1
|
Din GU, Wu C, Tariq Z, Hasham K, Amjad MN, Shen B, Yue L, Raza MA, Ashraf MA, Chen L, Hu Y. Unlocking influenza B: exploring molecular biology and reverse genetics for epidemic control and vaccine innovation. Virol J 2024; 21:196. [PMID: 39180083 PMCID: PMC11344405 DOI: 10.1186/s12985-024-02433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Influenza is a highly contagious acute viral illness that affects the respiratory system, posing a significant global public health concern. Influenza B virus (IBV) causes annual seasonal epidemics. The exploration of molecular biology and reverse genetics of IBV is pivotal for understanding its replication, pathogenesis, and evolution. Reverse genetics empowers us to purposefully alter the viral genome, engineer precise genetic modifications, and unveil the secrets of virulence and resistance mechanisms. It helps us in quickly analyzing new virus strains by viral genome manipulation and the development of innovative influenza vaccines. Reverse genetics has been employed to create mutant or reassortant influenza viruses for evaluating their virulence, pathogenicity, host range, and transmissibility. Without this technique, these tasks would be difficult or impossible, making it crucial for preparing for epidemics and protecting public health. Here, we bring together the latest information on how we can manipulate the genes of the influenza B virus using reverse genetics methods, most importantly helper virus-independent techniques.
Collapse
Affiliation(s)
- Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, People's Republic of China
| | - Zahra Tariq
- Sundas Molecular Analysis Center, Sundas Foundation, Gujranwala, Punjab, Pakistan
| | - Kinza Hasham
- Sundas Molecular Analysis Center, Sundas Foundation, Gujranwala, Punjab, Pakistan
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Demirden SF, Kimiz-Gebologlu I, Oncel SS. Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post Covid-19 Perspective. ACS OMEGA 2024; 9:16904-16926. [PMID: 38645343 PMCID: PMC11025085 DOI: 10.1021/acsomega.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Vaccines are considered the most effective tools for preventing diseases. In this sense, with the Covid-19 pandemic, the effects of which continue all over the world, humanity has once again remembered the importance of the vaccine. Also, with the various epidemic outbreaks that occurred previously, the development processes of effective vaccines against these viral pathogens have accelerated. By these efforts, many different new vaccine platforms have been approved for commercial use and have been introduced to the commercial landscape. In addition, innovations have been made in the production processes carried out with conventionally produced vaccine types to create a rapid response to prevent potential epidemics or pandemics. In this situation, various cell lines are being positioned at the center of the production processes of these new generation viral vaccines as expression platforms. Therefore, since the main goal is to produce a fast, safe, and effective vaccine to prevent the disease, in addition to existing expression systems, different cell lines that have not been used in vaccine production until now have been included in commercial production for the first time. In this review, first current viral vaccine types in clinical use today are described. Then, the reason for using cell lines, which are the expression platforms used in the production of these viral vaccines, and the general production processes of cell culture-based viral vaccines are mentioned. Also, selection parameters for animal cell lines as expression platforms in vaccine production are explained by considering bioprocess efficiency and current regulations. Finally, all different cell lines used in cell culture-based viral vaccine production and their properties are summarized, with an emphasis on the current and future status of cell cultures in industrial viral vaccine production.
Collapse
Affiliation(s)
| | | | - Suphi S. Oncel
- Ege University, Bioengineering Department, Izmir, 35100, Turkiye
| |
Collapse
|
3
|
Development and Validation of Quantitative Real-Time PCR for the Detection of Residual CHO Host Cell DNA and Optimization of Sample Pretreatment Method in Biopharmaceutical Products. Biol Proced Online 2019; 21:17. [PMID: 31496923 PMCID: PMC6717637 DOI: 10.1186/s12575-019-0105-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023] Open
Abstract
Background The presence of residual DNA carried by biological products in the body may lead to an increased oncogenicity, infectivity, and immunomodulatory risk. Therefore, current agencies including WHO, EU, and the FDA limited the accepted amounts of residual DNA (less than 10 ng or 100 pg/dose). Among the methods of detecting residual DNA, qPCR is considered to be the most practical for residual DNA quantitation due to its sensitivity, accuracy, precision, and time-saving. Results In this study, the detection capacity of this method was determined by comparing the detected concentration of the commercial kit and the self-designed primer/probe set after the same treatment of the extraction method. Then, a universal sample pretreatment method based on a co-precipitant was optimized. The validation results demonstrated that the method has appropriate specificity, sensitivity, accuracy, and precision according to ICH guidelines. The limit of detection and quantitation reached 3 fg/ul and 0.3 pg/reaction respectively, which satisfies the requirement of limit of residual DNA detection in biologics. Spike recovery (82.3–105.7%) showed that the proposed qPCR assay was accurate and has good extraction efficiency. Moreover, the precision of the method based on intra- and inter-assay was 0.065–0.452% and 0.471–1.312%, respectively. Conclusions These results all indicated that the method for determination of residual DNA in biological products expressed from CHO cells is sensitive, accurate and robust. Electronic supplementary material The online version of this article (10.1186/s12575-019-0105-1) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
van Dongen MJP, Kadam RU, Juraszek J, Lawson E, Brandenburg B, Schmitz F, Schepens WBG, Stoops B, van Diepen HA, Jongeneelen M, Tang C, Vermond J, van Eijgen-Obregoso Real A, Blokland S, Garg D, Yu W, Goutier W, Lanckacker E, Klap JM, Peeters DCG, Wu J, Buyck C, Jonckers THM, Roymans D, Roevens P, Vogels R, Koudstaal W, Friesen RHE, Raboisson P, Dhanak D, Goudsmit J, Wilson IA. A small-molecule fusion inhibitor of influenza virus is orally active in mice. Science 2019; 363:363/6431/eaar6221. [PMID: 30846569 DOI: 10.1126/science.aar6221] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 10/09/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
Recent characterization of broadly neutralizing antibodies (bnAbs) against influenza virus identified the conserved hemagglutinin (HA) stem as a target for development of universal vaccines and therapeutics. Although several stem bnAbs are being evaluated in clinical trials, antibodies are generally unsuited for oral delivery. Guided by structural knowledge of the interactions and mechanism of anti-stem bnAb CR6261, we selected and optimized small molecules that mimic the bnAb functionality. Our lead compound neutralizes influenza A group 1 viruses by inhibiting HA-mediated fusion in vitro, protects mice against lethal and sublethal influenza challenge after oral administration, and effectively neutralizes virus infection in reconstituted three-dimensional cell culture of fully differentiated human bronchial epithelial cells. Cocrystal structures with H1 and H5 HAs reveal that the lead compound recapitulates the bnAb hotspot interactions.
Collapse
Affiliation(s)
- Maria J P van Dongen
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands. .,Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Rameshwar U Kadam
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jarek Juraszek
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Edward Lawson
- Discovery Sciences, Janssen Research & Development, 1400 McKean Rd., Spring House, PA, USA
| | - Boerries Brandenburg
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Janssen Infectious Diseases and Vaccines, Janssen Research & Development, Archimedesweg 4-6, Leiden, Netherlands
| | - Frederike Schmitz
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Wim B G Schepens
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Bart Stoops
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Harry A van Diepen
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Mandy Jongeneelen
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Janssen Infectious Diseases and Vaccines, Janssen Research & Development, Archimedesweg 4-6, Leiden, Netherlands
| | - Chan Tang
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Janssen Infectious Diseases and Vaccines, Janssen Research & Development, Archimedesweg 4-6, Leiden, Netherlands
| | - Jan Vermond
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | | | - Sven Blokland
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Janssen Infectious Diseases and Vaccines, Janssen Research & Development, Archimedesweg 4-6, Leiden, Netherlands
| | - Divita Garg
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wouter Goutier
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Ellen Lanckacker
- Janssen Infectious Diseases and Vaccines, Janssen Research & Discovery, Turnhoutseweg 30, Beerse, Belgium
| | - Jaco M Klap
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Daniëlle C G Peeters
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Jin Wu
- Janssen Infectious Diseases and Vaccines, Janssen Research & Discovery, Turnhoutseweg 30, Beerse, Belgium
| | - Christophe Buyck
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Tim H M Jonckers
- Janssen Infectious Diseases and Vaccines, Janssen Research & Discovery, Turnhoutseweg 30, Beerse, Belgium
| | - Dirk Roymans
- Janssen Infectious Diseases and Vaccines, Janssen Research & Discovery, Turnhoutseweg 30, Beerse, Belgium
| | - Peter Roevens
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium
| | - Ronald Vogels
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Janssen Infectious Diseases and Vaccines, Janssen Research & Development, Archimedesweg 4-6, Leiden, Netherlands
| | - Wouter Koudstaal
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Robert H E Friesen
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands
| | - Pierre Raboisson
- Janssen Infectious Diseases and Vaccines, Janssen Research & Discovery, Turnhoutseweg 30, Beerse, Belgium
| | - Dashyant Dhanak
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium.,Discovery Sciences, Janssen Research & Development, 1400 McKean Rd., Spring House, PA, USA
| | - Jaap Goudsmit
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 6, Leiden, Netherlands.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA. .,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
5
|
Song JM. Advances in novel influenza vaccines: a patent review. J Microbiol 2016; 54:403-12. [PMID: 27225456 DOI: 10.1007/s12275-016-6176-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022]
Abstract
The threat of a major human influenza pandemic such as the avian H5N1 or the 2009 new H1N1 has emphasized the need for effective prevention strategies to combat these pathogens. Although egg based influenza vaccines have been well established for a long time, it remains an ongoing public health need to develop alternative production methods that ensures improved safety, efficacy, and ease of administration compared with conventional influenza vaccines. This article is intended to cover some of the recent advances and related patents on the development of influenza vaccines including live attenuated, cell based, genomic and synthetic peptide vaccines.
Collapse
Affiliation(s)
- Jae-Min Song
- Department of Global Medical Science, Sungshin Women's University, Seoul, 01133, Republic of Korea.
| |
Collapse
|
6
|
André M, Reghin S, Boussard E, Lempereur L, Maisonneuve S. Universal real-time PCR assay for quantitation and size evaluation of residual cell DNA in human viral vaccines. Biologicals 2016; 44:139-49. [DOI: 10.1016/j.biologicals.2016.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/26/2015] [Accepted: 03/05/2016] [Indexed: 12/15/2022] Open
|
7
|
Hegde NR. Cell culture-based influenza vaccines: A necessary and indispensable investment for the future. Hum Vaccin Immunother 2016; 11:1223-34. [PMID: 25875691 DOI: 10.1080/21645515.2015.1016666] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The traditional platform of using embryonated chicken eggs for the production of influenza vaccines has several drawbacks including the inability to meet the volume of required doses in the case of widespread epidemics and pandemics. Cell culture platforms have therefore been explored in the last 2 decades, and have attracted further attention following the H1N1 pandemic outbreak. This platform, while not the most economical for large-scale production, has several advantages, and can supplement the vaccine requirement when needed. Recent developments in production technologies have contributed greatly to fine-tuning this platform. In combination with other technologies such as live attenuated and recombinant protein or virus-like particle vaccines, and different adjuvants and delivery systems, cell culture-based influenza vaccine platform can be used both for production of seasonal vaccine, and to mitigate vaccine shortages in pandemic situations.
Collapse
Affiliation(s)
- Nagendra R Hegde
- a Ella Foundation; Genome Valley; Turkapally , Shameerpet Mandal , Hyderabad , India
| |
Collapse
|
8
|
Bachmann M, Breitwieser T, Lipps C, Wirth D, Jordan I, Reichl U, Frensing T. Impaired antiviral response of adenovirus-transformed cell lines supports virus replication. J Gen Virol 2016; 97:293-298. [PMID: 26647282 DOI: 10.1099/jgv.0.000361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Activation of the innate immune response represents one of the most important cellular mechanisms to limit virus replication and spread in cell culture. Here, we examined the effect of adenoviral gene expression on the antiviral response in adenovirus-transformed cell lines; HEK293, HEK293SF and AGE1.HN. We demonstrate that the expression of the early region protein 1A in these cell lines impairs their ability to activate antiviral genes by the IFN pathway. This property may help in the isolation of newly emerging viruses and the propagation of interferon-sensitive virus strains.
Collapse
Affiliation(s)
- Mandy Bachmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Theresa Breitwieser
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Christoph Lipps
- Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Ingo Jordan
- ProBioGen AG, Goethestrasse 54, 13086 Berlin, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
| | - Timo Frensing
- Otto von Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| |
Collapse
|
9
|
Mercier SM, Rouel PM, Lebrun P, Diepenbroek B, Wijffels RH, Streefland M. Process analytical technology tools for perfusion cell culture. Eng Life Sci 2015. [DOI: 10.1002/elsc.201500035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Sarah M. Mercier
- Vaccine Process and Analytical Development Janssen Leiden The Netherlands
| | - Perrine M. Rouel
- Vaccine Process and Analytical Development Janssen Leiden The Netherlands
| | | | - Bas Diepenbroek
- Vaccine Process and Analytical Development Janssen Leiden The Netherlands
| | - René H. Wijffels
- Bioprocess Engineering Wageningen University Wageningen The Netherlands
- Faculty of Biosciences and Aquaculture University of Nordland Bodø Norway
| | | |
Collapse
|
10
|
Rodrigues AF, Soares HR, Guerreiro MR, Alves PM, Coroadinha AS. Viral vaccines and their manufacturing cell substrates: New trends and designs in modern vaccinology. Biotechnol J 2015. [PMID: 26212697 PMCID: PMC7161866 DOI: 10.1002/biot.201400387] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccination is one of the most effective interventions in global health. The worldwide vaccination programs significantly reduced the number of deaths caused by infectious agents. A successful example was the eradication of smallpox in 1979 after two centuries of vaccination campaigns. Since the first variolation administrations until today, the knowledge on immunology has increased substantially. This knowledge combined with the introduction of cell culture and DNA recombinant technologies revolutionized vaccine design. This review will focus on vaccines against human viral pathogens, recent developments on vaccine design and cell substrates used for their manufacture. While the production of attenuated and inactivated vaccines requires the use of the respective permissible cell substrates, the production of recombinant antigens, virus‐like particles, vectored vaccines and chimeric vaccines requires the use – and often the development – of specific cell lines. Indeed, the development of novel modern viral vaccine designs combined with, the stringent safety requirements for manufacture, and the better understanding on animal cell metabolism and physiology are increasing the awareness on the importance of cell line development and engineering areas. A new era of modern vaccinology is arriving, offering an extensive toolbox to materialize novel and creative ideas in vaccine design and its manufacture.
Collapse
Affiliation(s)
- Ana F Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Hugo R Soares
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Miguel R Guerreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal. .,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
11
|
Mercier SM, Diepenbroek B, Martens D, Wijffels RH, Streefland M. Characterization of apoptosis in PER.C6® batch and perfusion cultures. Biotechnol Bioeng 2014; 112:569-78. [DOI: 10.1002/bit.25459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/09/2014] [Accepted: 09/01/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah M. Mercier
- Vaccine Process and Analytical Development Department; Crucell Holland BV; Archimedesweg 4-6 2333 CN Leiden The Netherlands
| | - Bas Diepenbroek
- Vaccine Process and Analytical Development Department; Crucell Holland BV; Archimedesweg 4-6 2333 CN Leiden The Netherlands
| | - Dirk Martens
- Bioprocess Engineering; Wageningen University; P.O. Box 8629 6700 EV Wageningen The Netherlands
| | - Rene H. Wijffels
- Bioprocess Engineering; Wageningen University; P.O. Box 8629 6700 EV Wageningen The Netherlands
| | - Mathieu Streefland
- Bioprocess Engineering; Wageningen University; P.O. Box 8629 6700 EV Wageningen The Netherlands
| |
Collapse
|
12
|
RNA virus reverse genetics and vaccine design. Viruses 2014; 6:2531-50. [PMID: 24967693 PMCID: PMC4113782 DOI: 10.3390/v6072531] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022] Open
Abstract
RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines.
Collapse
|
13
|
Genzel Y, Reichl U. Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines 2014; 8:1681-92. [DOI: 10.1586/erv.09.128] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Montomoli E, Khadang B, Piccirella S, Trombetta C, Mennitto E, Manini I, Stanzani V, Lapini G. Cell culture-derived influenza vaccines from Vero cells: a new horizon for vaccine production. Expert Rev Vaccines 2012; 11:587-94. [PMID: 22827244 DOI: 10.1586/erv.12.24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the 20th century, three influenza pandemics killed approximately 100 million people. The traditional method of influenza vaccine manufacturing is based on using chicken eggs. However, the necessity of the availability of millions of fertile eggs in the event of a pandemic has led research to focus on the development of cell culture-derived vaccines, which offer shorter lead-in times and greater flexibility of production. So far, the cell substrates being evaluated and in use include Vero, Madin-Darby canine kidney, PER.C6 and insect cells. However, Vero cells are the most widely accepted among others. This review introduces briefly the concepts of advanced cell culture-derived influenza vaccine production and highlights the advantages of these vaccines in terms of efficiency, speed and immunogenicity based on the clinical data obtained from different studies.
Collapse
Affiliation(s)
- Emanuele Montomoli
- Department of Physiopathology, Experimental Medicine and Public Health, University of Siena, Via Aldo Moro 3, 53100 Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Engelhardt OG. Many ways to make an influenza virus--review of influenza virus reverse genetics methods. Influenza Other Respir Viruses 2012; 7:249-56. [PMID: 22712782 PMCID: PMC5779834 DOI: 10.1111/j.1750-2659.2012.00392.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Methods to introduce targeted mutations into a genome or, in the context of virology, into a virus are subsumed under the term reverse genetics (RG). Influenza viruses are important human pathogens that continue to surprise us. The development of RG for influenza viruses has greatly expanded our knowledge about influenza virus and enabled researchers to generate influenza viruses with rationally designed genotypes. Currently, a wide array of influenza virus RG methods is available. These can all be traced to fundamental principles essential in any RG system for negative-strand RNA viruses. This review gives an overview of these principles and of the multitude of RG methods, categorising them by technical characteristics.
Collapse
Affiliation(s)
- Othmar G Engelhardt
- Division of Virology, National Institute for Biological Standards and Control, Health Protection Agency, Potters Bar, UK.
| |
Collapse
|
16
|
Abstract
For human vaccines to be available on a global scale, complex production methods, meticulous quality control, and reliable distribution channels are needed to ensure that the products are potent and effective at the point of use. The technologies used to manufacture different types of vaccines can strongly affect vaccine cost, ease of industrial scale-up, stability, and, ultimately, worldwide availability. The complexity of manufacturing is compounded by the need for different formulations in different countries and age-groups. Reliable vaccine production in appropriate quantities and at affordable prices is the cornerstone of developing global vaccination policies. However, to ensure optimum access and uptake, strong partnerships are needed between private manufacturers, regulatory authorities, and national and international public health services. For vaccines whose supply is insufficient to meet demand, prioritisation of target groups can increase the effect of these vaccines. In this report, we draw from our experience of vaccine development and focus on influenza vaccines as an example to consider production, distribution, access, and other factors that affect vaccine uptake and population-level effectiveness.
Collapse
Affiliation(s)
- Jon Smith
- Sanofi Pasteur, Marcy L'Etoile, France
| | | | | |
Collapse
|
17
|
Gomez-Casado E, Gomez-Sebastian S, Núñez MC, Lasa-Covarrubias R, Martínez-Pulgarín S, Escribano JM. Insect larvae biofactories as a platform for influenza vaccine production. Protein Expr Purif 2011; 79:35-43. [PMID: 21421054 DOI: 10.1016/j.pep.2011.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 12/31/2022]
Abstract
Increased production capacity is one of the most important priorities for seasonal and pandemic influenza vaccines. In the present study, we used a baculovirus-insect larvae system (considered small, living biofactories) to improve the production of recombinant influenza virus H1N1 hemagglutinin (HA). Insect larvae produced four-fold more HA protein than insect cells per biomass unit (1 g of fresh larvae weight). A single infected Trichoplusia ni larva produced up to 113 μg of soluble and easily purified recombinant HA, an amount similar to that produced by 1.2×10(8) Sf21 insect cells infected by the same baculovirus. The use of the KDEL endoplasmic reticulum retention signal fused to the HA protein further increased recombinant protein production. Larvae-derived HA was immunogenically functional in vaccinated mice, inducing the generation of hemagglutination inhibition antibodies and a protective immune response against a lethal challenge with a highly virulent virus. The productivity, scalability and cost efficiency of small, living biofactories based on insect larvae suggest a broad-based strategy for the production of recombinant subunit vaccines against seasonal or pandemic influenza as an alternative to fermentation technologies.
Collapse
MESH Headings
- Animals
- Baculoviridae/genetics
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification
- Hemagglutinin Glycoproteins, Influenza Virus/therapeutic use
- Humans
- Immunization
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Influenza Vaccines/therapeutic use
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Larva/virology
- Mice
- Moths/virology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
- Vaccines, Synthetic/therapeutic use
Collapse
Affiliation(s)
- E Gomez-Casado
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Influenza is responsible for the infection of approximately 20% of the population every season and for an annual death toll of approximately half a million people. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination by injection with an inactivated vaccine, or by intranasal administration of a live-attenuated vaccine. Protection is not always optimal and there is a need for the development of new vaccines with improved efficacy and for the expansion of enrollment into vaccination programs. An overview of old and new vaccines is presented. Methods of monitoring immune responses such as hemagglutination-inhibition, ELISA and neutralization tests are evaluated for their accuracy in the assessment of current and new-generation vaccines.
Collapse
Affiliation(s)
- Zichria Zakay-Rones
- Chanock Center of Virology, The Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada (IMRIC), Hebrew University Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
19
|
Affiliation(s)
- W Paul Glezen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Bergeron C, Valette M, Lina B, Ottmann M. Genetic content of Influenza H3N2 vaccine seeds. PLOS CURRENTS 2010; 2:RRN1165. [PMID: 20802842 PMCID: PMC2928332 DOI: 10.1371/currents.rrn1165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/26/2010] [Indexed: 11/19/2022]
Abstract
Influenza vaccine seeds produced in chicken eggs are selected through HA and NA surface glycoproteins antigenicity, as well as through high replicative ability. Here we characterize the genetic content of recently used thirteen H3N2 influenza vaccine seeds. Interestingly, sequence analysis of the vaccine seeds shows reassortment events leading to PR8:H3N2 segment constellations, ranging from the 6:2 to 2:6 constellations. This study shows that the H3N2 PB1 is the most frequent internal segment incorporated in the tested vaccines seeds.
Collapse
Affiliation(s)
- Corinne Bergeron
- Université; Lyon 1; CNR Virus Influenza région sud - Hospices Civils de Lyon; NIC Lyon & UCBL-CNRS FRE 3011, Lyon, and VirPath FRE3011, Université Lyon1, France
| | | | | | | |
Collapse
|
21
|
Hartgroves L, Koudstaal W, McLeod C, Moncorgé O, Thompson C, Ellis J, Bull C, Havenga M, Goudsmit J, Barclay W. Rapid generation of a well-matched vaccine seed from a modern influenza A virus primary isolate without recourse to eggs. Vaccine 2010; 28:2973-9. [DOI: 10.1016/j.vaccine.2010.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 02/01/2010] [Accepted: 02/10/2010] [Indexed: 12/19/2022]
|
22
|
Hussain AI, Cordeiro M, Sevilla E, Liu J. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells. Vaccine 2010; 28:3848-55. [PMID: 20307595 PMCID: PMC7172923 DOI: 10.1016/j.vaccine.2010.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/21/2010] [Accepted: 03/05/2010] [Indexed: 11/18/2022]
Abstract
Currently MedImmune manufactures cold-adapted (ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006–2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced influenza viruses. Based on these study results we conclude that the MDCK cell produced and egg produced vaccine strains are highly comparable.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Chickens
- Dogs
- Eggs/virology
- Hemagglutination Inhibition Tests
- Humans
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/growth & development
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza Vaccines/biosynthesis
- Influenza Vaccines/immunology
- RNA, Viral/analysis
- Vaccines, Attenuated/biosynthesis
- Vaccines, Attenuated/immunology
- Virus Replication
Collapse
Affiliation(s)
- Althaf I Hussain
- Cell Culture Process Development, MedImmune, LLC 3055 Patrick Henry Dr., Santa Clara, CA 95054, USA.
| | | | | | | |
Collapse
|