1
|
Berreiros-Hortala H, Vilchez-Pinto G, Diaz-Perales A, Garrido-Arandia M, Tome-Amat J. Virus-like Particles as Vaccines for Allergen-Specific Therapy: An Overview of Current Developments. Int J Mol Sci 2024; 25:7429. [PMID: 39000536 PMCID: PMC11242184 DOI: 10.3390/ijms25137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.
Collapse
Affiliation(s)
- Helena Berreiros-Hortala
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gonzalo Vilchez-Pinto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
2
|
Mohsen MO, Bachmann MF. Virus-like particle vaccinology, from bench to bedside. Cell Mol Immunol 2022; 19:993-1011. [PMID: 35962190 PMCID: PMC9371956 DOI: 10.1038/s41423-022-00897-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Virus-like particles (VLPs) have become key tools in biology, medicine and even engineering. After their initial use to resolve viral structures at the atomic level, VLPs were rapidly harnessed to develop antiviral vaccines followed by their use as display platforms to generate any kind of vaccine. Most recently, VLPs have been employed as nanomachines to deliver pharmaceutically active products to specific sites and into specific cells in the body. Here, we focus on the use of VLPs for the development of vaccines with broad fields of indications ranging from classical vaccines against viruses to therapeutic vaccines against chronic inflammation, pain, allergy and cancer. In this review, we take a walk through time, starting with the latest developments in experimental preclinical VLP-based vaccines and ending with marketed vaccines, which earn billions of dollars every year, paving the way for the next wave of prophylactic and therapeutic vaccines already visible on the horizon.
Collapse
Affiliation(s)
- Mona O Mohsen
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland.
- Saiba Biotech AG, Bahnhofstr. 13, CH-8808, Pfaeffikon, Switzerland.
| | - Martin F Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
- The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Guilleminault L, Conde E, Reber LL. Pharmacological approaches to target type 2 cytokines in asthma. Pharmacol Ther 2022; 237:108167. [PMID: 35283171 DOI: 10.1016/j.pharmthera.2022.108167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
Asthma is the most common chronic lung disease, affecting more than 250 million people worldwide. The heterogeneity of asthma phenotypes represents a challenge for adequate assessment and treatment of the disease. However, approximately 50% of asthma patients present with chronic type 2 inflammation initiated by alarmins, such as IL-33 and thymic stromal lymphopoietin (TSLP), and driven by the TH2 interleukins IL-4, IL-5 and IL-13. These cytokines have therefore become important therapeutic targets in asthma. Here, we discuss current knowledge on the structure and functions of these cytokines in asthma. We review preclinical and clinical data obtained with monoclonal antibodies (mAbs) targeting these cytokines or their receptors, as well as novel strategies under development, including bispecific mAbs, designed ankyrin repeat proteins (DARPins), small molecule inhibitors and vaccines targeting type 2 cytokines.
Collapse
Affiliation(s)
- Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France; Department of Respiratory Medicine, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
| | - Eva Conde
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, F-75015 Paris, France; Sorbonne University, ED394, F-75005 Paris, France
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France.
| |
Collapse
|
4
|
Pechsrichuang P, Namwongnao S, Jacquet A. Bioengineering of Virus-like Particles for the Prevention or Treatment of Allergic Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:23-41. [PMID: 33191675 PMCID: PMC7680827 DOI: 10.4168/aair.2021.13.1.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/26/2022]
Abstract
Recent findings on the mechanism of allergen-specific immunotherapy (AIT) have revisited the role of immunoglobulin G (IgG) as the development of specific blocking IgG antibodies appeared critical for the successful suppression of T-helper 2 (Th2)-biased allergic responses. Consequently, any form of molecular AIT-promoting potent allergen-specific neutralizing antibodies would be preferred to conventional administration of allergen extracts. The potent immunogenicity of virus-like particles (VLPs) could be harnessed for that purpose. The particle size (20–200 nm) optimizes uptake by antigen-presenting cells as well as lymphatic trafficking. Moreover, the display of antigens in repetitive arrays promotes potent B cell activation for the development of sustained antibody responses. The presentation of self-antigens on the particle surface was even capable to break B cell tolerance. In this review, we describe the immunomodulatory properties of the 3 VLP-based strategies designed so far for the treatment of allergic disease: VLP packaged with CpG motifs as well as chimeric particles displaying pro-Th2/Th2 cytokines or allergens (full-length or B cell epitopes).
Collapse
Affiliation(s)
- Phornsiri Pechsrichuang
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supannika Namwongnao
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
5
|
Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev 2020; 156:214-235. [PMID: 32603813 PMCID: PMC7320870 DOI: 10.1016/j.addr.2020.06.024] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Viral nanoparticles (VNPs) encompass a diverse array of naturally occurring nanomaterials derived from plant viruses, bacteriophages, and mammalian viruses. The application and development of VNPs and their genome-free versions, the virus-like particles (VLPs), for nanomedicine is a rapidly growing. VLPs can encapsulate a wide range of active ingredients as well as be genetically or chemically conjugated to targeting ligands to achieve tissue specificity. VLPs are manufactured through scalable fermentation or molecular farming, and the materials are biocompatible and biodegradable. These properties have led to a wide range of applications, including cancer therapies, immunotherapies, vaccines, antimicrobial therapies, cardiovascular therapies, gene therapies, as well as imaging and theranostics. The use of VLPs as drug delivery agents is evolving, and sufficient research must continuously be undertaken to translate these therapies to the clinic. This review highlights some of the novel research efforts currently underway in the VNP drug delivery field in achieving this greater goal.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of Radiology, University of California-San Diego, La Jolla, CA 92093, United States; Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, United States; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
6
|
Jonsdottir S, Fettelschoss V, Olomski F, Talker SC, Mirkovitch J, Rhiner T, Birkmann K, Thoms F, Wagner B, Bachmann MF, Kündig TM, Marti E, Fettelschoss-Gabriel A. Safety Profile of a Virus-Like Particle-Based Vaccine Targeting Self-Protein Interleukin-5 in Horses. Vaccines (Basel) 2020; 8:vaccines8020213. [PMID: 32397549 PMCID: PMC7349629 DOI: 10.3390/vaccines8020213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Insect bite hypersensitivity (IBH) is an eosinophilic allergic dermatitis of horses caused by type I/IVb reactions against mainly Culicoides bites. The vaccination of IBH-affected horses with equine IL-5 coupled to the Cucumber mosaic virus-like particle (eIL-5-CuMVTT) induces IL-5-specific auto-antibodies, resulting in a significant reduction in eosinophil levels in blood and clinical signs. Objective: the preclinical and clinical safety of the eIL-5-CuMVTT vaccine. Methods: The B cell responses were assessed by longitudinal measurement of IL-5- and CuMVTT-specific IgG in the serum and plasma of vaccinated and unvaccinated horses. Further, peripheral blood mononuclear cells (PBMCs) from the same horses were re-stimulated in vitro for the proliferation and IFN-γ production of specific T cells. In addition, we evaluated longitudinal kidney and liver parameters and the general blood status. An endogenous protein challenge was performed in murine IL-5-vaccinated mice. Results: The vaccine was well tolerated as assessed by serum and cellular biomarkers and also induced reversible and neutralizing antibody titers in horses and mice. Endogenous IL-5 stimulation was unable to re-induce anti-IL-5 production. The CD4+ T cells of vaccinated horses produced significantly more IFN-γ and showed a stronger proliferation following stimulation with CuMVTT as compared to the unvaccinated controls. Re-stimulation using E. coli-derived proteins induced low levels of IFNγ+CD4+ cells in vaccinated horses; however, no IFN-γ and proliferation were induced following the HEK-eIL-5 re-stimulation. Conclusions: Vaccination using eIL-5-CuMVTT induces a strong B-cell as well as CuMVTT-specific T cell response without the induction of IL-5-specific T cell responses. Hence, B-cell unresponsiveness against self-IL-5 can be bypassed by inducing CuMVTT carrier-specific T cells, making the vaccine a safe therapeutic option for IBH-affected horses.
Collapse
Affiliation(s)
- Sigridur Jonsdottir
- Clinical Immunology Group, Department for Clinical Research VPH, Vetsuisse Faculty of the University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (S.J.); (J.M.); (E.M.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | - Victoria Fettelschoss
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
- Evax AG, Hörnlistrass 3, 9542 Münchwilen, Switzerland;
| | - Florian Olomski
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | - Stephanie C. Talker
- Institute of Virology and Immunology, Länggassstrasse 122, 3012 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Jelena Mirkovitch
- Clinical Immunology Group, Department for Clinical Research VPH, Vetsuisse Faculty of the University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (S.J.); (J.M.); (E.M.)
| | - Tanya Rhiner
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | | | - Franziska Thoms
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| | - Bettina Wagner
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-0001, USA;
| | - Martin F. Bachmann
- RIA Immunology, Inselspital, University of Bern, 3012 Bern, Switzerland;
- Jenner Institute, Nuffield Department of Medicine, Henry Welcome Building for Molecular Physiology, University of Oxford, OX1 2JD Oxford, UK
| | - Thomas M. Kündig
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland;
| | - Eliane Marti
- Clinical Immunology Group, Department for Clinical Research VPH, Vetsuisse Faculty of the University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (S.J.); (J.M.); (E.M.)
| | - Antonia Fettelschoss-Gabriel
- Department of Dermatology, University Hospital Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; (V.F.); (F.O.); (T.R.); (F.T.)
- Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
- Evax AG, Hörnlistrass 3, 9542 Münchwilen, Switzerland;
- Correspondence:
| |
Collapse
|
7
|
Kratzer B, Hofer S, Zabel M, Pickl WF. All the small things: How virus-like particles and liposomes modulate allergic immune responses. Eur J Immunol 2019; 50:17-32. [PMID: 31799700 PMCID: PMC6973265 DOI: 10.1002/eji.201847810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/15/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Recent years have seen a dramatic increase in the range of applications of virus‐like nanoparticle (VNP)‐ and liposome‐based antigen delivery systems for the treatment of allergies. These platforms rely on a growing number of inert virus‐backbones or distinct lipid formulations and intend to engage the host's innate and/or adaptive immune system by virtue of their co‐delivered immunogens. Due to their particulate nature, VNP and liposomal preparations are also capable of breaking tolerance against endogenous cytokines, Igs, and their receptors, allowing for the facile induction of anti‐cytokine, anti‐IgE, or anti‐FcεR antibodies in the host. We here discuss the “pros and cons” of inducing such neutralizing autoantibodies. Moreover, we cover another major theme of the last years, i.e., the engineering of non‐anaphylactogenic particles and the elucidation of the parameters relevant for the specific trafficking and processing of such particles in vivo. Finally, we put the various technical advances in VNP‐ and liposome‐research into (pre‐)clinical context by referring and critically discussing the relevant studies performed to treat allergic diseases.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Sandra Hofer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Maja Zabel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| |
Collapse
|
8
|
Anzaghe M, Schülke S, Scheurer S. Virus-Like Particles as Carrier Systems to Enhance Immunomodulation in Allergen Immunotherapy. Curr Allergy Asthma Rep 2018; 18:71. [PMID: 30362017 DOI: 10.1007/s11882-018-0827-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Utilization of virus-like particles (VLPs) is considered to improve allergen-specific immunotherapy (AIT). AIT aims at the efficient uptake of the target allergen by antigen-presenting cells (APCs) subsequently inducing adaptive allergen-specific immune responses to induce tolerance. The purpose of this review is to describe the immune-modulating properties of VLPs per se and to summarize the application of VLPs as antigen carriers, preferably for Th2 cytokines or allergens, with and without simultaneous administration of adjuvants in order to modulate allergic immune responses. RECENT FINDINGS Currently, a broad variety of approaches considering the origin of the VLPs, the choice of the adjuvant and antigen, and the coupling of the antigen are under preclinical investigation. The data provide evidence that VLPs used as carrier for antigens/allergens strongly increase antigen immunogenicity, and might be suitable to prevent allergies. However, systematic studies in mice showing the immunological mechanism and data from clinical studies are scarce.
Collapse
Affiliation(s)
- Martina Anzaghe
- Product Testing of Immunological Biomedicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str. 51-59, D-63225, Langen, Germany
| | - Stephan Scheurer
- Section Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str. 51-59, D-63225, Langen, Germany.
| |
Collapse
|
9
|
Bachmann MF, El-Turabi A, Fettelschoss-Gabriel A, Vogel M. The Prospects of an Active Vaccine Against Asthma Targeting IL-5. Front Microbiol 2018; 9:2522. [PMID: 30405579 PMCID: PMC6207595 DOI: 10.3389/fmicb.2018.02522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Allergen-specific T helper type 2 (Th2) responses followed by eosinophilic inflammation of the lung are important causes of allergic asthma. Interleukin-5 (IL-5) is a master regulator of eosinophil differentiation as well as activation. Blocking IL-5 using monoclonal antibodies (mAbs) against IL-5 is a powerful way to improve asthmatic symptoms in patients with an eosinophilic component of the disease. We have previously shown that vaccination against IL-5 can abrogate eosinophilic inflammation of the lung in allergic mice. More recently, we have demonstrated that eosinophil-mediated skin disease in horses with insect bite hypersensitivity can be strongly reduced by vaccination against IL-5. Here we would like to propose the development of a similar vaccine for the treatment of asthma in humans.
Collapse
Affiliation(s)
- Martin F. Bachmann
- Department of Immunology, RIA, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Aadil El-Turabi
- The Jenner Institute, Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | | | - Monique Vogel
- Department of Immunology, RIA, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Wu AY, Sur S, Grant JA. Treating insect bite hypersensitivity in horses by using active vaccination against IL-5. J Allergy Clin Immunol 2018; 142:1060-1061. [PMID: 29981806 DOI: 10.1016/j.jaci.2018.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Albert Y Wu
- Allergy and Immunology Division, University of Texas Medical Branch, Galveston, Tex.
| | - Sanjiv Sur
- Allergy and Immunology Division, University of Texas Medical Branch, Galveston, Tex
| | - J Andrew Grant
- Allergy and Immunology Division, University of Texas Medical Branch, Galveston, Tex
| |
Collapse
|
11
|
Fettelschoss-Gabriel A, Fettelschoss V, Thoms F, Giese C, Daniel M, Olomski F, Kamarachev J, Birkmann K, Bühler M, Kummer M, Zeltins A, Marti E, Kündig TM, Bachmann MF. Treating insect-bite hypersensitivity in horses with active vaccination against IL-5. J Allergy Clin Immunol 2018; 142:1194-1205.e3. [PMID: 29627082 DOI: 10.1016/j.jaci.2018.01.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Insect-bite hypersensitivity is the most common allergic dermatitis in horses. Excoriated skin lesions are typical symptoms of this seasonal and refractory chronic disease. On a cellular level, the skin lesions are characterized by massive eosinophil infiltration caused by an underlying allergic response. OBJECTIVE To target these cells and treat disease, we developed a therapeutic vaccine against equine IL-5 (eIL-5), the master regulator of eosinophils. METHODS The vaccine consisted of eIL-5 covalently linked to a virus-like particle derived from cucumber mosaic virus containing the tetanus toxoid universal T-cell epitope tt830-843 (CMVTT). Thirty-four Icelandic horses were recruited and immunized with 400 μg of eIL-5-CMVTT formulated in PBS without adjuvant (19 horses) or PBS alone (15 horses). RESULTS The vaccine was well tolerated and did not reveal any safety concerns but was able to induce anti-eIL-5 autoantibody titers in 17 of 19 horses. This resulted in a statistically significant reduction in clinical lesion scores when compared with previous season levels, as well as levels in placebo-treated horses. Protection required a minimal threshold of anti-eIL-5 antibodies. Clinical improvement by disease scoring showed that 47% and 21% of vaccinated horses reached 50% and 75% improvement, respectively. In the placebo group no horse reached 75% improvement, and only 13% reached 50% improvement. CONCLUSION Our therapeutic vaccine inducing autoantibodies against self IL-5 brings biologics to horses, is the first successful immunotherapeutic approach targeting a chronic disease in horses, and might facilitate development of a similar vaccine against IL-5 in human subjects.
Collapse
Affiliation(s)
- Antonia Fettelschoss-Gabriel
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland; Evax AG, Münchwilen, Switzerland.
| | - Victoria Fettelschoss
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland; Evax AG, Münchwilen, Switzerland
| | - Franziska Thoms
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Christoph Giese
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zurich, Switzerland
| | - Michelle Daniel
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Florian Olomski
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Jivko Kamarachev
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | - Andris Zeltins
- Latvian Biomedical Research & Study Centre, Riga, Latvia
| | - Eliane Marti
- Department for Clinical Research VPH, Vetsuisse Faculty of the University of Bern, Clinical Immunology Group, Bern, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin F Bachmann
- RIA Immunology, Inselspital, University of Bern, Bern, Switzerland; Jenner Institute, Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Pumpens P, Renhofa R, Dishlers A, Kozlovska T, Ose V, Pushko P, Tars K, Grens E, Bachmann MF. The True Story and Advantages of RNA Phage Capsids as Nanotools. Intervirology 2016; 59:74-110. [DOI: 10.1159/000449503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
|
13
|
Zhao S, Jiang Y, Yang X, Guo D, Wang Y, Wang J, Wang R, Wang C. Lipopolysaccharides promote a shift from Th2-derived airway eosinophilic inflammation to Th17-derived neutrophilic inflammation in an ovalbumin-sensitized murine asthma model. J Asthma 2016; 54:447-455. [PMID: 27589490 DOI: 10.1080/02770903.2016.1223687] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The currently available treatments for severe asthma are insufficient. Infiltration of neutrophils rather than eosinophils into the airways is an important inflammatory characteristic of severe asthma. However, the mechanism of the phenotypic change from eosinophilic to neutrophilic inflammation has not yet been fully elucidated. METHODS In the current study, we examined the effect of lipopolysaccharides (LPS) on eosinophilic asthmatic mice sensitized with ovalbumin (OVA), as well as the roles of interleukin (IL)-17A/T helper (Th) 17 cells on the change in the airway inflammatory phenotype from eosinophilic to neutrophilic inflammation in asthmatic lungs of IL-17A-deficient mice. RESULTS Following exposure of OVA-induced asthmatic mice to LPS, neutrophil-predominant airway inflammation rather than eosinophil-predominant inflammation was observed, with increases in airway hyperresponsiveness (AHR), the IL-17A level in bronchoalveolar lavage fluid (BALF) and Th17 cells in the spleen and in the pulmonary hilar lymph nodes. Moreover, the neutrophilic asthmatic mice showed decreased mucus production and Th2 cytokine levels (IL-4 and IL-5). In contrast, IL-17A knockout (KO) mice exhibited eosinophil-predominant lung inflammation, decreased AHR, mucus overproduction and increased Th2 cytokine levels and Th2 cells. CONCLUSION These findings suggest that the eosinophilic inflammatory phenotype of asthmatic lungs switches to the neutrophilic phenotype following exposure to LPS. The change in the inflammatory phenotype is strongly correlated with the increases in IL-17A and Th17 cells.
Collapse
Affiliation(s)
- Shengtao Zhao
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Yunqiu Jiang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Xu Yang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Donglin Guo
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Yijie Wang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Jun Wang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Ran Wang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| | - Changzheng Wang
- a Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
14
|
Foerster J, Bachman M. Beyond passive immunization: toward a nanoparticle-based IL-17 vaccine as first in class of future immune treatments. Nanomedicine (Lond) 2016; 10:1361-9. [PMID: 25955128 DOI: 10.2217/nnm.14.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nanoparticles occur naturally as part of repetitive molecular structures forming virus-like particles (VLPs). VLPs are powerful immune activators. Specifically, VLP can elicit a direct activation of B lymphocytes to trigger production of antibodies targeted at molecules chemically linked to the VLP. We here review recent data from genetics research, large-scale genomic sequencing, as well as clinical trials which suggest that a VLP-based vaccine against the signaling molecule IL-17 will be safe and effective in the common skin disease psoriasis, as well as other conditions. Active vaccination against IL-17 is capable of replacing the costly manufacture of antibodies currently in clinical use with huge implications for treatment availability and health economics.
Collapse
Affiliation(s)
- John Foerster
- College of Medicine, Dentistry, & Nursing, University of Dundee, Dundee, DD1 9SY, UK
| | | |
Collapse
|
15
|
Zhao Y, Huang Y, He J, Li C, Deng W, Ran X, Wang D. Rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates airway inflammation by inhibiting the proliferation of effector T cells in a murine model of neutrophilic asthma. Immunol Lett 2013; 157:9-15. [PMID: 24269293 DOI: 10.1016/j.imlet.2013.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/09/2013] [Accepted: 11/04/2013] [Indexed: 02/04/2023]
Abstract
An imbalanced Th17-mediated immune response contributes substantially to neutrophilic asthma. Studies have also demonstrated that peroxisome proliferator-activated receptor-γ (PPARγ) plays a critical role in inflammatory disease. However, the effect of PPARγ on airway inflammation in neutrophilic asthma remains unclear. In the current study, we evaluated the potential therapeutic role of rosiglitazone (RSG) in a new mouse model of asthma characterised by increased neutrophils rather than eosinophils. A co-culture system of DCs with CD4+ naïve T cells was established to evaluate the effects of RSG on T cell differentiation. After challenge with OVA, mice developed the typical pathophysiological features of asthma, including an increased number of neutrophils in the BALF and the up-regulation of IL-17. The numbers of Th17 cells and Th2 cells were also greatly elevated in the lungs. The administration of rosiglitazone reduced the pathophysiological features of asthma and decreased the up-regulated inflammatory mediators and cytokines. Furthermore, the cell viability in the co-culture system was markedly reduced by RSG. T-bet, Gata-3 and RORγt mRNA were down-regulated by RSG. These findings suggest that PPARγ is critical for airway inflammation during neutrophilic asthma, possibly due to its effect on Th cell proliferation and differentiation. These findings suggest that the therapeutic effect of rosiglitazone in neutrophilic asthma is partially due to the role of the PPARγ pathway in regulating T cell proliferation and differentiation.
Collapse
Affiliation(s)
- Yan Zhao
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| | - Yi Huang
- Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China.
| | - Jing He
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| | - Changyi Li
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| | - Wang Deng
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| | - Xuemei Ran
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| | - Daoxin Wang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| |
Collapse
|
16
|
Huang HB, Liu YX, Hou Y, Wen L, Ge XH, Peng KM, Liu HZ. Distribution patterns of stromal eosinophil cells in chick thymus during postnatal development. Vet Immunol Immunopathol 2013; 153:123-127. [PMID: 23333191 DOI: 10.1016/j.vetimm.2012.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 01/21/2023]
Abstract
Eosinophils are a type of thymic stromal cell that are present in the thymus of both humans and mice. They participate in regulating T-cell development under non-pathological conditions. However, studies are scarce regarding the role of eosinophils in the development of the thymus in chickens. Therefore, this study investigated the distribution of eosinophils in normal chicken thymi at different stages of development. Seven thymi were obtained from chickens at days 1, 21 and 35 of development. The distribution of eosinophils in the thymi was analyzed by histological and immunohistochemical techniques using Lendrum's chromotrope 2R method and an antibody against eosinophilic cationic protein (ECP), respectively. Eosinophils were constitutively located in the chick thymus. They were mainly distributed in the thymic corticomedullary junction and medulla, especially around vessels and Hassall's corpuscles, and only a few were in the trabeculae among thymic lobules and around vessels. There were none in the cortex. The number of thymic eosinophils decreased with increasing age (P<0.01). These results indicated that eosinophils comprise a type of thymic stromal cells in the chick, which may regulate thymic development, especially during the early stages of development.
Collapse
Affiliation(s)
- Hai-Bo Huang
- Department of Anatomy, Histology and Embryology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013; 56:141-65. [DOI: 10.1159/000346773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Le Buanec H, Bensussan A, Bagot M, Gallo RC, Zagury D. Active and passive anticytokine immune therapies: current status and development. Adv Immunol 2012; 115:187-227. [PMID: 22608260 DOI: 10.1016/b978-0-12-394299-9.00007-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anticytokine (AC) immune therapies derived from vaccine procedures aim at enhancing natural immune defense mechanisms ineffective to contain abnormally produced cytokines and counteract their pathogenic effects. Given their short half-life, cytokines, the production of which by effector immune cells (T and B lymphocytes, antigen-presenting cells (APCs), natural killer (NK) and endothelial cells) is inducible and controlled by negative feedback regulation, (1) exert locally their signaling to paracrine/autocrine target responder cells carrying high-affinity membrane receptors and (2) are commonly present at minimal concentration in the body fluid (lymph, serum). Aberrant signaling triggered by cytokines, uncontrolly released by effector immune cells or produced by cancer and other pathologic cells, contribute to the pathogenesis of chronic diseases including cancer, viral infections, allergy, and autoimmunity. To block these ectopic cytokine signaling and prevent their pathogenic effects, AC Abs supplied either by injections (passive AC immune therapy) or elicited by immunization with cytokine-derived immunogenes called Kinoids (active AC immune therapy) proved to be experimentally effective and safe. In this review, we detailed the rationale and the requirements for the use of AC immunotherapies in humans, the proof of efficacy of these medications in animal disease models, and their current clinical development and outcome, including adverse side effects they may generate. We particularly show that, to date, the benefit:risk ratio of AC immune therapies is highly positive.
Collapse
|
19
|
Link A, Bachmann MF. Immunodrugs: breaking B- but not T-cell tolerance with therapeutic anticytokine vaccines. Immunotherapy 2010; 2:561-74. [PMID: 20636009 DOI: 10.2217/imt.10.30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathology in most chronic inflammatory diseases is characterized by an imbalance in cytokine expression. Targeting cytokines with monoclonal antibodies has proven to be a highly effective treatment. However, monoclonal antibody therapy has disadvantages such as high production costs, generation of antimonoclonal antibodies and the inconvenience of frequent injections. Therapeutic vaccines have the potential to overcome these limitations. The aim of active vaccination is to induce B-cell responses and obtain autoantibodies capable of neutralizing the interaction of the targeted cytokine with its receptor. In order to achieve this, therapeutic vaccines need to circumvent the potent tolerance mechanisms that exist to prevent immune responses against self-molecules. This article focuses on the tolerance mechanisms of the B- and T-cell compartments and how these may be manipulated to obtain high-affinity autoantibodies without inducing potentially dangerous autoreactive T-cell responses.
Collapse
Affiliation(s)
- Alexander Link
- Cytos Biotechnology AG, CH-8952 Zurich-Schlieren, Switzerland
| | | |
Collapse
|