera were found for rLdccys1. In contrast, amastigote lysates yielded 11 false positives and 13 false negatives, whereas the corresponding numbers for promastigote lysates were 17 and 16. DTH responses were determined after intradermal injection of rLdccys1 or amastigote extract and the induration area was measured at 24, 48 and 72h after injection. All asymptomatic dogs showed a positive intradermal response to rLdccys1 (>10mm) which peaked at 48h, whereas no significant reactivity to the recombinant antigen was found in the symptomatic group. Histological analysis of the intradermal induration showed a predominance of necrotic and hemorrhagic areas in sections from asymptomatic dogs injected with L. (L.) chagasi amastigote extract, whereas a typical granulomatous reaction mediated by mononuclear cells was observed in sections from asymptomatic animals injected with rLdccys1. Grouping data from ELISA and DTH assays with rLdccys1 and L. (L.) chagasi amastigote extracts showed that humoral and cellular responses were inversely correlated during the development of canine VL. Overall, these findings indicate that L. (L.) chagasi recombinant cysteine proteinase is potentially useful for diagnosis of canine VL, as well as for the discrimination of clinical and subclinical forms of the disease.
Collapse
|
26
|
Carson C, Antoniou M, Ruiz-Argüello MB, Alcami A, Christodoulou V, Messaritakis I, Blackwell JM, Courtenay O. A prime/boost DNA/Modified vaccinia virus Ankara vaccine expressing recombinant Leishmania DNA encoding TRYP is safe and immunogenic in outbred dogs, the reservoir of zoonotic visceral leishmaniasis. Vaccine 2009; 27:1080-6. [PMID: 19095029 PMCID: PMC2663027 DOI: 10.1016/j.vaccine.2008.11.094] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/19/2008] [Accepted: 11/27/2008] [Indexed: 01/28/2023]
Abstract
Previous studies demonstrated safety, immunogenicity and efficacy of DNA/modified vaccinia virus Ankara (MVA) prime/boost vaccines expressing tryparedoxin peroxidase (TRYP) and Leishmania homologue of the mammalian receptor for activated C kinase (LACK) against Leishmania major challenge in mice, which was consistent with results from TRYP protein/adjuvant combinations in non-human primates. This study aimed to conduct safety and immunogenicity trials of these DNA/MVA vaccines in dogs, the natural reservoir host of Leishmania infantum, followed-up for 4 months post-vaccination. In a cohort of 22 uninfected outbred dogs, blinded randomised administration of 1000 microg (high dose) or 100 microg (low dose) DNA prime (day 0) and 1x10(8)pfu MVA boost (day 28) was shown to be safe and showed no clinical side effects. High dose DNA/MVA vaccinated TRYP dogs produced statistically higher mean levels of the type-1 pro-inflammatory cytokine IFN-gamma than controls in whole blood assays (WBA) stimulated with the recombinant vaccine antigen TRYP, up to the final sampling at day 126, and in the absence of challenge with Leishmania. TRYP vaccinated dogs also demonstrated significantly higher TRYP-specific total IgG and IgG2 subtype titres than in controls, and positive in vivo intradermal reactions at day 156 in the absence of natural infection, observed in 6/8 TRYP vaccinated dogs. No significant increases in IFN-gamma in LACK-stimulated WBA, or in LACK-specific IgG levels, were detected in LACK vaccinated dogs compared to controls, and only 2/9 LACK vaccinated dogs demonstrated DTH responses at day 156. In all groups, IgG1 subclass responses and antigen-specific stimulation of IL-10 were similar to controls demonstrating an absence of Th2/T(reg) response, as expected in the absence of in vivo restimulation or natural/experimental challenge with Leishmania. These collective results indicate significant antigen-specific type-1 responses and in vivo memory phase cellular immune responses, consistent with superior potential for protective vaccine immunogenicity of DNA/MVA TRYP over LACK.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Dogs
- Immunization, Secondary/methods
- Immunoglobulin G/blood
- Interferon-gamma/metabolism
- Leishmania infantum/immunology
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/adverse effects
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/prevention & control
- Leukocytes, Mononuclear/immunology
- Peroxidases/genetics
- Peroxidases/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Vaccines, DNA/immunology
- Vaccinia virus/genetics
Collapse
Affiliation(s)
- Connor Carson
- Populations and Disease Research Group, Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Khoshgoo N, Zahedifard F, Azizi H, Taslimi Y, Alonso MJ, Rafati S. Cysteine proteinase type III is protective against Leishmania infantum infection in BALB/c mice and highly antigenic in visceral leishmaniasis individuals. Vaccine 2008; 26:5822-9. [PMID: 18804512 DOI: 10.1016/j.vaccine.2008.08.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 11/28/2022]
Abstract
Visceral leishmaniasis is the most acute form of leishmaniasis and vaccination is the best approach to control it. One of the major groups of virulence factors in Leishmania belongs to cysteine proteinase family. In this study, for the first time, the protective potential of Leishmania infantum cysteine proteinase type III (CPC) by using a prime-boost strategy is evaluated in BALB/c mice. The experiment was carried out in three groups of mice. Vaccinated group was primed with pcDNA-cpc and boosted with rCPC-DHFR in combination with CpG motif and Montanide 720 as adjuvant. Control groups received pcDNA and rDHFR or PBS. The ratio of IgG2a/IgG1, nitric oxide concentration and IFN-gamma induction in vaccinated group is significantly higher than controls. Furthermore, the parasite load of vaccinated group is significantly lower than controls. In addition, sera reactivity of visceral leishmaniasis individuals was examined and showed considerable reactivities toward rCPC in comparison with cutaneous leishmaniasis. The achieved result is highly encouraging the use of cysteine proteinases types I, II and III as vaccine candidate against visceral leishmaniasis.
Collapse
Affiliation(s)
- Naghmeh Khoshgoo
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|