1
|
Thomas S, Ouhtit A, Al Khatib HA, Eid AH, Mathew S, Nasrallah GK, Emara MM, Al Maslamani MA, Yassine HM. Burden and Disease Pathogenesis of Influenza and Other Respiratory Viruses in Diabetic Patients. J Infect Public Health 2022; 15:412-424. [DOI: 10.1016/j.jiph.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
|
2
|
Di Pietrantonj C, Rivetti A, Marchione P, Debalini MG, Demicheli V. Vaccines for measles, mumps, rubella, and varicella in children. Cochrane Database Syst Rev 2021; 11:CD004407. [PMID: 34806766 PMCID: PMC8607336 DOI: 10.1002/14651858.cd004407.pub5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Measles, mumps, rubella, and varicella (chickenpox) are serious diseases that can lead to serious complications, disability, and death. However, public debate over the safety of the trivalent MMR vaccine and the resultant drop in vaccination coverage in several countries persists, despite its almost universal use and accepted effectiveness. This is an update of a review published in 2005 and updated in 2012. OBJECTIVES To assess the effectiveness, safety, and long- and short-term adverse effects associated with the trivalent vaccine, containing measles, rubella, mumps strains (MMR), or concurrent administration of MMR vaccine and varicella vaccine (MMR+V), or tetravalent vaccine containing measles, rubella, mumps, and varicella strains (MMRV), given to children aged up to 15 years. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2019, Issue 5), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to 2 May 2019), Embase (1974 to 2 May 2019), the WHO International Clinical Trials Registry Platform (2 May 2019), and ClinicalTrials.gov (2 May 2019). SELECTION CRITERIA We included randomised controlled trials (RCTs), controlled clinical trials (CCTs), prospective and retrospective cohort studies (PCS/RCS), case-control studies (CCS), interrupted time-series (ITS) studies, case cross-over (CCO) studies, case-only ecological method (COEM) studies, self-controlled case series (SCCS) studies, person-time cohort (PTC) studies, and case-coverage design/screening methods (CCD/SM) studies, assessing any combined MMR or MMRV / MMR+V vaccine given in any dose, preparation or time schedule compared with no intervention or placebo, on healthy children up to 15 years of age. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the methodological quality of the included studies. We grouped studies for quantitative analysis according to study design, vaccine type (MMR, MMRV, MMR+V), virus strain, and study settings. Outcomes of interest were cases of measles, mumps, rubella, and varicella, and harms. Certainty of evidence of was rated using GRADE. MAIN RESULTS We included 138 studies (23,480,668 participants). Fifty-one studies (10,248,159 children) assessed vaccine effectiveness and 87 studies (13,232,509 children) assessed the association between vaccines and a variety of harms. We included 74 new studies to this 2019 version of the review. Effectiveness Vaccine effectiveness in preventing measles was 95% after one dose (relative risk (RR) 0.05, 95% CI 0.02 to 0.13; 7 cohort studies; 12,039 children; moderate certainty evidence) and 96% after two doses (RR 0.04, 95% CI 0.01 to 0.28; 5 cohort studies; 21,604 children; moderate certainty evidence). The effectiveness in preventing cases among household contacts or preventing transmission to others the children were in contact with after one dose was 81% (RR 0.19, 95% CI 0.04 to 0.89; 3 cohort studies; 151 children; low certainty evidence), after two doses 85% (RR 0.15, 95% CI 0.03 to 0.75; 3 cohort studies; 378 children; low certainty evidence), and after three doses was 96% (RR 0.04, 95% CI 0.01 to 0.23; 2 cohort studies; 151 children; low certainty evidence). The effectiveness (at least one dose) in preventing measles after exposure (post-exposure prophylaxis) was 74% (RR 0.26, 95% CI 0.14 to 0.50; 2 cohort studies; 283 children; low certainty evidence). The effectiveness of Jeryl Lynn containing MMR vaccine in preventing mumps was 72% after one dose (RR 0.24, 95% CI 0.08 to 0.76; 6 cohort studies; 9915 children; moderate certainty evidence), 86% after two doses (RR 0.12, 95% CI 0.04 to 0.35; 5 cohort studies; 7792 children; moderate certainty evidence). Effectiveness in preventing cases among household contacts was 74% (RR 0.26, 95% CI 0.13 to 0.49; 3 cohort studies; 1036 children; moderate certainty evidence). Vaccine effectiveness against rubella, using a vaccine with the BRD2 strain which is only used in China, is 89% (RR 0.11, 95% CI 0.03 to 0.42; 1 cohort study; 1621 children; moderate certainty evidence). Vaccine effectiveness against varicella (any severity) after two doses in children aged 11 to 22 months is 95% in a 10 years follow-up (rate ratio (rr) 0.05, 95% CI 0.03 to 0.08; 1 RCT; 2279 children; high certainty evidence). Safety There is evidence supporting an association between aseptic meningitis and MMR vaccines containing Urabe and Leningrad-Zagreb mumps strains, but no evidence supporting this association for MMR vaccines containing Jeryl Lynn mumps strains (rr 1.30, 95% CI 0.66 to 2.56; low certainty evidence). The analyses provide evidence supporting an association between MMR/MMR+V/MMRV vaccines (Jeryl Lynn strain) and febrile seizures. Febrile seizures normally occur in 2% to 4% of healthy children at least once before the age of 5. The attributable risk febrile seizures vaccine-induced is estimated to be from 1 per 1700 to 1 per 1150 administered doses. The analyses provide evidence supporting an association between MMR vaccination and idiopathic thrombocytopaenic purpura (ITP). However, the risk of ITP after vaccination is smaller than after natural infection with these viruses. Natural infection of ITP occur in 5 cases per 100,000 (1 case per 20,000) per year. The attributable risk is estimated about 1 case of ITP per 40,000 administered MMR doses. There is no evidence of an association between MMR immunisation and encephalitis or encephalopathy (rate ratio 0.90, 95% CI 0.50 to 1.61; 2 observational studies; 1,071,088 children; low certainty evidence), and autistic spectrum disorders (rate ratio 0.93, 95% CI 0.85 to 1.01; 2 observational studies; 1,194,764 children; moderate certainty). There is insufficient evidence to determine the association between MMR immunisation and inflammatory bowel disease (odds ratio 1.42, 95% CI 0.93 to 2.16; 3 observational studies; 409 cases and 1416 controls; moderate certainty evidence). Additionally, there is no evidence supporting an association between MMR immunisation and cognitive delay, type 1 diabetes, asthma, dermatitis/eczema, hay fever, leukaemia, multiple sclerosis, gait disturbance, and bacterial or viral infections. AUTHORS' CONCLUSIONS: Existing evidence on the safety and effectiveness of MMR/MMRV vaccines support their use for mass immunisation. Campaigns aimed at global eradication should assess epidemiological and socioeconomic situations of the countries as well as the capacity to achieve high vaccination coverage. More evidence is needed to assess whether the protective effect of MMR/MMRV could wane with time since immunisation.
Collapse
Affiliation(s)
- Carlo Di Pietrantonj
- Servizio Regionale di Riferimento per l'Epidemiologia, SSEpi-SeREMI, Azienda Sanitaria Locale ASL AL, Alessandria, Italy
| | - Alessandro Rivetti
- Dipartimento di Prevenzione - S.Pre.S.A.L, ASL CN2 Alba Bra, Alba, Italy
| | - Pasquale Marchione
- Signal Management Unit, Post-Marketing Surveillance Department, Italian Medicine Agency - AIFA, Rome, Italy
| | | | - Vittorio Demicheli
- Servizio Regionale di Riferimento per l'Epidemiologia, SSEpi-SeREMI, Azienda Sanitaria Locale ASL AL, Alessandria, Italy
| |
Collapse
|
3
|
Gidengil C, Goetz MB, Newberry S, Maglione M, Hall O, Larkin J, Motala A, Hempel S. Safety of vaccines used for routine immunization in the United States: An updated systematic review and meta-analysis. Vaccine 2021; 39:3696-3716. [PMID: 34049735 DOI: 10.1016/j.vaccine.2021.03.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Understanding the safety of vaccines is critical to inform decisions about vaccination. Our objective was to conduct a systematic review of the safety of vaccines recommended for children, adults, and pregnant women in the United States. METHODS We searched the literature in November 2020 to update a 2014 Agency for Healthcare Research and Quality review by integrating newly available data. Studies of vaccines that used a comparator and reported the presence or absence of key adverse events were eligible. Adhering to Evidence-based Practice Center methodology, we assessed the strength of evidence (SoE) for all evidence statements. The systematic review is registered in PROSPERO (CRD42020180089). RESULTS Of 56,603 reviewed citations, 338 studies reported in 518 publications met inclusion criteria. For children, SoE was high for no increased risk of autism following measles, mumps, and rubella (MMR) vaccine. SoE was high for increased risk of febrile seizures with MMR. There was no evidence of increased risk of intussusception with rotavirus vaccine at the latest follow-up (moderate SoE), nor of diabetes (high SoE). There was no evidence of increased risk or insufficient evidence for key adverse events for newer vaccines such as 9-valent human papillomavirus and meningococcal B vaccines. For adults, there was no evidence of increased risk (varied SoE) or insufficient evidence for key adverse events for the new adjuvanted inactivated influenza vaccine and recombinant adjuvanted zoster vaccine. We found no evidence of increased risk (varied SoE) for key adverse events among pregnant women following tetanus, diphtheria, and acellular pertussis vaccine, including stillbirth (moderate SoE). CONCLUSIONS Across a large body of research we found few associations of vaccines and serious key adverse events; however, rare events are challenging to study. Any adverse events should be weighed against the protective benefits that vaccines provide.
Collapse
Affiliation(s)
- Courtney Gidengil
- RAND Corporation, 20 Park Plaza, Suite 920, Boston, MA 02116, United States; Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States.
| | - Matthew Bidwell Goetz
- VA Greater Los Angeles Healthcare System and David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90073, United States
| | - Sydne Newberry
- RAND Corporation, 1776 Main Street, Santa Monica, CA 90401, United States
| | - Margaret Maglione
- RAND Corporation, 1776 Main Street, Santa Monica, CA 90401, United States
| | - Owen Hall
- RAND Corporation, 1776 Main Street, Santa Monica, CA 90401, United States
| | - Jody Larkin
- RAND Corporation, 1776 Main Street, Santa Monica, CA 90401, United States
| | - Aneesa Motala
- RAND Corporation, 1776 Main Street, Santa Monica, CA 90401, United States; Southern California Evidence Review Center, University of Southern California, Keck School of Medicine, 2001 N Soto Street, Los Angeles, CA 90033, United States
| | - Susanne Hempel
- RAND Corporation, 1776 Main Street, Santa Monica, CA 90401, United States; Southern California Evidence Review Center, University of Southern California, Keck School of Medicine, 2001 N Soto Street, Los Angeles, CA 90033, United States
| |
Collapse
|
4
|
Di Pietrantonj C, Rivetti A, Marchione P, Debalini MG, Demicheli V. Vaccines for measles, mumps, rubella, and varicella in children. Cochrane Database Syst Rev 2020; 4:CD004407. [PMID: 32309885 PMCID: PMC7169657 DOI: 10.1002/14651858.cd004407.pub4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Measles, mumps, rubella, and varicella (chickenpox) are serious diseases that can lead to serious complications, disability, and death. However, public debate over the safety of the trivalent MMR vaccine and the resultant drop in vaccination coverage in several countries persists, despite its almost universal use and accepted effectiveness. This is an update of a review published in 2005 and updated in 2012. OBJECTIVES To assess the effectiveness, safety, and long- and short-term adverse effects associated with the trivalent vaccine, containing measles, rubella, mumps strains (MMR), or concurrent administration of MMR vaccine and varicella vaccine (MMR+V), or tetravalent vaccine containing measles, rubella, mumps, and varicella strains (MMRV), given to children aged up to 15 years. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2019, Issue 5), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to 2 May 2019), Embase (1974 to 2 May 2019), the WHO International Clinical Trials Registry Platform (2 May 2019), and ClinicalTrials.gov (2 May 2019). SELECTION CRITERIA We included randomised controlled trials (RCTs), controlled clinical trials (CCTs), prospective and retrospective cohort studies (PCS/RCS), case-control studies (CCS), interrupted time-series (ITS) studies, case cross-over (CCO) studies, case-only ecological method (COEM) studies, self-controlled case series (SCCS) studies, person-time cohort (PTC) studies, and case-coverage design/screening methods (CCD/SM) studies, assessing any combined MMR or MMRV / MMR+V vaccine given in any dose, preparation or time schedule compared with no intervention or placebo, on healthy children up to 15 years of age. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the methodological quality of the included studies. We grouped studies for quantitative analysis according to study design, vaccine type (MMR, MMRV, MMR+V), virus strain, and study settings. Outcomes of interest were cases of measles, mumps, rubella, and varicella, and harms. Certainty of evidence of was rated using GRADE. MAIN RESULTS We included 138 studies (23,480,668 participants). Fifty-one studies (10,248,159 children) assessed vaccine effectiveness and 87 studies (13,232,509 children) assessed the association between vaccines and a variety of harms. We included 74 new studies to this 2019 version of the review. Effectiveness Vaccine effectiveness in preventing measles was 95% after one dose (relative risk (RR) 0.05, 95% CI 0.02 to 0.13; 7 cohort studies; 12,039 children; moderate certainty evidence) and 96% after two doses (RR 0.04, 95% CI 0.01 to 0.28; 5 cohort studies; 21,604 children; moderate certainty evidence). The effectiveness in preventing cases among household contacts or preventing transmission to others the children were in contact with after one dose was 81% (RR 0.19, 95% CI 0.04 to 0.89; 3 cohort studies; 151 children; low certainty evidence), after two doses 85% (RR 0.15, 95% CI 0.03 to 0.75; 3 cohort studies; 378 children; low certainty evidence), and after three doses was 96% (RR 0.04, 95% CI 0.01 to 0.23; 2 cohort studies; 151 children; low certainty evidence). The effectiveness (at least one dose) in preventing measles after exposure (post-exposure prophylaxis) was 74% (RR 0.26, 95% CI 0.14 to 0.50; 2 cohort studies; 283 children; low certainty evidence). The effectiveness of Jeryl Lynn containing MMR vaccine in preventing mumps was 72% after one dose (RR 0.24, 95% CI 0.08 to 0.76; 6 cohort studies; 9915 children; moderate certainty evidence), 86% after two doses (RR 0.12, 95% CI 0.04 to 0.35; 5 cohort studies; 7792 children; moderate certainty evidence). Effectiveness in preventing cases among household contacts was 74% (RR 0.26, 95% CI 0.13 to 0.49; 3 cohort studies; 1036 children; moderate certainty evidence). Vaccine effectiveness against rubella is 89% (RR 0.11, 95% CI 0.03 to 0.42; 1 cohort study; 1621 children; moderate certainty evidence). Vaccine effectiveness against varicella (any severity) after two doses in children aged 11 to 22 months is 95% in a 10 years follow-up (rate ratio (rr) 0.05, 95% CI 0.03 to 0.08; 1 RCT; 2279 children; high certainty evidence). Safety There is evidence supporting an association between aseptic meningitis and MMR vaccines containing Urabe and Leningrad-Zagreb mumps strains, but no evidence supporting this association for MMR vaccines containing Jeryl Lynn mumps strains (rr 1.30, 95% CI 0.66 to 2.56; low certainty evidence). The analyses provide evidence supporting an association between MMR/MMR+V/MMRV vaccines (Jeryl Lynn strain) and febrile seizures. Febrile seizures normally occur in 2% to 4% of healthy children at least once before the age of 5. The attributable risk febrile seizures vaccine-induced is estimated to be from 1 per 1700 to 1 per 1150 administered doses. The analyses provide evidence supporting an association between MMR vaccination and idiopathic thrombocytopaenic purpura (ITP). However, the risk of ITP after vaccination is smaller than after natural infection with these viruses. Natural infection of ITP occur in 5 cases per 100,000 (1 case per 20,000) per year. The attributable risk is estimated about 1 case of ITP per 40,000 administered MMR doses. There is no evidence of an association between MMR immunisation and encephalitis or encephalopathy (rate ratio 0.90, 95% CI 0.50 to 1.61; 2 observational studies; 1,071,088 children; low certainty evidence), and autistic spectrum disorders (rate ratio 0.93, 95% CI 0.85 to 1.01; 2 observational studies; 1,194,764 children; moderate certainty). There is insufficient evidence to determine the association between MMR immunisation and inflammatory bowel disease (odds ratio 1.42, 95% CI 0.93 to 2.16; 3 observational studies; 409 cases and 1416 controls; moderate certainty evidence). Additionally, there is no evidence supporting an association between MMR immunisation and cognitive delay, type 1 diabetes, asthma, dermatitis/eczema, hay fever, leukaemia, multiple sclerosis, gait disturbance, and bacterial or viral infections. AUTHORS' CONCLUSIONS Existing evidence on the safety and effectiveness of MMR/MMRV vaccines support their use for mass immunisation. Campaigns aimed at global eradication should assess epidemiological and socioeconomic situations of the countries as well as the capacity to achieve high vaccination coverage. More evidence is needed to assess whether the protective effect of MMR/MMRV could wane with time since immunisation.
Collapse
Affiliation(s)
- Carlo Di Pietrantonj
- Azienda Sanitaria Locale ASL AL, Servizio Regionale di Riferimento per l'Epidemiologia, SSEpi-SeREMI, Via Venezia 6, Alessandria, Italy, 15121
| | - Alessandro Rivetti
- ASL CN2 Alba Bra, Dipartimento di Prevenzione - S.Pre.S.A.L, Via Vida 10, Alba, Piemonte, Italy, 12051
| | - Pasquale Marchione
- Italian Medicine Agency - AIFA, Signal Management Unit, Post-Marketing Surveillance Department, Via del Tritone 181, Rome, Italy, 00187
| | | | - Vittorio Demicheli
- Azienda Sanitaria Locale ASL AL, Servizio Regionale di Riferimento per l'Epidemiologia, SSEpi-SeREMI, Via Venezia 6, Alessandria, Italy, 15121
| |
Collapse
|
5
|
Bower WA, Schiffer J, Atmar RL, Keitel WA, Friedlander AM, Liu L, Yu Y, Stephens DS, Quinn CP, Hendricks K. Use of Anthrax Vaccine in the United States: Recommendations of the Advisory Committee on Immunization Practices, 2019. MMWR Recomm Rep 2019; 68:1-14. [PMID: 31834290 PMCID: PMC6918956 DOI: 10.15585/mmwr.rr6804a1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This report updates the 2009 recommendations from the CDC Advisory Committee on Immunization Practices (ACIP) regarding use of anthrax vaccine in the United States (Wright JG, Quinn CP, Shadomy S, Messonnier N. Use of anthrax vaccine in the United States: recommendations of the Advisory Committee on Immunization Practices [ACIP)], 2009. MMWR Recomm Rep 2010;59[No. RR-6]). The report 1) summarizes data on estimated efficacy in humans using a correlates of protection model and safety data published since the last ACIP review, 2) provides updated guidance for use of anthrax vaccine adsorbed (AVA) for preexposure prophylaxis (PrEP) and in conjunction with antimicrobials for postexposure prophylaxis (PEP), 3) provides updated guidance regarding PrEP vaccination of emergency and other responders, 4) summarizes the available data on an investigational anthrax vaccine (AV7909), and 5) discusses the use of anthrax antitoxins for PEP. Changes from previous guidance in this report include the following: 1) a booster dose of AVA for PrEP can be given every 3 years instead of annually to persons not at high risk for exposure to Bacillus anthracis who have previously received the initial AVA 3-dose priming and 2-dose booster series and want to maintain protection; 2) during a large-scale emergency response, AVA for PEP can be administered using an intramuscular route if the subcutaneous route of administration poses significant materiel, personnel, or clinical challenges that might delay or preclude vaccination; 3) recommendations on dose-sparing AVA PEP regimens if the anthrax vaccine supply is insufficient to vaccinate all potentially exposed persons; and 4) clarification on the duration of antimicrobial therapy when used in conjunction with vaccine for PEP. These updated recommendations can be used by health care providers and guide emergency preparedness officials and planners who are developing plans to provide anthrax vaccine, including preparations for a wide-area aerosol release of B. anthracis spores. The recommendations also provide guidance on dose-sparing options, if needed, to extend the supply of vaccine to increase the number of persons receiving PEP in a mass casualty event.
Collapse
|
6
|
Badawi A, Velummailum R, Ryoo SG, Senthinathan A, Yaghoubi S, Vasileva D, Ostermeier E, Plishka M, Soosaipillai M, Arora P. Prevalence of chronic comorbidities in dengue fever and West Nile virus: A systematic review and meta-analysis. PLoS One 2018; 13:e0200200. [PMID: 29990356 PMCID: PMC6039036 DOI: 10.1371/journal.pone.0200200] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background Flavivirus diseases such as dengue fever (DENV), West Nile virus (WNV), Zika and yellow fever represent a substantial global public health concern. Preexisting chronic conditions such as cardiovascular diseases, diabetes, obesity, and asthma were thought to predict risk of progression to severe infections. Objective We aimed to quantify the frequency of chronic comorbidities in flavivirus diseases to provide an estimate for their prevalence in severe and non-severe infections and examine whether chronic diseases contribute to the increased risk of severe viral expression. Methods We conducted a comprehensive search in PubMed, Ovid MEDLINE(R), Embase and Embase Classic and grey literature databases to identify studies reporting prevalence estimates of comorbidities in flavivirus diseases. Study quality was assessed with the risk of bias tool. Age-adjusted odds ratios (ORs) were estimated for severe infection in the presence of chronic comorbidities. Results We identified 65 studies as eligible for inclusion for DENV (47 studies) and WNV (18 studies). Obesity and overweight (i.e., BMI> 25 kg/m2, prevalence: 24.5%, 95% CI: 18.6–31.6%), hypertension (17.1%, 13.3–21.8%) and diabetes (13.3%, 9.3–18.8%) were the most prevalent comorbidities in DENV. However, hypertension (45.0%, 39.1–51.0%), diabetes (24.7%, 20.2–29.8%) and heart diseases (25.6%, 19.5–32.7%) were the most prevalent in WNV. ORs of severe flavivirus diseases were about 2 to 4 in infected patients with comorbidities such as diabetes, hypertension and heart diseases. The small number of studies in JEV, YFV and Zika did not permit estimating the prevalence of comorbidities in these infections. Conclusion Higher prevalence of chronic comorbidities was found in severe cases of flavivirus diseases compared to non-severe cases. Findings of the present study may guide public health practitioners and clinicians to evaluate infection severity based on the presence of comorbidity, a critical public health measure that may avert severe disease outcome given the current dearth of clear prevention practices for some flavivirus diseases.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, Toronto, ON, Canada.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Russanthy Velummailum
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Seung Gwan Ryoo
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | | | - Sahar Yaghoubi
- Faculty of Science, Ryerson University, Toronto, ON, Canada
| | - Denitsa Vasileva
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Emma Ostermeier
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Mikayla Plishka
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | | | - Paul Arora
- National Microbiology Laboratory, Infectious Disease Prevention and Control Branch, Public Health Agency of Canada, Toronto, ON, Canada
| |
Collapse
|
7
|
Kumar KVSH, Patnaik SK. A long term follow-up study from India assessing the risk of diabetes mellitus in service population. Diabetes Metab Syndr 2018; 12:87-90. [PMID: 28951061 DOI: 10.1016/j.dsx.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The data about the incidence of diabetes is scarce from developing countries. We studied the incidence of type 1 (T1DM) and type 2 DM (T2DM) in a cohort of young military personnel followed for a long duration. METHODS The data for this descriptive epidemiologic study was derived from the electronic medical records (EMR) of the male service personnel enrolled between 1990 and 2015. All subjects were recruited before 18 years of age in good health and the onset of DM was derived from the EMR. We calculated the incidence rates as per person years using appropriate statistical methods. RESULTS Our study population includes 51,217 participants (median age 33 years, range 17-54) with a mean follow up of 12.5 years, giving a cumulative follow up duration of 613,925 person-years (py). A total of 251 patients developed T2DM and 15 patients developed T1DM during the study period. The incidence rate of T2DM was 0.41 per 1000 py and that of T1DM was 2.44 per 100,000 py. CONCLUSION Our cohort had low incidence rates of diabetes when compared with other studies from India and abroad. Active military service with good life style measures may offer protection from the DM.
Collapse
Affiliation(s)
- K V S Hari Kumar
- Departments of Endocrinology & Pediatrics, Army Hospital (Research & Referral), Delhi, 110010, India.
| | - S K Patnaik
- Departments of Endocrinology & Pediatrics, Army Hospital (Research & Referral), Delhi, 110010, India
| |
Collapse
|
8
|
Kowalzik F, Faber J, Knuf M. MMR and MMRV vaccines. Vaccine 2017; 36:5402-5407. [PMID: 28757060 DOI: 10.1016/j.vaccine.2017.07.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/28/2017] [Accepted: 07/17/2017] [Indexed: 12/25/2022]
Abstract
Measles, mumps, rubella and varicella are viral infections which can implicate seriously long-term sequelae of infected individuals or even the unborn child. Vaccines against the individual diseases have long been available. Global measles vaccination is estimated to have prevented more than 20million deaths during 2000-2015. During the same time period, measles incidence decreased from 146 to 36 cases per million populations. Today vaccinations against measles, mumps, rubella and varicella are now carried out mainly with combination vaccines. These are today known as immunogenic and safe. MMRV had similar immunogenicity and overall safety profiles to MMR administered with or without varicella vaccine. This issue provides a review of the different vaccines, mode of administration, catch up immunization and postexposure prophylaxis as well as contraindications and adverse effects of the immunization against measles, mumps, rubella, and varicella. The article presents an overview of important information of preventing these diseases with a focus on the existing combination vaccines.
Collapse
Affiliation(s)
- Frank Kowalzik
- Center for Children and Adolescent Medicine of the Johannes Gutenberg-Universität, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Jörg Faber
- Center for Children and Adolescent Medicine of the Johannes Gutenberg-Universität, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Markus Knuf
- Children's Hospital, Dr. Horst Schmidt Klinik, Ludwig-Erhard-Strasse 100, 65199 Wiesbaden, Germany.
| |
Collapse
|
9
|
Küppers L, Hartung B, Karenfort M, Ritz-Timme S. Schütteltrauma vs. Impfkomplikation. Rechtsmedizin (Berl) 2017. [DOI: 10.1007/s00194-017-0170-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Beyerlein A, Strobl AN, Winkler C, Carpus M, Knopff A, Donnachie E, Ankerst DP, Ziegler AG. Vaccinations in early life are not associated with development of islet autoimmunity in type 1 diabetes high-risk children: Results from prospective cohort data. Vaccine 2017; 35:1735-1741. [PMID: 28268073 DOI: 10.1016/j.vaccine.2017.02.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Vaccinations in early childhood potentially stimulate the immune system and may thus be relevant for the pathogenesis of autoimmune diseases such as type 1 diabetes (T1D). We determined the association of vaccination burden with T1D-associated islet autoimmunity in children with high familial risk followed prospectively from birth. METHODS A total of 20,570 certified vaccination records from 1918 children were correlated with time to onset of T1D-associated islet autoimmunity using Cox regression, considering multiple time periods up until age two years and vaccination types, and adjusting for HLA genotype, sex, delivery mode, season of birth, preterm delivery and maternal T1D status. Additionally, prospective claims data of 295,420 subjects were used to validate associations for the tick-borne encephalitis (TBE) vaccination. RESULTS Most vaccinations were not associated with a significantly increased hazard ratio (HR) for islet autoimmunity (e.g. HR [95% confidence interval]: 1.08 [0.96-1.21] per additional vaccination against measles, mumps and rubella at age 0-24months). TBE vaccinations within the first two years of life were nominally associated with a significantly increased autoimmunity risk (HR: 1.44 [1.06-1.96] per additional vaccination at age 0-24months), but this could not be confirmed with respect to outcome T1D in the validation cohort (HR: 1.02 [0.90-1.16]). CONCLUSIONS We found no evidence that early vaccinations increase the risk of T1D-associated islet autoimmunity development. The potential association with early TBE vaccinations could not be confirmed in an independent cohort and appears to be a false positive finding.
Collapse
Affiliation(s)
- Andreas Beyerlein
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany; Forschergruppe Diabetes der Technischen Universität München, Munich, Germany
| | - Andreas N Strobl
- Department of Mathematics of the Technische Universität München, Munich, Germany
| | - Christiane Winkler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany; Forschergruppe Diabetes der Technischen Universität München, Munich, Germany
| | - Michaela Carpus
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany; Forschergruppe Diabetes der Technischen Universität München, Munich, Germany
| | - Annette Knopff
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany; Forschergruppe Diabetes der Technischen Universität München, Munich, Germany
| | - Ewan Donnachie
- Kassenärztliche Vereinigung Bayerns (Bavarian Association of Statutory Health Insurance Physicians), Munich, Germany
| | - Donna P Ankerst
- Department of Mathematics of the Technische Universität München, Munich, Germany; Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany; Forschergruppe Diabetes der Technischen Universität München, Munich, Germany.
| |
Collapse
|
11
|
Schiffer JM, McNeil MM, Quinn CP. Recent developments in the understanding and use of anthrax vaccine adsorbed: achieving more with less. Expert Rev Vaccines 2016; 15:1151-62. [PMID: 26942655 PMCID: PMC9041331 DOI: 10.1586/14760584.2016.1162104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anthrax Vaccine Adsorbed (AVA, BioThrax™) is the only Food and Drug Administration (FDA) approved vaccine for the prevention of anthrax in humans. Recent improvements in pre-exposure prophylaxis (PrEP) use of AVA include intramuscular (IM) administration and simplification of the priming series to three doses over 6 months. Administration IM markedly reduced the frequency, severity and duration of injection site reactions. Refinement of animal models for inhalation anthrax, identification of immune correlates of protection and cross-species modeling have created opportunities for reductions in the PrEP booster schedule and were pivotal in FDA approval of a post-exposure prophylaxis (PEP) indication. Clinical and nonclinical studies of accelerated PEP schedules and divided doses may provide prospects for shortening the PEP antimicrobial treatment period. These data may assist in determining feasibility of expanded coverage in a large-scale emergency when vaccine demand may exceed availability. Enhancements to the AVA formulation may broaden the vaccine's PEP application.
Collapse
Affiliation(s)
- Jarad M Schiffer
- a MPIR Laboratory, Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention (CDC) , Atlanta , GA , USA
| | - Michael M McNeil
- b Immunization Safety Office, Division of Healthcare Quality Promotion , National Center for Emerging and Zoonotic Infectious Diseases , Atlanta , GA , USA
| | - Conrad P Quinn
- c Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC) , Atlanta , GA , USA
| |
Collapse
|
12
|
Sanaei Dashti A, Taheri S, Jouybar R, Hashemnia M, Karimi A, Shoja SA. Respiratory Burst Process in Diabetic Children. IRANIAN JOURNAL OF PEDIATRICS 2016; 26:e3989. [PMID: 27617067 PMCID: PMC4992090 DOI: 10.5812/ijp.3989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/13/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Increased rate of infections in diabetes mellitus (DM) is an accepted fact. Pathophysiologically, several tasks of the immune system could be involved including polymorphonuclear (PMN) functions. OBJECTIVES The aim of this research was to evaluate the respiratory burst process of PMNs that is an essential part of phagocytosis, in children with DM. PATIENTS AND METHODS Fifty two children with insulin dependent diabetes and 29 non-diabetic children were enrolled in this cross sectional study from 2010 to 2011. Nitroblue tetrazolium (NBT) test was done on PMNs taken from their heparinized blood. The resultant data was analyzed by SPSS version 16. P values were considered significant when it was under 0.05. RESULTS Mean NBTs were 72.1 ± 15.84 and 94.68 ± 5.31 in diabetics and non-diabetics, respectively (P < 0.001). Using Pearson correlation, there was no significant correlation between the NBT level and age, gender, duration of diabetes, daily insulin usage and blood HbA1C level. CONCLUSIONS Compared to non-diabetics, respiratory burst process of polymorphonuclears is obviously decreased in diabetic children. This can explain one of the mechanisms involved in the increased rate of infections in DM.
Collapse
Affiliation(s)
- Anahita Sanaei Dashti
- Professor Alborzi Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Soodabeh Taheri
- Department of Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Reza Jouybar
- Department of Anesthesiology, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mohammadreza Hashemnia
- Pediatric Infectious Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Abdollah Karimi
- Pediatric Infectious Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Seyed Abdolmajid Shoja
- Professor Alborzi Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
13
|
Bruno G, Gruden G, Songini M. Incidence of type 1 diabetes in age groups above 15 years: facts, hypothesis and prospects for future epidemiologic research. Acta Diabetol 2016; 53:339-47. [PMID: 26787492 DOI: 10.1007/s00592-015-0835-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
Abstract
Although onset of type 1 diabetes can occur in adulthood, epidemiological data are scarce, limiting our potential to identify unknown determinants of the disease. Paucity of registries expanding the recruitment of incident cases up to adulthood, atypical clinical features of type 1 diabetes at onset, misclassification of type 1 as type 2 diabetes and little use of markers of β-cell autoimmunity represents major obstacles in studying the risk of type 1 diabetes in adults. New strategies in study design, data collection and analyses may overcome these problems in the future. Population-based surveys and registries including adulthood; use of etiological rather than clinical criteria to define type 1 diabetes; availability of electronic health records as prescription data sources to avoid missing data; and application of proper statistical methods will be instrumental to gain better insight on the epidemiology and natural history of the disease.
Collapse
Affiliation(s)
- G Bruno
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | - G Gruden
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | | |
Collapse
|
14
|
Weigel M, Bruns R, Weitmann K, Hoffmann W. Immunization rates at the school entry in 2012. DEUTSCHES ARZTEBLATT INTERNATIONAL 2015; 111:788-94. [PMID: 25491557 DOI: 10.3238/arztebl.2014.0788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND The immunization rates for some diseases, including measles, were so low in Germany in recent years that endemic outbreaks occurred. A finely detailed geographic analysis of immunization rates is necessary for the identification of under-immunized areas. METHODS We addressed this question with the aid of regional and local data from school entrance examinations, which were made available to us by the health departments of the German federal states. These data are represented both in tabular form and with the aid of a geographical information system (GIS). RESULTS The immunization rates for tetanus, pertussis, and poliomyelitis were high throughout Germany (96.5%, 95.6%, and 95.2%, respectively). In contrast, major variation across regions was seen in immunization rates for hepatitis B (range: 53.5% to 99.1%) and measles (52.1% to 98.3%), with higher immunization rates in areas of the former East Germany. Low immunization rates were particularly evident in some areas in the states of Bavaria and Baden-Württemberg. In some parts of Saxony (a state in the former East Germany), the official immunization recommendations differ from those of the nationwide Standing Committee on Vaccination (STIKO); as a result, these areas had a mean measles immunization rate of only 66.7% among children entering school. CONCLUSION High immunization rates were found across Germany for tetanus, pertussis, and poliomyelitis, although the rates in some regions were lower than they should be. Stronger informational efforts must be undertaken to improve the public acceptance of immunization against hepatitis B and measles, so that these immunization rates can rise. For measles in particular, uniform nationwide recommendations might help increase the immunization rate.
Collapse
Affiliation(s)
- Martin Weigel
- University Medicine Greifswald, Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, University Medicine Greifswald, Center for Child and Adolescent Medicine
| | | | | | | |
Collapse
|
15
|
Guimarães LE, Baker B, Perricone C, Shoenfeld Y. Vaccines, adjuvants and autoimmunity. Pharmacol Res 2015; 100:190-209. [PMID: 26275795 PMCID: PMC7129276 DOI: 10.1016/j.phrs.2015.08.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022]
Abstract
Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Luísa Eça Guimarães
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Britain Baker
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Carlo Perricone
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Italy
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Incumbent of the Laura Schwarz-kipp chair for research of autoimmune diseases, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
16
|
Warfarin Discontinuation in Patients With Unprovoked Venous Thromboembolism: A Large US Insurance Database Analysis. Am J Ther 2015. [PMID: 26214203 DOI: 10.1097/mjt.0000000000000167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examined warfarin therapy discontinuation and its risk factors among patients with unprovoked venous thromboembolism (VTE) in the US clinical practice setting. Adult patients with unprovoked VTE were identified from the MarketScan claims database from January 1, 2006 to December 31, 2012. The index date was defined as the date of first VTE diagnosis. Patients were required to have no VTE diagnosis in the 6 months before index date and continuous health plan enrollment for 6 months before and 12 months after the index date. Warfarin discontinuation rates and adjusted hazard ratios (HRs) were reported. Of 21,163 eligible patients, 15,463 were diagnosed with deep vein thrombosis (DVT) only (73.1%), 5027 with pulmonary embolism (PE) only (23.7%), and 673 with DVT and PE (3.2%). The average duration of warfarin therapy was 5.2 months (SD = 3.0). During 1-year follow-up, 21.4% patients discontinued therapy within 3 months, 42.8% within 6 months, and 70.1% within 12 months. PE versus DVT [HR = 0.77, 95% confidence interval (CI) = 0.74-0.80], comorbid atrial fibrillation (HR = 0.73, 95% CI = 0.66-0.81), thrombophilia (HR = 0.62, 95% CI = 0.54-0.71), and age >40 years (41-65 years: HR = 0.86, 95% CI = 0.81-0.91; >65 years: HR = 0.82, 95% CI = 0.77-0.87) were significantly associated with reduced risk of warfarin discontinuation. Alcohol abuse/dependence (HR = 1.36, 95% CI = 1.20-1.55), cancer history (HR = 1.13, 95% CI = 1.07-1.19), bleeding (HR = 1.07, 95% CI = 1.01-1.15), and catheter ablation (HR = 1.10, 95% CI = 1.00-1.20) in the 6 months before index date were significantly associated with increased risk for warfarin discontinuation. In conclusion, nearly 1 of 4 patients with unprovoked VTE discontinued warfarin within 3 months. Three of 4 patients discontinued therapy within 1 year. Younger age and multiple clinical factors are associated with warfarin therapy discontinuation.
Collapse
|
17
|
Weigel M, Weitmann K, Rautmann C, Schmidt J, Bruns R, Hoffmann W. Impact of physicians’ attitude to vaccination on local vaccination coverage for pertussis and measles in Germany. Eur J Public Health 2014; 24:1009-16. [DOI: 10.1093/eurpub/cku013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
18
|
Nevin RL. Confounding and bias in studies of DMSS vaccination data. Vaccine 2012; 30:7146. [DOI: 10.1016/j.vaccine.2011.12.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 12/14/2011] [Accepted: 12/20/2011] [Indexed: 01/15/2023]
|