1
|
Adzavon KP, Zhao W, Khattak SN, Sheng W. Cholesterol-modified peptide nanomicelles as a promising platform for cancer therapy: A review. Int J Biol Macromol 2025; 311:143456. [PMID: 40274168 DOI: 10.1016/j.ijbiomac.2025.143456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
Drug resistance, systemic toxicity, low solubility, and rapid clearance are common issues with chemotherapy drugs and other molecules used to treat cancer. The development of new therapeutic compounds and nanotherapy offers a solution to these issues. Therapeutic peptides have attracted great interest among these molecules due to their unique advantages, including low immunogenicity, efficient cellular internalization, deep tissue penetration, and low systemic toxicity. They have shown promise in cancer treatment by inducing apoptosis, necrosis, or cell lysis and promoting immunotherapy. In addition, peptides can deliver a range of cargoes, such as drugs, nucleic acids, imaging agents, and nanoparticles, and can specifically target cancer cells. However, problems such as their short half-life and low solubility limit their therapeutic use. Recent developments have addressed these constraints through structural alterations and nanoparticle formulations. In particular, cholesterol modification makes it possible for peptides to self-assemble into nanomicelles, which enhances their stability, half-life, and cell penetration. In this review, therapeutic peptides are presented as a versatile and successful cancer treatment option. The potential of cholesterol-modified peptide micelles as a reliable drug, nucleic acid, and imaging agent delivery system is also examined.
Collapse
Affiliation(s)
- Kodzo Prosper Adzavon
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Weijian Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Sameena Noor Khattak
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wang Sheng
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Pan W, Zhao Z, Wu J, Fan Q, Huang H, He R, Shen H, Zhao Z, Feng S, Gan G, Chen Z, Ma M, Sun C, Zhang L. LACpG10-HL Functions Effectively in Antibiotic-Free and Healthy Husbandry by Improving the Innate Immunity. Int J Mol Sci 2022; 23:ijms231911466. [PMID: 36232768 PMCID: PMC9569488 DOI: 10.3390/ijms231911466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
Antibiotics are broadly restricted in modern husbandry farming, necessitating the need for efficient and low-cost immunomodulatory preparations in antibiotic-free and healthful farming. As is known to all, CpG oligonucleotides (CpG-ODNs, an effective innate immunostimulatory agent) recognized by TLR9 in mammals (while TLR21 in avians) could collaborate with some united agent to induce stronger immune responses, but the cost is prohibitively expensive for farmers. Here, considering the coordination between TLR2 and TLR9/TLR21, we firstly proposed the idea that the well-fermented Lactococcus lactis could be utilized as a CpG-plasmid carrier (LACpG10) to enhance the host’s innate immunity against pathogenic invasion. In the present study, after obtaining LACpG10-HL from homogenized and lyophilized recombinant strain LACpG10, we treated primary chicken lymphocytes, two cell lines (HD11 and IPEC-J2), and chickens with LACpG10-HL, CpG plasmids (pNZ8148-CpG10), and other stimulants, and respectively confirmed the effects by conducting qRT-PCR, bacterial infection assays, and a zoological experiment. Our data showed that LACpG10-HL could induce excellent innate immunity by regulating autophagy reactions, cytokine expression, and motivating PRRs. Interestingly, despite having no direct antiseptic effect, LACpG10-HL improved the antibacterial capacities of lymphocytes and enterocytes at the first line of defense. Most importantly, water-supplied LACpG10-HL treatment reduced the average adverse event rates, demonstrating that LACpG10-HL maintained its excellent immunostimulatory and protective properties under farming conditions. Our research not only contributes to revealing the satisfactory effects of LACpG10-HL but also sheds new light on a cost-effective solution with optimal immune effects in green, antibiotic-free, and healthful husbandry farming.
Collapse
|
3
|
Tian Y, Hu Q, Zhang R, Zhou B, Xie D, Wang Y, Zhang X, Yang L. Rational design of innate defense regulator peptides as tumor vaccine adjuvants. NPJ Vaccines 2021; 6:75. [PMID: 34016984 PMCID: PMC8138013 DOI: 10.1038/s41541-021-00334-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
The development of adjuvants has been an empirical process. Efforts to develop a new design and evaluation system for novel adjuvants are not only desirable but also necessary. Moreover, composite adjuvants that contain two or more types of adjuvants to synergistically enhance the immune response are important for adjuvant and vaccine design. Innate defense regulator peptides (IDRs) are promising adjuvants for clinical immunotherapy because they exhibit multifaceted immunomodulatory capabilities. However, the rational design and discovery of IDRs that have improved immunomodulatory activities have been hampered by the lack of screening techniques and the great challenges in the identification of their interaction partners. Here, we describe a screening and evaluation system for IDR design. On the basis of in vitro screening, the optimized IDR DP7 recruited neutrophils, monocytes and macrophages to the site of infection. The adjuvant, comprising the DP7 and CpG oligonucleotide (CpG), induced chemokine/cytokine expression, enhanced the antigen uptake by dendritic cells and upregulated surface marker expression in dendritic cells. Vaccination with the NY-ESO-1 or OVA antigens combined with the adjuvant alum/CpG/DP7 strongly suppressed tumor growth in mice which was due to the improvement of antigen-specific humoral and cellular immunity. Regarding the mechanism of action, GPR35 may be the potential interaction partner of DP7. Our study revealed the potential application of the screening and evaluation system as a strategy for rationally designing effective IDRs or composite adjuvants and identifying their mechanism of action.
Collapse
Affiliation(s)
- Yaomei Tian
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, Sichuan, PR China
| | - Qiuyue Hu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Rui Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Daoyuan Xie
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xueyan Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Li Yang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Levast B, Hogan D, van Kessel J, Strom S, Walker S, Zhu J, Meurens F, Gerdts V. Synthetic Cationic Peptide IDR-1002 and Human Cathelicidin LL37 Modulate the Cell Innate Response but Differentially Impact PRRSV Replication in vitro. Front Vet Sci 2019; 6:233. [PMID: 31355218 PMCID: PMC6640542 DOI: 10.3389/fvets.2019.00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/27/2019] [Indexed: 01/02/2023] Open
Abstract
Host defense peptides (HDPs) show both antimicrobial and immunomodulatory properties making them important mediators of the host immune system. In humans but also in pigs many HDPs have been identified and important families such as cathelicidins and defensins have been established. In our study, we assessed: (i) the potential interactions that could occur between three peptides (LL37, PR39, and synthetic innate defense regulator (IDR)-1002) and a common TLR ligand called poly(I:C); (ii) the impact of selected peptides on the response of alveolar macrophage (AM) to poly(I:C) stimulation; (iii) the anti-porcine respiratory and reproductive syndrome virus (PRRSV) properties of the peptides; and (iv) their adjuvant potential in a PRRSV challenge experiment after immunization with different vaccine formulations. The results are as following: LL37, PR39, and IDR-1002 were able to interact with poly(I:C) using an agarose gel migration assay. Then, an alteration of AM's response to poly(I:C) stimulation was observed when the cells were co-stimulated with LL37 and IDR-1002. Regarding the anti-PRRSV potential of the peptides only LL37 showed a PRRSV inhibition in infected AM as well as precision cut lung slices (PCLS). However, in our conditions and despite their immunomodulatory properties, neither LL37 nor IDR-1002 showed any convincing potential as an adjuvant when associated to killed PRRSV in a challenge experiment. In conclusion, both antiviral and immunomodulatory properties could be identified for LL37, only immunomodulatory properties for IDR-1002, and both peptides failed to improve the immune response consecutive to an immunization with a killed vaccine in a PPRSV challenge experiment. However, further studies are needed to fully decipher and explain differences between peptide properties.
Collapse
Affiliation(s)
- Benoît Levast
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stacy Strom
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stew Walker
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jianzhong Zhu
- College of Veterinary Medicine, Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | | | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Rodríguez-Carlos A, Martinez-Gutierrez F, Torres-Juarez F, Rivas-Santiago B. Antimicrobial Peptides-based Nanostructured Delivery Systems: An Approach for Leishmaniasis Treatment. Curr Pharm Des 2019; 25:1593-1603. [PMID: 31264542 DOI: 10.2174/1381612825666190628152842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leishmaniasis is a major health problem mainly in tropical and subtropical areas worldwide, although in the last decades it has been treated with the use of conventional drugs such as amphotericin, the emergence of multidrug-resistant strains has raised a warning signal to the public health systems thus a new call for the creation of new leishmanicidal drugs is needed. METHODS The goal of this review was to explore the potential use of antimicrobial peptides-based nanostructured delivery systems as an approach for leishmaniasis treatment. RESULTS Within these new potential drugs, human host defense peptides (HDP) can be included given their remarkable antimicrobial activity and their outstanding immunomodulatory functions for the therapy of leishmaniasis. CONCLUSION Though several approaches have been done using these peptides, new ways for delivering HDPs need to be analyzed, such is the case for nanotechnology.
Collapse
Affiliation(s)
- Adrian Rodríguez-Carlos
- Medical Research Unit- Zacatecas-IMSS, Zacatecas, Mexico.,División de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí. Mexico
| | - Fidel Martinez-Gutierrez
- Microbiology Laboratory, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, Centro 78300, San Luis, S.L.P, Mexico
| | | | | |
Collapse
|
6
|
Zhang S, Cai H, Cao D, Deng J, Jia J, Li J, Ming F, Zhao P, Ma M, Liang Q, Zeng M, Zhang L. Recombinant plasmids containing CpG with porcine host defense peptides (PR-39/pBD-1) modulates the innate and adaptive intestinal immune responses (including maternal-derived) in piglets. Int Immunopharmacol 2019; 70:467-476. [DOI: 10.1016/j.intimp.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 01/12/2023]
|
7
|
The novel complex combination of alum, CpG ODN and HH2 as adjuvant in cancer vaccine effectively suppresses tumor growth in vivo. Oncotarget 2018; 8:45951-45964. [PMID: 28515346 PMCID: PMC5542240 DOI: 10.18632/oncotarget.17504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/02/2017] [Indexed: 02/05/2023] Open
Abstract
Single-component adjuvant is prone to eliciting a specific type of Th1 or Th2 response. So, the development of combinatorial adjuvants inducing a robust mixed Th1/Th2 response is a promising vaccination strategy against cancer. Here, we describe a novel combination of aluminum salts (alum), CpG oligodeoxynucleotide (CpG) and innate defense regulator peptide HH2 for improving anti-tumor immune responses. The CpG-HH2 complex significantly enhanced the production of IFN-γ, TNF-α and IL-1β, promoted the uptake of antigen and strengthened the activation of p38, Erk1/2 and NF-κB in vitro, compared to CpG or HH2 alone. Immunization with NY-ESO-1 antigen plus alum-CpG-HH2 combinatorial adjuvant effectively inhibited tumor growth and reduced tumor burden in prophylactic and therapeutic tumor models and even in passive serum or cellular therapy. In addition, co-administration of NY-ESO-1 with alum-CpG-HH2 combinatorial adjuvant markedly activated NK cell cytotoxicity, induced antibody-dependent cellular cytotoxicity (ADCC), dramatically elicited cytotoxic T lymphocytes (CTLs) response, and increased infiltrating lymphocytes in tumors. Moreover, in vivo depletion of CD8+ T cells completely and depletion of NK cells partially blocked the anti-tumor activity of NY-ESO-1-alum-CpG-HH2 immunization. Overall, our results demonstrate a novel adjuvant combination for cancer vaccine with efficient immunomodulation by stimulating innate immunity and mediating adaptive immunity.
Collapse
|
8
|
Chikh G, Luu R, Patel S, Davis HL, Weeratna RD. Effects of KLK Peptide on Adjuvanticity of Different ODN Sequences. Vaccines (Basel) 2016; 4:vaccines4020014. [PMID: 27153098 PMCID: PMC4931631 DOI: 10.3390/vaccines4020014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
Endosomal Toll-like receptors (TLR) such as TLR3, 7, 8 and 9 recognize pathogen associated nucleic acids. While DNA sequence does influence degree of binding to and activation of TLR9, it also appears to influence the ability of the ligand to reach the intracellular endosomal compartment. The KLK (KLKL5KLK) antimicrobial peptide, which is immunostimulatory itself, can translocate into cells without cell membrane permeabilization and thus can be used for endosomal delivery of TLR agonists, as has been shown with the IC31 formulation that contains an oligodeoxynucleotide (ODN) TLR9 agonist. We evaluated the adjuvant activity of KLK combined with CpG or non-CpG (GpC) ODN synthesized with nuclease resistant phosphorothioate (S) or native phosphodiester (O) backbones with ovalbumin (OVA) antigen in mice. As single adjuvants, CpG(S) gave the strongest enhancement of OVA-specific immunity and the addition of KLK provided no benefit and was actually detrimental for some readouts. In contrast, KLK enhanced the adjuvant effects of CpG(O) and to a lesser extent of GpC (S), which on their own had little or no activity. Indeed while CD8 T cells, IFN-γ secretion and humoral response to vaccine antigen were enhanced when CpG(O) was combined with KLK, only IFN-γ secretion was enhanced when GpC (S) was combined to KLK. The synergistic adjuvant effects with KLK/ODN combinations were TLR9-mediated since they did not occur in TLR9 knock-out mice. We hypothesize that a nuclease resistant ODN with CpG motifs has its own mechanism for entering cells to reach the endosome. For ODN without CpG motifs, KLK appears to provide an alternate mechanism for accessing the endosome, where it can activate TLR9, albeit with lower potency than a CpG ODN. For nuclease sensitive (O) backbone ODN, KLK may also provide protection from nucleases in the tissues.
Collapse
Affiliation(s)
- Ghania Chikh
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Rachel Luu
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Shobhna Patel
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Heather L Davis
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Risini D Weeratna
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| |
Collapse
|
9
|
Yu CH, Luo ZC, Li M, Lu L, Li Z, Wu XZ, Fan YZ, Zhang HL, Zhou BL, Wan Y, Men K, Tian YM, Chen S, Yuan FJ, Xiang R, Yang L. Synthetic innate defense regulator peptide combination using CpG ODN as a novel adjuvant induces long‑lasting and balanced immune responses. Mol Med Rep 2015; 13:915-24. [PMID: 26647852 DOI: 10.3892/mmr.2015.4581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 09/22/2015] [Indexed: 02/05/2023] Open
Abstract
Vaccines are critical tools for the prevention and treatment of several diseases. Adjuvants have been traditionally used to enhance immunity to vaccines and experimental antigens. In the present study, the adjuvant combination of CpG oligodeoxynucleotides (CpG ODN) and the innate defense regulator (IDR) peptide, IDR‑HH2, was evaluated for its ability to enhance and modulate the immune response when formulated with alum and the recombinant hepatitis B surface antigen (HBsAg). The CpG‑HH2 complex enhanced the secretions of tumor necrosis factor‑α, monocyte chemotactic protein 1 and interferon‑γ by human peripheral blood mononuclear cells and promoted murine bone marrow dentritic cell maturation. In addition, the present study demonstrated that IDR‑HH2 was chemotactic for human neutrophils, THP‑1 cells and RAW264.7 cells at concentrations between 2.5 and 40 µg/ml. The present study also observed that significantly higher anti‑HBs antibody titers, which were sustained at high levels for as long as 35 weeks following the boost immunization, were induced by the combination adjuvant, even when co‑administered with a commercial hepatitis B vaccine at a low antigen dose (0.1 µg HBsAg). Notably, the level of IgG2a was almost equal to the level of IgG1, indicating that a balanced T helper (Th)1/Th2 immune response was elicited by the novel vaccine, which was consistent with the ELISpot results. These data suggest that the CpG‑HH2 complex may be a potential effective adjuvant, which facilitates a reduction in the dose of antigen and induces long‑lasting, balanced immune responses.
Collapse
Affiliation(s)
- Chao-Heng Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zi-Chao Luo
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lian Lu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhan Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Zhe Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ying-Zi Fan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hai-Long Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bai-Ling Zhou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ke Men
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yao-Mei Tian
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuang Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng-Jiao Yuan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rong Xiang
- Department of Immunology, Nankai University School of Medicine, Nankai, Tianjin 300071, P.R. China
| | - Li Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
10
|
CpG oligodeoxynucleotide protect neonatal piglets from challenge with the enterotoxigenic E. coli. Vet Immunol Immunopathol 2014; 161:66-76. [PMID: 25081388 DOI: 10.1016/j.vetimm.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/02/2014] [Accepted: 07/06/2014] [Indexed: 11/23/2022]
Abstract
CpG motifs activates mammalian lymphocytes and macrophages to produce cytokines and polyclonal Ig. These include IFN-γ, IL-12, TNF-a, which are important in the control of bacterial infection. But thus far, the innate immunostimulatory effects of CpG ODN against pathogen have been established mainly in mouse, monkey, sheep, chicken, but not in neonatal piglets. The purpose of this study is to determine the potential protection of CpG ODN against enterotoxigenic Escherichia coli (ETEC) (with which neonatal piglets were susceptible to infection in our lab) in neonatal piglets. Here, we show intranasal (IN)-mucosal and intramuscularly (IM) systemic administration of CpG ODN could enhance innate cellular (cytokine) immunity in the sera and intestine mucosa post challenge, and thereafter the development of antigen-specific antibodies in piglets. IN and IM immunizations of neonatal piglets without antigen both reduced the ETEC excretion and alleviated diarrhoea symptoms upon challenge, and IN route had better protection effects than IM route. Protection in this study was linked to induction of a Th1 response which induced by CpG ODN. Co-delivery with Emulsigen (EM), could improve protection mediated by CpG ODN. These observations indicate that IN administration of 100 μg/kg CpG ODN with 20% EM codelivery may represent a valuable strategy for induction of innate immunity against ETEC infection in neonatal piglets.
Collapse
|
11
|
In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Antimicrob Agents Chemother 2014; 58:5342-9. [PMID: 24982064 DOI: 10.1128/aac.02823-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections.
Collapse
|
12
|
Rivas-Santiago CE, Hernández-Pando R, Rivas-Santiago B. Immunotherapy for pulmonary TB: antimicrobial peptides and their inducers. Immunotherapy 2013; 5:1117-26. [DOI: 10.2217/imt.13.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TB is an infectious disease that still has an enormous impact on public health worldwide. With the continuous increasing epidemic of multidrug-resistant TB, new drugs and vaccines are urgently needed. In the last decade there has been a broad advance in the knowledge of innate immunity in TB. Together with the growing research regarding immunomodulators, new promising insights have been developed that can contribute in the control of TB. This is the case of antimicrobial peptides, which can be potential therapeutic or adjuvant agents. The current high cost of antimicrobial peptide synthesis may be a current deterrent for treatment; antimicrobial peptide-inducers can be an alternative for low-cost treatment and/or adjuvants.
Collapse
Affiliation(s)
- Cesar Enrique Rivas-Santiago
- Rutgers University School of Public Health, Department of Environmental & Occupational Health, Center for Global Public Health, Piscataway, NJ, USA
| | - Rogelio Hernández-Pando
- Department of Experimental Pathology, National Institute of Medical Sciences & Nutrition “Salvador Zubirán”, Mexico City, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit Zacatecas, Mexican Institute of Social Security-IMSS, 45 Zacatecas, cp.98000, Mexico
| |
Collapse
|
13
|
Ming F, Yang J, Chu P, Ma M, Shi J, Cai H, Huang C, Li H, Jiang Z, Wang H, Wang W, Zhang S, Zhang L. Immunization of aged pigs with attenuated pseudorabies virus vaccine combined with CpG oligodeoxynucleotide restores defective Th1 immune responses. PLoS One 2013; 8:e65536. [PMID: 23785433 PMCID: PMC3681863 DOI: 10.1371/journal.pone.0065536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/24/2013] [Indexed: 01/28/2023] Open
Abstract
Background and Aims Attempts to immunize aged subjects often result in the failure to elicit a protective immune response. Murine model studies have shown that oligonucleotides containing CpG motifs (CpG ODN) can stimulate immune system in aged mice as effectively as in young mice. Since many physiological and pathophysiological data of pigs can be transferred to humans, research in pigs is important to confirm murine data. Here we investigated whether immunization of aged pig model with attenuated pseudorabies virus vaccine (PRV vaccine) formulated with CpG ODN could promote a successful development of immune responses that were comparable to those induced in young pigs in a similar manner. Methodology Young and aged pigs were immunized IM with PRV vaccine alone, or in combination with CpG ODN respectively. At days 3, 7, 14 post immunization sera were assayed by ELISA for IgG titres, at day 7 for IgG1 and IgG2 subtypes titres. All blood samples collected in evacuated test tubes with K-EDTA at day 7 were analyzed for flow cytometer assay. Blood samples at day 7 collected in evacuated test tubes with heparin were analysed for antigen-specific cytokines production and peripheral blood mononuclear cells (PBMCs) proliferative responses. Results CpG ODN could enhance Th1 responses (PRV-specific IgG2/IgG1 ratio, proliferative responses, Th1 cytokines production) when used as an adjuvant for the vaccination of aged pigs, which were correlated with enhanced CD4+ T cells percentage, decreased CD4+CD8+CD45RO+ T cells percentage and improved PRV-specific CD4+ T cells activation. Conclusions Our results demonstrate a utility for CpG ODN, as a safe vaccine adjuvant for promoting effective systemic immune responses in aged pig model. This agent could have important clinical uses in overcoming some of age-associated depressions in immune function that occur in response to vaccination.
Collapse
Affiliation(s)
- Feiping Ming
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jun Yang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Pinpin Chu
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Miaopeng Ma
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Juqing Shi
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haiming Cai
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaoyuan Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Huazhou Li
- Swine Seed Breeding Center of Guangzhou, Guangzhou, China
| | - Zhenggu Jiang
- Swine Seed Breeding Center of Guangzhou, Guangzhou, China
| | - Houguang Wang
- Swine Seed Breeding Center of Guangzhou, Guangzhou, China
| | - Weifang Wang
- Swine Seed Breeding Center of Guangzhou, Guangzhou, China
| | - Shuiqing Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Linghua Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
14
|
Alba A, López-Abarrategui C, Otero-González AJ. Host defense peptides: an alternative as antiinfective and immunomodulatory therapeutics. Biopolymers 2013. [PMID: 23193590 DOI: 10.1002/bip.22076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Host defense peptides are conserved components of innate immune response present among all classes of life. These peptides are potent, broad spectrum antimicrobial agents with potential as novel therapeutic compounds. Also, the ability of host defense peptides to modulate immunity is an emerging therapeutic concept since its selective modulation is a novel antiinfective strategy. Their mechanisms of action and the fundamental differences between pathogens and host cells surfaces mostly lead to a not widely extended microbial resistance and to a lower toxicity toward host cells. Biological libraries and rational design are novel tools for developing such molecules with promising applications as therapeutic drugs.
Collapse
Affiliation(s)
- Annia Alba
- Departamento de Parasitología, Instituto de Medicina Tropical "Pedro Kourí," La Habana, Cuba
| | | | | |
Collapse
|
15
|
Wu Q, Xu F, Fang L, Xu J, Li B, Jiang Y, Chen H, Xiao S. Enhanced immunogenicity induced by an alphavirus replicon-based pseudotyped baculovirus vaccine against porcine reproductive and respiratory syndrome virus. J Virol Methods 2012. [PMID: 23201089 DOI: 10.1016/j.jviromet.2012.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pseudotyped baculovirus has emerged as a promising vector for vaccine development and gene therapy. Alphaviruses, such as Semliki Forest virus (SFV), have also received considerable attention for use as expression vectors because of their self-replicating properties. In this study, pseudotyped baculovirus containing the hybrid cytomegalovirus (CMV) promoter/SFV replicon was used as a vector to co-express the GP5 and M proteins of porcine reproductive and respiratory syndrome virus (PRRSV). The immunogenicity of the resulting recombinant baculovirus (BV-SFV-5m6) was compared with the pseudotyped baculovirus vaccine (BV-CMV-5m6), in which the expression of GP5 and M were driven by the CMV promoter only. In vitro, BV-SFV-5m6 exhibited enhanced expression of foreign proteins and also caused apoptosis in transduced cells. After immunization in BALB/c mice, BV-SFV-5m6 induced strong GP5-specific ELISA antibodies and neutralizing antibodies against homologous and heterologous viruses, along with dose sparing. Further analysis of the cell-mediated immune response showed that BV-SFV-5m6 elicited a Th1-dominant immune response that was greater than that elicited by BV-CMV-5m6. Taken together, the results of this study indicate that a baculovirus containing the hybrid CMV promoter/alphavirus replicon can be utilized as an alternative strategy to develop an efficacious vaccine against PRRSV infection.
Collapse
Affiliation(s)
- Qunfeng Wu
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ma M, Wang L, Yang J, Cai H, Shi J, Zhang S, Huang Z, Zhang L. Age-related impaired Th1 responses to PRV vaccine in vivo in aged pigs. Mol Immunol 2012; 52:217-23. [PMID: 22750068 DOI: 10.1016/j.molimm.2012.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Murine model studies have shown that function of the immune system declines with aging, but data on aged pigs are scarce. Many physiological and pathophysiological data of pigs can be transferred to human, research in pigs is important to confirm murine data, therefore, aged pigs were chosen as an aged animal model. In this study, we demonstrated an age-related decline in Th1 responses in vivo to PRV vaccine in the pig model, and this decline in type 1 immune responses was associated with reduced PRV-specific T cell proliferation, IgG2/IgG1, and Th1 cytokines production. More importantly, these impaired Th1 responses correlated with reduced CD4(+) T cells and markedly increased CD4(+)CD8(+) T cells. Taken together, these data demonstrated that there was a decline in Th1 immune responses to PRV vaccine with aging in pigs, which may help to explain the age-related decline in vaccine efficacy and increase in morbidity and mortality of infectious diseases.
Collapse
Affiliation(s)
- Miaopeng Ma
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang J, Mao M, Zhang S, Li H, Jiang Z, Cao G, Cao D, Wang X, Zhang L. Innate defense regulator peptide synergizes with CpG ODN for enhanced innate intestinal immune responses in neonate piglets. Int Immunopharmacol 2012; 12:415-24. [PMID: 22226751 DOI: 10.1016/j.intimp.2011.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022]
Abstract
The in vivo immunoadjuvant effects of the combination of CpG oligodeoxynucleotide (CpG ODN) and innate defense-regulator peptides (IDRs) have been studied in mice. However, little is known about the efficacy of these molecules in stimulating the innate intestinal immune system in neonatal piglets. In this study, we observed that intranasal (IN) administration of CpG-IDR (peptide HH2 (VQLRIRVAVIRA)) complex significantly increased intestinal mRNA expression of Th1 cytokines, CC chemokines and CXC chemokines when compared to HH2 and CpG ODN alone. Also an obvious cellular infiltration was observed in the intestine of CpG-HH2-treated neonatal piglets, which was associated with increased protection against Enterotoxigenic Escherichia coli (ETEC). Moreover, we showed that pro-inflammatory cytokine TNF-α was inhibited when CpG ODN combined with HH2. This was the first report that deciphered the role played by CpG-HH2 complex in the intestine of neonatal piglets. This work clearly demonstrated that efficiency of the IN route inducing intestinal responses in neonatal piglets might be taken into consideration for further vaccine development against neonatal intestinal diseases.
Collapse
Affiliation(s)
- Jun Yang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Brown TH, David J, Acosta-Ramirez E, Moore JM, Lee S, Zhong G, Hancock RE, Xing Z, Halperin SA, Wang J. Comparison of immune responses and protective efficacy of intranasal prime-boost immunization regimens using adenovirus-based and CpG/HH2 adjuvanted-subunit vaccines against genital Chlamydia muridarum infection. Vaccine 2012; 30:350-60. [DOI: 10.1016/j.vaccine.2011.10.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 12/23/2022]
|
19
|
Immunization with PCEP microparticles containing pertussis toxoid, CpG ODN and a synthetic innate defense regulator peptide induces protective immunity against pertussis. Vaccine 2011; 29:6540-8. [PMID: 21771625 DOI: 10.1016/j.vaccine.2011.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 07/03/2011] [Accepted: 07/04/2011] [Indexed: 01/08/2023]
Abstract
We investigated the efficacy of a novel microparticle (MP) based vaccine formulation consisting of pertussis toxoid (PTd), polyphosphazene (PCEP), CpG ODN 10101 and synthetic cationic innate defense regulator peptide 1002 (IDR) against Bordetella pertussis in mice. We studied whether encapsulation of these IDR-CpG ODN complexes into polyphosphazene-based microparticles further enhanced their immunomodulatory activity compared to soluble formulations containing PCEP (SOL), or without PCEP (AQ). In vitro stimulation of murine macrophages showed MP induced significantly higher levels of pro-inflammatory cytokines. When assessed in a B. pertussis infection challenge model, a single immunization with MP formulation led to significantly lower bacterial loads compared to other formulations and non-vaccinated animals. ELISPOT of splenocytes showed that MP group mice had significantly higher number of antigen-specific IL-17 secreting cells. The cytokine profile in lung homogenates of MP group mice after challenge showed significantly higher amounts of MCP-1, TNF-α, IFN-γ, IL-12 and IL-17 and significantly lowered IL-10 levels suggesting a strong Th1 shift. Protection was observed against challenge infection with B. pertussis. On the other hand protective immune responses elicited in Quadracel(®) immunized mice were Th2 skewed. Hence, we conclude that formulation of PTd, PCEP, CpG ODN and IDR into MP generates a protective immune response in mice against pertussis emphasizing the potential of MP as a delivery vehicle for the potential development of single-shot vaccines.
Collapse
|
20
|
Cao D, Li H, Jiang Z, Cheng Q, Yang Z, Xu C, Cao G, Zhang L. CpG oligodeoxynucleotide synergizes innate defense regulator peptide for enhancing the systemic and mucosal immune responses to pseudorabies attenuated virus vaccine in piglets in vivo. Int Immunopharmacol 2011; 11:748-54. [PMID: 21310256 DOI: 10.1016/j.intimp.2011.01.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 11/26/2022]
Abstract
Oligonucleotides containing CpG motifs (CpG ODN) are strong adjuvants for humoral and cellular immune responses in mice, and innate defense-regulator peptides (IDRs) are known to facilitate the uptake of antigens into antigen presenting cells (APCs), but data on synergistic effects of CpG and IDRs in piglets are scarce. In this report, the combination of porcine-specific CpG ODN and HH2 (a kind of IDR which was selected for its better synergy with CpG ODN) was used as immunoadjuvant to enhance the immune responses of the newborn piglets to Pseudorabies attenuated virus (PRV) vaccine. The titers of specific antibodies and serum IgG1/IgG2 subtypes to PRV vaccine, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-12 and IL-4 were examined to identify the immune responses of the newborn piglets. The results showed that piglets immunized intranasally (IN) and subcutaneously (SC) with PRV vaccine and CpG-HH2 complex both presented high titers of PRV-specific antibodies and IgG2 isotype, a Th1-dominated (IFN-γ and IL-12) cytokine profiles, high levels of IgA in saliva, broncheoalveolar lavage (BAL) and intestinal washings. The results suggested that, CpG-HH2 complex augmented systemic (IgG in serum) and mucosal (IgA in saliva, BAL and intestinal washings) immune responses against antigen. CpG-HH2 complex stimulated both T-helper type1 (Th1) (IgG2) and Th2 (IgA) responses when delivered IN, and IN route could induce stronger mucosal immune responses than SC route. All these data indicate that CpG-HH2 complex is a potential effective adjuvant for the PRV vaccine in newborn piglets.
Collapse
Affiliation(s)
- Ding Cao
- College of Life Sciences, South China Agricultural University, Wushan Road, Guangzhou, GuangDong, China
| | | | | | | | | | | | | | | |
Collapse
|