1
|
Sojar H, Baron S, Hicar MD. Identification of a mimotope of a complex gp41 human immunodeficiency virus epitope related to a non-structural protein of Hepacivirus previously implicated in Kawasaki disease. Microbiol Spectr 2025; 13:e0191124. [PMID: 40162760 PMCID: PMC12054109 DOI: 10.1128/spectrum.01911-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/23/2025] [Indexed: 04/02/2025] Open
Abstract
Current HIV vaccine strategies are hampered by difficulty with recapitulating heavily mutated broadly neutralizing antibodies. We have previously isolated a highly mutated antibody termed "group C 76-Q13-6F5" (6F5) that uses immunoglobulin heavy chain variable region (VH)1-02. 6F5 targets a conformational epitope on HIV gp41 and mediates Ab-dependent cell cytotoxicity (ADCC). Reverting the group C 76 antibodies' variable chain to VH1-02 germline in antibody 76Canc showed retained ADCC activity. A vaccine targeting an epitope functionally recognized by germline antibodies offers a distinct advantage. Due to the 76Canc germline antibody ability to retain anti-HIV function, we sought to identify a protein target that could form the basis of a vaccine. 76Canc specifically recognized a number of acidic peptides on a microarray containing 29,127 linear peptides. Meme analysis identified a peptide sequence similar to a non-structural protein of Hepacivirus previously implicated in Kawasaki disease (KD). Binding was confirmed to significant peptides, including the Hepacivirus-related and KD-related peptide. On serum competition studies using samples from children with KD compared to controls, targeting of this epitope showed no specific correlation to the clinical syndrome of KD. Yeast-displayed human protein microarray autoantigen screening was also reassuring. This study identifies a peptide that can mimic the gp41 epitope targeted by 76C group antibodies (i.e., a mimotope). We show little risk of autoimmune targeting inclusive of inflammation similar to KD, implying non-specific humoral immunity targeting of similar peptides during KD. Development of an HIV vaccine based on such peptides should proceed, but with continued caution. IMPORTANCE The development of protective HIV vaccines continues to remain a significant challenge. Many of the broadly neutralizing antibodies require a significant number of mutations, suggesting that traditional vaccines will not be able to recapitulate these types of responses. We have discovered an antibody that has Ab dependent cell cytotoxicity (ADCC) activity against HIV even when mutating the heavy chain of that antibody to germline. As a potential target for vaccines, this offers a distinct advantage: a few immunizations should directly stimulate B cells harboring those specific germline variable chains for expansion. This study sought to identify potential peptide targets that could be formulated into such a vaccine. We identified a peptide that both germline and mature antibodies can recognize. Initial autoantigen screens and consideration of inflammatory disorders suggest this identified antigen is a feasible approach to move forward into pre-clinical models.
Collapse
Affiliation(s)
- Hakimuddin Sojar
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| | - Sarah Baron
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| | - Mark D. Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Smith M, Hoffman J, Sojar H, Aalinkeel R, Hsiao CB, Hicar MD. Assessment of Antibody Interference of Enfuvirtide (T20) Function Shows Assay Dependent Variability. Curr HIV Res 2019; 16:404-415. [PMID: 30836922 PMCID: PMC6710457 DOI: 10.2174/1570162x17666190228154850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Background: During HIV infection, fusion of the viral and cellular membranes is dependent on folding of the gp41 trimer into a six-helix bundle. Fusion inhibitors, such as the antiretroviral Enfuvirtide (T20), interfere with the formation of the gp41 six-helix bundle. Recent in vitro studies reveal that the gp41 immunodominant region one targeting antibody 3D6 can block T20 interference, but the clinical and pathophysiologic significance of this finding is unclear. Objective/Method: We have previously characterized a number of antibodies that target conformational epitopes on gp41and herein characterized their ability to interfere with T20 in multiple assays and assess their prevalence in HIV infected subjects. Results: The T20 interference by antibody 3D6 was confirmed in a CHO-HXB2 envelope/ HeLaT4+ cell culture assay. Antibodies that target an immunodominant region one epitope, as well as a gp41 discontinuous epitope, also interfered in this assay, however, not all antibodies that targeted these epitopes showed T20 interference. This response was not due to the direct binding of T20 by the antibodies and could not be replicated utilizing TZM-bl and HL2/3 cells. Notably, serum competition studies on a panel of HIV subjects demonstrate that these conformational targeting antibodies are common in the HIV population. Conclusion: The relatively common nature of antibodies targeting these epitopes, the disparate in vitro results, and lack of reported clinical failures ascribed to such antibodies leads us to conclude that antibody interference of T20 is likely not clinically relevant. However, this warrants continued consideration with the advancement of other fusion inhibitors.
Collapse
Affiliation(s)
- Michele Smith
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jonathon Hoffman
- Department of Pediatrics, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States
| | - Hakimuddin Sojar
- Department of Pediatrics, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States
| | - Ravikumar Aalinkeel
- Jacobs School of Medicine and Biomedical Sciences, Department of Medicine, Division of Allergy Immunology and Rheumatology, University at Buffalo, Buffalo, NY, United States
| | - Chiu-Bin Hsiao
- Temple University School of Medicine, Pittsburgh, PA, United States.,Allegheny General Hospital, Pittsburgh, PA, United States
| | - Mark Daniel Hicar
- Department of Pediatrics, School of Medicine and Biomedical Sciences, University at Buffalo, NY, United States
| |
Collapse
|
3
|
Monoclonal Antibody 2C6 Targets a Cross-Clade Conformational Epitope in gp41 with Highly Active Antibody-Dependent Cell Cytotoxicity. J Virol 2019; 93:JVI.00772-19. [PMID: 31217246 DOI: 10.1128/jvi.00772-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Previous studies in our laboratory characterized a panel of highly mutated HIV-specific conformational epitope-targeting antibodies (Abs) from a panel of HIV-infected long-term nonprogressors (LTNPs). Despite binding HIV envelope protein and having a high number of somatic amino acid mutations, these Abs had poor neutralizing activity. Because of the evidence of antigen-driven selection and the long CDR3 region (21 amino acids [aa]), we further characterized the epitope targeting of monoclonal Ab (MAb) 76-Q3-2C6 (2C6). We confirmed that 2C6 binds preferentially to trimeric envelope and recognizes the clades A, B, and C SOSIP trimers. 2C6 binds gp140 constructs of clades A, B, C, and D, suggesting a conserved binding site that we localized to the ectodomain of gp41. Ab competition with MAb 50-69 suggested this epitope localizes near aa 579 to 613 (referenced to HXB2 gp160). Peptide library scanning showed consistent binding in this region but to only a single peptide. Lack of overlapping peptide binding supported a nonlinear epitope structure. The significance of this site is supported by 2C6 having Ab-dependent cell cytotoxicity (ADCC) against envelope proteins from two clades. Using 2C6 and variants, alanine scanning mutagenesis identified three amino acids (aa 592, 595, and 596) in the overlapping region of the previously identified peptide. Additional amino acids at sites 524 and 579 were also identified, helping explain its conformational requirement. The fact that different amino acids were included in the epitope depending on the targeted protein supports the conclusion that 2C6 targets a native conformational epitope. When we mapped these amino acids on the trimerized structure, they spanned across oligomers, supporting the notion that the epitope targeted by 2C6 lies in a recessed pocket between two gp41 oligomers. A complete understanding of the epitope specificity of ADCC-mediating Abs is essential for developing effective immunization strategies that optimize protection by these Abs.IMPORTANCE This paper further defines the function and area of the HIV trimeric envelope protein targeted by the monoclonal antibody 2C6. 2C6 binding is influenced by amino acid mutations across two separate gp41 sections of the envelope trimer. This epitope is recognized on multiple clades (variant groups of circulating viruses) of gp41, gp140 trimers, and SOSIP trimers. For the clades tested, 2C6 has robust ADCC. As the target of 2C6 is available in the major clades of HIV and has robust ADCC activity, further definition and appreciation of targeting of antibodies similar to 2C6 during vaccine development should be considered.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW A major focus in HIV vaccine research is the development of suitable antigens that elicit broadly neutralizing antibody responses targeting HIV's envelope protein (Env). Delivery of Env in a repetitive manner on particle-based carriers allows higher avidity interactions and is therefore expected to efficiently engage B cells, thus leading to affinity maturation that results in superior antibody responses characterized by improved breadth, potency, and durability. This review summarizes current work that is evaluating diverse types of such particulate carriers for Env delivery. RECENT FINDINGS Various types of particle scaffolds are being investigated, encompassing group-specific antigen-derived virus-like particles, bacteria-derived proteins that self-assemble into symmetrical nanoparticles, as well as liposomes assembled from membrane components and recombinantly produced Env isoforms. Env-derived antigens from peptides over selected isolates to improved, stabilized next-generation designer Envs have been attached to such carriers. Immunological evaluation in animal models showed that these structures often elicit superior humoral immune responses. SUMMARY The findings reviewed here emphasize the potential of particle-based delivery modalities to elicit better antibody responses. Together with advances in Env antigen design, these approaches may synergistically act together on the way to obtain vaccine candidates that potentially induce protective immune responses against HIV.
Collapse
|
5
|
Doria-Rose NA, Altae-Tran HR, Roark RS, Schmidt SD, Sutton MS, Louder MK, Chuang GY, Bailer RT, Cortez V, Kong R, McKee K, O’Dell S, Wang F, Abdool Karim SS, Binley JM, Connors M, Haynes BF, Martin MA, Montefiori DC, Morris L, Overbaugh J, Kwong PD, Mascola JR, Georgiev IS. Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting. PLoS Pathog 2017; 13:e1006148. [PMID: 28052137 PMCID: PMC5241146 DOI: 10.1371/journal.ppat.1006148] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/17/2017] [Accepted: 12/22/2016] [Indexed: 11/27/2022] Open
Abstract
Computational neutralization fingerprinting, NFP, is an efficient and accurate method for predicting the epitope specificities of polyclonal antibody responses to HIV-1 infection. Here, we present next-generation NFP algorithms that substantially improve prediction accuracy for individual donors and enable serologic analysis for entire cohorts. Specifically, we developed algorithms for: (a) selection of optimized virus neutralization panels for NFP analysis, (b) estimation of NFP prediction confidence for each serum sample, and (c) identification of sera with potentially novel epitope specificities. At the individual donor level, the next-generation NFP algorithms particularly improved the ability to detect multiple epitope specificities in a sample, as confirmed both for computationally simulated polyclonal sera and for samples from HIV-infected donors. Specifically, the next-generation NFP algorithms detected multiple specificities in twice as many samples of simulated sera. Further, unlike the first-generation NFP, the new algorithms were able to detect both of the previously confirmed antibody specificities, VRC01-like and PG9-like, in donor CHAVI 0219. At the cohort level, analysis of ~150 broadly neutralizing HIV-infected donor samples suggested a potential connection between clade of infection and types of elicited epitope specificities. Most notably, while 10E8-like antibodies were observed in infections from different clades, an enrichment of such antibodies was predicted for clade B samples. Ultimately, such large-scale analyses of antibody responses to HIV-1 infection can help guide the design of epitope-specific vaccines that are tailored to take into account the prevalence of infecting clades within a specific geographic region. Overall, the next-generation NFP technology will be an important tool for the analysis of broadly neutralizing polyclonal antibody responses against HIV-1. HIV-1 remains a significant global health threat, with no effective vaccine against the virus currently available. Since traditional vaccine design efforts have had limited success, much effort in recent years has focused on gaining a better understanding of the ways select individuals are able to effectively neutralize the virus upon natural infection, and to utilize that knowledge for the design of optimized vaccine candidates. Primary emphasis has been placed on characterizing the antibody arm of the immune system, and specifically on antibodies capable of neutralizing the majority of circulating HIV-1 strains. Various experimental techniques can be applied to map the epitope targets of these antibodies, but more recently, the development of computational methods has provided an efficient and accurate alternative for understanding the complex antibody responses to HIV-1 in a given individual. Here, we present the next generation of this computational technology, and show that these new methods have significantly improved accuracy and confidence, and that they enable the interrogation of biologically important questions that can lead to new insights for the design of an effective vaccine against HIV-1.
Collapse
Affiliation(s)
- Nicole A. Doria-Rose
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Han R. Altae-Tran
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Ryan S. Roark
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Matthew S. Sutton
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Mark K. Louder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Robert T. Bailer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Valerie Cortez
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, United States of America
| | - Rui Kong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Krisha McKee
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Sijy O’Dell
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Felicia Wang
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, United States of America
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States of America
| | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, CA, United States of America
| | - Mark Connors
- HIV-Specific Immunity Section, National Institutes of Health, Bethesda, MD, United States of America
| | - Barton F. Haynes
- Duke University Human Vaccine Institute, Durham, NC, United States of America
- Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC, United States of America
- Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, NC, United States of America
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - David C. Montefiori
- Duke University Human Vaccine Institute, Durham, NC, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
| | - Lynn Morris
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Ivelin S. Georgiev
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
6
|
|
7
|
Hicar MD, Chen X, Sulli C, Barnes T, Goodman J, Sojar H, Briney B, Willis J, Chukwuma VU, Kalams SA, Doranz BJ, Spearman P, Crowe JE. Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein. PLoS One 2016; 11:e0158861. [PMID: 27411063 PMCID: PMC4943599 DOI: 10.1371/journal.pone.0158861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 06/23/2016] [Indexed: 11/19/2022] Open
Abstract
Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection.
Collapse
Affiliation(s)
- Mark D. Hicar
- Departments of Pediatrics, University at Buffalo, Buffalo, New York, United States of America
- Departments of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Xuemin Chen
- Departments of Pediatrics, Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Chidananda Sulli
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Trevor Barnes
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Jason Goodman
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Hakimuddin Sojar
- Departments of Pediatrics, University at Buffalo, Buffalo, New York, United States of America
| | - Bryan Briney
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jordan Willis
- The Program in Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Valentine U. Chukwuma
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Spyros A. Kalams
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Benjamin J. Doranz
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Paul Spearman
- Departments of Pediatrics, Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - James E. Crowe
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
8
|
Hicar MD, Chen X, Kalams SA, Sojar H, Landucci G, Forthal DN, Spearman P, Crowe JE. Low frequency of broadly neutralizing HIV antibodies during chronic infection even in quaternary epitope targeting antibodies containing large numbers of somatic mutations. Mol Immunol 2015; 70:94-103. [PMID: 26748387 DOI: 10.1016/j.molimm.2015.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Neutralizing antibodies (Abs) are thought to be a critical component of an appropriate HIV vaccine response. It has been proposed that Abs recognizing conformationally dependent quaternary epitopes on the HIV envelope (Env) trimer may be necessary to neutralize diverse HIV strains. A number of recently described broadly neutralizing monoclonal Abs (mAbs) recognize complex and quaternary epitopes. Generally, many such Abs exhibit extensive numbers of somatic mutations and unique structural characteristics. We sought to characterize the native antibody (Ab) response against circulating HIV focusing on such conformational responses, without a prior selection based on neutralization. Using a capture system based on VLPs incorporating cleaved envelope protein, we identified a selection of B cells that produce quaternary epitope targeting Abs (QtAbs). Similar to a number of broadly neutralizing Abs, the Ab genes encoding these QtAbs showed extensive numbers of somatic mutations. However, when expressed as recombinant molecules, these Abs failed to neutralize virus or mediate ADCVI activity. Molecular analysis showed unusually high numbers of mutations in the Ab heavy chain framework 3 region of the variable genes. The analysis suggests that large numbers of somatic mutations occur in Ab genes encoding HIV Abs in chronically infected individuals in a non-directed, stochastic, manner.
Collapse
Affiliation(s)
- Mark D Hicar
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14222, United States; Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14222, United States
| | - Xuemin Chen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Spyros A Kalams
- Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Medicine, Vanderbilt, University Medical Center, Nashville, TN 37232, United States
| | - Hakimuddin Sojar
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14222, United States
| | - Gary Landucci
- Department of Medicine, University of California, Irvine, CA 92668, United States
| | - Donald N Forthal
- Department of Medicine, University of California, Irvine, CA 92668, United States
| | - Paul Spearman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center, Nashville, TN 37232, United States; Children's Healthcare of Atlanta, Atlanta, GA 30329, United States
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center, Nashville, TN 37232, United States; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
9
|
Abstract
In this brief review, we discuss immune tolerance as a factor that determines the magnitude and quality of serum antibody responses to HIV-1 infection and vaccination in the context of recent work. We propose that many conserved, neutralizing epitopes of HIV-1 are weakly immunogenic because they mimic host antigens. In consequence, B cells that strongly bind these determinants are removed by the physiological process of immune tolerance. This structural mimicry may represent a significant impediment to designing protective HIV-1 vaccines, but we note that several vaccine strategies may be able to mitigate this evolutionary adaptation of HIV and other microbial pathogens.
Collapse
|
10
|
Scherer EM, Smith RA, Simonich CA, Niyonzima N, Carter JJ, Galloway DA. Characteristics of memory B cells elicited by a highly efficacious HPV vaccine in subjects with no pre-existing immunity. PLoS Pathog 2014; 10:e1004461. [PMID: 25330199 PMCID: PMC4199765 DOI: 10.1371/journal.ppat.1004461] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022] Open
Abstract
Licensed human papillomavirus (HPV) vaccines provide near complete protection against the types of HPV that most commonly cause anogenital and oropharyngeal cancers (HPV 16 and 18) when administered to individuals naive to these types. These vaccines, like most other prophylactic vaccines, appear to protect by generating antibodies. However, almost nothing is known about the immunological memory that forms following HPV vaccination, which is required for long-term immunity. Here, we have identified and isolated HPV 16-specific memory B cells from female adolescents and young women who received the quadrivalent HPV vaccine in the absence of pre-existing immunity, using fluorescently conjugated HPV 16 pseudoviruses to label antigen receptors on the surface of memory B cells. Antibodies cloned and expressed from these singly sorted HPV 16-pseudovirus labeled memory B cells were predominantly IgG (>IgA>IgM), utilized diverse variable genes, and potently neutralized HPV 16 pseudoviruses in vitro despite possessing only average levels of somatic mutation. These findings suggest that the quadrivalent HPV vaccine provides an excellent model for studying the development of B cell memory; and, in the context of what is known about memory B cells elicited by influenza vaccination/infection, HIV-1 infection, or tetanus toxoid vaccination, indicates that extensive somatic hypermutation is not required to achieve potent vaccine-specific neutralizing antibody responses. There is an urgent need to better understand how to reliably generate effective vaccines, particularly subunit vaccines, as certain pathogens are considered to pose too great of a safety risk to be developed as live, attenuated or killed vaccines (e.g., HIV-1). The human papillomavirus (HPV) vaccines are two of the most effective subunit vaccines ever developed and have continued to show protection against HPV associated disease up to and beyond five years post-vaccination. Moreover, the target population for these vaccines have essentially no pre-existing immunity to the HPV types covered by the vaccine; therefore, these vaccines provide an excellent model for studying the immunity elicited by a highly effective subunit vaccine. As the HPV vaccines, like most vaccines, protect by generating antibodies, we are interested in characterizing the memory B cells elicited by the HPV vaccine. Memory B cells help to sustain antibody levels over time by rapidly differentiating into antibody secreting cells upon pathogen re-exposure. Although previous studies have provided evidence that the HPV vaccines elicit memory B cells, they did not characterize these cells. Here, we have isolated HPV-specific memory B cells from adolescent females and women who received the quadrivalent HPV vaccine and have cloned antibodies from these cells. Importantly, we find that these antibodies potently inhibit HPV and that the memory B cells from which they derive exhibit hallmarks of long-lived memory B cells.
Collapse
Affiliation(s)
- Erin M. Scherer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Robin A. Smith
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Cassandra A. Simonich
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Nixon Niyonzima
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Uganda Cancer Institute, Kampala, Uganda
| | - Joseph J. Carter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Denise A. Galloway
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|