1
|
Ganesan N, Ronsmans S, Hoet P. Methods to Assess Proliferation of Stimulated Human Lymphocytes In Vitro: A Narrative Review. Cells 2023; 12:cells12030386. [PMID: 36766728 PMCID: PMC9913443 DOI: 10.3390/cells12030386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/10/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The ability to monitor lymphocyte responses is critical for developing our understanding of the immune response in humans. In the current clinical setting, relying on the metabolic incorporation of [3H] thymidine into cellular DNA via a lymphocyte proliferation test (LPT) is the only method that is routinely performed to determine cell proliferation. However, techniques that measure DNA synthesis with a radioactive material such as [3H] thymidine are intrinsically more sensitive to the different stages of the cell cycle, which could lead to over-analyses and the subsequent inaccurate interpretation of the information provided. With cell proliferation assays, the output should preferably provide a direct and accurate measurement of the number of actively dividing cells, regardless of the stimuli properties or length of exposure. In fact, an ideal technique should have the capacity to measure lymphocyte responses on both a quantitative level, i.e., cumulative magnitude of lymphoproliferative response, and a qualitative level, i.e., phenotypical and functional characterization of stimulated immune cells. There are many LPT alternatives currently available to measure various aspects of cell proliferation. Of the nine techniques discussed, we noted that the majority of these LPT alternatives measure lymphocyte proliferation using flow cytometry. Across some of these alternatives, the covalent labelling of cells with a high fluorescence intensity and low variance with minimal cell toxicity while maximizing the number of detectable cell divisions or magnitude of proliferation was achieved. Herein, we review the performance of these different LPT alternatives and address their compatibility with the [3H] thymidine LPT so as to identify the "best" alternative to the [3H] thymidine LPT.
Collapse
Affiliation(s)
- Nirosha Ganesan
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, 3000 Leuven, Belgium
| | - Steven Ronsmans
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Clinic for Occupational and Environmental Medicine, Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Peter Hoet
- Laboratory of Toxicology, Unit of Environment & Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
2
|
Corbière V, Lambert EE, Rodesch M, van Gaans-van den Brink JAM, Misiak A, Simonetti E, Van Praet A, Godefroid A, Diavatopoulos DA, van Els CACM, Mascart F. A semi high-throughput whole blood-based flow cytometry assay to detect and monitor Bordetella pertussis-specific Th1, Th2 and Th17 responses. Front Immunol 2023; 14:1101366. [PMID: 36814927 PMCID: PMC9939445 DOI: 10.3389/fimmu.2023.1101366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction The characterization of B. pertussis (Bp) antigen-specific CD4+ T cell cytokine responses should be included in the evaluation of immunogenicity of pertussis vaccines but is often hindered by the lack of standardized robust assays. Methods To overcome this limitation, we developed a two-step assay comprising a short-term stimulation of fresh whole blood with Bp antigens and cryopreservation of the stimulated cells, followed later on by batch-wise intracellular cytokine analysis by flow cytometry. Blood samples collected from recently acellular (aP) vaccine boosted subjects with a whole-cell- or aP-primed background was incubated for 24 hrs with Pertussis toxin, Filamentous hemagglutinin or a Bp lysate (400µl per stimulation). Antigen-specific IFN-γ-, IL-4/IL-5/IL-13-, IL-17A/IL-17F- and/or IL-22-producing CD4+ T cells were quantified by flow cytometry to reveal Th1, Th2, and Th17-type responses, respectively. The frequencies of IFN-γ-producing CD8+ T cells were also analyzed. Results We demonstrate high reproducibility of the Bp-specific whole blood intracellular staining assay. The results obtained after cryopreservation of the stimulated and fixed cells were very well correlated to those obtained without cryopreservation, an approach used in our previously published assay. Optimization resulted in high sensitivity thanks to very low non-specific backgrounds, with reliable detection of Bp antigen-specific Th1, Th2 and Th17-type CD4+ T cells, in the lowest range frequency of 0.01-0.03%. Bp antigen-specific IFN-γ+ CD8+ T lymphocytes were also detected. This test is easy to perform, analyse and interpret with the establishment of strict criteria defining Bp antigen responses. Discussion Thus, this assay appears as a promising test for evaluation of Bp antigen-specific CD4+ T cells induced by current and next generation pertussis vaccines.
Collapse
Affiliation(s)
- Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Eleonora E Lambert
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marine Rodesch
- Department of Paediatrics, Cliniques Universitaires de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | | | - Alicja Misiak
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Elles Simonetti
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne Van Praet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Audrey Godefroid
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Dimitri A Diavatopoulos
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cécile A C M van Els
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | | |
Collapse
|
3
|
Orije MRP, García-Fogeda I, Van Dyck W, Corbière V, Mascart F, Mahieu L, Hens N, Van Damme P, Cools N, Ogunjimi B, Maertens K, Leuridan E. Impact of maternal pertussis antibodies on the infants' cellular immune responses. Clin Infect Dis 2021; 75:442-452. [PMID: 34849638 DOI: 10.1093/cid/ciab972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Maternal antibody interference of the infant's humoral immune responses raises some concern to the strategy of maternal Tdap (tetanus, diphtheria, acellular pertussis [aP]) vaccination. This study assessed the impact of maternal Tdap antibodies on the infant's pertussis-specific T lymphocyte responses following infant vaccination with an aP containing vaccine, in a term and preterm born cohort. METHODS Heparin samples (±0.5mL) were conveniently drawn from infants of a Belgian prospective cohort study (N=79, NCT02511327), including Tdap vaccinated (Boostrix®) and non-vaccinated women (no Tdap vaccine in the last 5 years) that delivered at term or prematurely. Sampling was performed before and one month after primary (8-12-16 weeks) and booster vaccination (13 or 15 months) with DTaP-IPV-HB-PRP~T vaccine (Hexyon®). Pertussis toxin (PT)-specific CD3 +, CD3 +CD4 + and CD3 +CD8 + lymphoblasts and their cytokine secretions were measured using a flow cytometric assay on whole blood (FASCIA) and multiplex technology (Meso Scale Discovery), respectively. RESULTS 57% of all infants were considered PT-specific CD3 +CD4 + lymphoblasts responders after primary and booster vaccination, whereas 17% were CD3 +CD8 + lymphoblast responders. IFN-γ, IL-13, IL-17A and IL-5 cytokine secretions after primary and booster vaccination were indicative of a mixed T helper (Th) 1/Th2/Th17 cell profile. Lymphoblast and cytokine levels were comparable between term and preterm infants. Non-responders for IL-13 after booster vaccination had higher maternal PT IgG levels at birth when compared to responders. CONCLUSIONS Term and preterm born infants are capable of inducing Th1, Th2 and Th17 responses after aP vaccination, yet maternal vaccination modulate these responses. Evaluation of this effect in larger trials is needed.
Collapse
Affiliation(s)
- Marjolein R P Orije
- Centre for the Evaluation of Vaccination (CEV); Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Irene García-Fogeda
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID); Vaccine & Infectious Diseases Institute (VAXINFECTIO); University of Antwerp, Antwerp, Belgium
| | - Wouter Van Dyck
- Centre for the Evaluation of Vaccination (CEV); Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Faculty of Medicine, Belgium
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Faculty of Medicine, Belgium
| | - Ludo Mahieu
- Department of Paediatrics, Division of Neonatology; University Hospital Antwerp, Antwerp, Belgium
| | - Niel Hens
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID); Vaccine & Infectious Diseases Institute (VAXINFECTIO); University of Antwerp, Antwerp, Belgium.,Interuniversity Institute of Biostatistics and statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination (CEV); Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Immune Regulation and tolerance-inducing Strategies (IRiS); Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID); Vaccine & Infectious Diseases Institute (VAXINFECTIO); University of Antwerp, Antwerp, Belgium.,Antwerp Center for Translational Immunology and Virology (ACTIV); Vaccine & Infectious Diseases Institute (VAXINFECTIO); University of Antwerp, Antwerp, Belgium.,Department of Paediatrics; University Hospital Antwerp, Antwerp, Belgium
| | - Kirsten Maertens
- Centre for the Evaluation of Vaccination (CEV); Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Elke Leuridan
- Centre for the Evaluation of Vaccination (CEV); Vaccine & Infectious Diseases Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Saso A, Kampmann B, Roetynck S. Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines (Basel) 2021; 9:877. [PMID: 34452002 PMCID: PMC8402596 DOI: 10.3390/vaccines9080877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pertussis ('whooping cough') is a severe respiratory tract infection that primarily affects young children and unimmunised infants. Despite widespread vaccine coverage, it remains one of the least well-controlled vaccine-preventable diseases, with a recent resurgence even in highly vaccinated populations. Although the exact underlying reasons are still not clear, emerging evidence suggests that a key factor is the replacement of the whole-cell (wP) by the acellular pertussis (aP) vaccine, which is less reactogenic but may induce suboptimal and waning immunity. Differences between vaccines are hypothesised to be cell-mediated, with polarisation of Th1/Th2/Th17 responses determined by the composition of the pertussis vaccine given in infancy. Moreover, aP vaccines elicit strong antibody responses but fail to protect against nasal colonisation and/or transmission, in animal models, thereby potentially leading to inadequate herd immunity. Our review summarises current knowledge on vaccine-induced cellular immune responses, based on mucosal and systemic data collected within experimental animal and human vaccine studies. In addition, we describe key factors that may influence cell-mediated immunity and how antigen-specific responses are measured quantitatively and qualitatively, at both cellular and molecular levels. Finally, we discuss how we can harness this emerging knowledge and novel tools to inform the design and testing of the next generation of improved infant pertussis vaccines.
Collapse
Affiliation(s)
- Anja Saso
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Beate Kampmann
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Sophie Roetynck
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| |
Collapse
|
5
|
Liu H, Meng S, Yang N, Chen J, Yao H, Zhang Y, Zhang H, Lei B, Wang X, Chen S, Wang T, Wang Y, Wang J, Zhang W. Identification and functional study of novel oligonucleotides: CpG Seq 13 and CpG Seq 19. Immunotherapy 2021; 13:571-585. [PMID: 33781095 DOI: 10.2217/imt-2019-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study explored new immunoadjuvants with stronger immune activity to enhance therapeutic effects against leukemia. Materials & methods: Whole blood and bone marrow of acute myeloid leukemia (AML) patients and healthy volunteers were collected. Isolated mononuclear cells were treated with two newly designed CpG oligodeoxynucleotides, CpG sequence 13 and 19, and known CpG oligodeoxynucleotides and analyzed via flow cytometry. Results: CpG Seq 13 and 19 possess strong immune activation and enhance the proliferation, degranulation and cytotoxicity of T cells. They also inhibit AML cell proliferation. When CpG Seq 13/19 are combined with anti-OX40 antibodies, the cytotoxicity of T cells on AML cells are further enhanced. Conclusion: CpG Seq 13 and 19 are strong immune adjuvant candidates for AML treatment.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shan Meng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Nan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jinqiu Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huan Yao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hui Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bo Lei
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xugeng Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Sheping Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ting Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yueli Wang
- Department of Hematology, South Hospital, Tongchuan People's Hospital, Tongchuan, 727000, China
| | - Jin Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wanggang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
6
|
Acquisition of specific antibodies and their influence on cell-mediated immune response in neonatal cord blood after maternal pertussis vaccination during pregnancy. Vaccine 2019; 37:2569-2579. [PMID: 30955978 DOI: 10.1016/j.vaccine.2019.03.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 11/20/2022]
Abstract
Maternal immunization with pertussis acellular vaccine (Tdap) is an intervention that provides protection to newborns. However, it has been reported that high maternal antibody levels may adversely affect the immune response of infants after active immunization. In this study, we evaluated neonatal passive acquisition of pertussis-specific antibodies and their influence on the neonatal cell-mediated immune response. Pregnant women were either vaccinated with Tdap vaccine (case group, n = 66) or received no vaccine (control group, n = 101). Whole-cell Bordetella pertussis (Bp), pertussis toxin (PT), filamentous hemagglutinin (FHA) and pertactin (PRN)-specific serum IgG were quantified in paired maternal-cord sera, and Bp- and PT-specific IgA were evaluated in colostrum by ELISA. Ex vivo neonatal blood lymphocyte responsiveness after Bp stimulation was assessed in case (n = 17) and control (n = 15) groups using flow cytometry to detect proliferation, cytokine production and activation phenotype of lymphocytes in the context of high specific IgG acquired after maternal vaccination. Anti-Bp, PT, FHA and PRN IgG concentrations in maternal and cord sera from case group were higher than those in control group with positive correlation indexes in both groups for all pertussis antigens. The control group presented higher placental transfer ratios of specific antibodies and, in the case group, vaccination between 26 and 31 gestation weeks was associated with the best placental transfer ratios. Specific IgA concentrations in colostrum were not affected by vaccine status. Whole blood assays revealed that newborns responded to Bp stimulation with higher expression of CD40L, CD69 and CD4+ T cell proliferation compared to unstimulated cells, and a lower Th1 response, while a preserved Th2 response compared to adults, but there were no differences between the neonatal groups for any of the studied parameters. Our results indicate that higher pertussis-specific IgG levels in newborn sera after maternal vaccination do not affect the neonatal ex vivo cell-mediated immune response.
Collapse
|
7
|
Ten Brinke A, Marek-Trzonkowska N, Mansilla MJ, Turksma AW, Piekarska K, Iwaszkiewicz-Grześ D, Passerini L, Locafaro G, Puñet-Ortiz J, van Ham SM, Hernandez-Fuentes MP, Martínez-Cáceres EM, Gregori S. Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses. Front Immunol 2017; 8:1870. [PMID: 29312346 PMCID: PMC5742609 DOI: 10.3389/fimmu.2017.01870] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/08/2017] [Indexed: 01/05/2023] Open
Abstract
Adoptive therapy with regulatory T cells or tolerance-inducing antigen (Ag)-presenting cells is innovative and promising therapeutic approach to control undesired and harmful activation of the immune system, as observed in autoimmune diseases, solid organ and bone marrow transplantation. One of the critical issues to elucidate the mechanisms responsible for success or failure of these therapies and define the specificity of the therapy is the evaluation of the Ag-specific T-cell responses. Several efforts have been made to develop suitable and reproducible assays. Here, we focus on dye-based proliferation assays. We highlight with practical examples the fundamental issues to take into consideration for implementation of an effective and sensitive dye-based proliferation assay to monitor Ag-specific responses in patients. The most critical points were used to design a road map to set up and analyze the optimal assay to assess Ag-specific T-cell responses in patients undergoing different treatments. This is the first step to optimize monitoring of tolerance induction, allowing comparison of outcomes of different clinical studies. The road map can also be applied to other therapeutic interventions, not limited to tolerance induction therapies, in which Ag-specific T-cell responses are relevant such as vaccination approaches and cancer immunotherapy.
Collapse
Affiliation(s)
- Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Natalia Marek-Trzonkowska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Maria J. Mansilla
- Immunology Division, Department of Cellular Biology, Germans Trias i Pujol University Hospital and Research Institute, Physiology, and Immunology, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Annelies W. Turksma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Karolina Piekarska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Grazia Locafaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Joan Puñet-Ortiz
- Immunology Division, Department of Cellular Biology, Germans Trias i Pujol University Hospital and Research Institute, Physiology, and Immunology, Universitat Autònoma Barcelona, Barcelona, Spain
| | - S. Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Eva M. Martínez-Cáceres
- Immunology Division, Department of Cellular Biology, Germans Trias i Pujol University Hospital and Research Institute, Physiology, and Immunology, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Abstract
The protective effect of meningococcal vaccines targeting disease causing serogroups exemplified by the introduction of MenAfriVac™ in Africa, is well established and documented in large population-based studies. Due to the emergence of other meningococcal disease causing serogroups, novel vaccine formulations are needed. There is a high potential for novel nanotechnology-based meningococcal vaccine formulations that can provide wider vaccine coverage. The proposed meningococcal vaccine formulation contains spherical shaped micro and nanoparticles that are biological mimics of Niesseria meningitidis, therefore present to immune system as invader and elicit robust immune responses. Vaccine nanoparticles encapsulate meningococcal CPS polymers in a biodegradable material that slowly release antigens, therefore enhance antigen presentation by exerting antigen depot effect. The antigenicity of meningococcal vaccine delivered in nanoparticles is significantly higher when compared to vaccine delivered in solution. Preclinical studies are required to assess the immunogenicity of novel vaccine formulations. Therefore, implementing various in-vitro human immune cell-based assays that mimic in-vivo interactions, would provide good insight on optimal antigen dose, effective antigen presentation, facilitate screening of various vaccine and adjuvant combinations and predict in-vivo immunogenicity. This rapid approach is cost-effective and provides data required for the preclinical immunogenicity assessment of novel meningococcal vaccine formulations.
Collapse
Affiliation(s)
- Susu M Zughaier
- a Laboratory of Bacterial Pathogenesis , Department of Veterans Affairs Medical Center , Decatur , GA , USA.,b Department of Microbiology and Immunology , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
9
|
Melgaço JG, Soriani FM, Sucupira PHF, Pinheiro LA, Vieira YR, de Oliveira JM, Lewis-Ximenez LL, Araújo CCV, Pacheco-Moreira LF, Menezes GB, Cruz OG, Vitral CL, Pinto MA. Changes in cellular proliferation and plasma products are associated with liver failure. World J Hepatol 2016; 8:1370-1383. [PMID: 27917263 PMCID: PMC5114473 DOI: 10.4254/wjh.v8.i32.1370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/03/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To study the differences in immune response and cytokine profile between acute liver failure and self-limited acute hepatitis.
METHODS Forty-six patients with self-limited acute hepatitis (AH), sixteen patients with acute liver failure (ALF), and twenty-two healthy subjects were involved in this study. The inflammatory and anti-inflammatory products in plasma samples were quantified using commercial enzyme-linked immunoassays and quantitative real-time PCR. The cellular immune responses were measured by proliferation assay using flow cytometry. The groups were divided into viral- and non-viral-induced self-limited AH and ALF. Thus, we worked with five groups: Hepatitis A virus (HAV)-induced self-limited acute hepatitis (HAV-AH), HAV-induced ALF (HAV-ALF), non-viral-induced self-limited acute hepatitis (non-viral AH), non-viral-induced acute liver failure (non-viral ALF), and healthy subjects (HC). Comparisons among HAV and non-viral-induced AH and ALF were performed.
RESULTS The levels of mitochondrial DNA (mtDNA) and the cytokines investigated [interleukin (IL)-6, IL-8, IL-10, interferon gamma, and tumor necrosis factor] were significantly increased in ALF patients, independently of etiology (P < 0.05). High plasma mtDNA and IL-10 were the best markers associated with ALF [mtDNA: OR = 320.5 (95%CI: 14.42-7123.33), P < 0.0001; and IL-10: OR = 18.8 (95%CI: 1.38-257.94), P = 0.028] and death [mtDNA: OR = 12.1 (95%CI: 2.57-57.07), P = 0.002; and IL-10: OR = 8.01 (95%CI: 1.26-50.97), P = 0.027]. In the cellular proliferation assay, NKbright, NKT and regulatory T cells (TReg) predominated in virus-specific stimulation in HAV-induced ALF patients with an anergic behavior in the cellular response to mitotic stimulation. Therefore, in non-viral-induced ALF, anergic behavior of activated T cells was not observed after mitotic stimulation, as expected and as described by the literature.
CONCLUSION mtDNA and IL-10 may be predictors of ALF and death. TReg cells are involved in immunological disturbance in HAV-induced ALF.
Collapse
|
10
|
Abstract
Pertussis, caused by Bordetella (B.) pertussis, a Gram-negative bacterium, is a highly contagious airway infection. Especially in infants, pertussis remains a major health concern. Acute infection with B. pertussis can cause severe illness characterized by severe respiratory failure, pulmonary hypertension, leucocytosis, and death. Over the past years, rising incidence rates of intensive care treatment in young infants were described. Due to several virulence factors (pertussis toxin, tracheal cytotoxin, adenylate cyclase toxin, filamentous hemagglutinin, and lipooligosaccharide) that promote bacterial adhesion and invasion, B. pertussis creates a unique niche for colonization within the human respiratory tract. The resulting long-term infection is mainly caused by the ability of B. pertussis to interfere with the host's innate and adaptive immune system. Although pertussis is a vaccine-preventable disease, it has persisted in vaccinated populations. Epidemiological data reported a worldwide increase in pertussis incidence among children during the past years. Either acellular pertussis (aP) vaccines or whole-cell vaccines are worldwide used. Recent studies did not detect any differences according to pertussis incidence when comparing the different vaccines used. Most of the currently used aP vaccines protect against acute infections for a period of 6-8 years. The resurgence of pertussis may be due to the lack of herd immunity caused by missing booster immunizations among adolescents and adults, low vaccine coverages in some geographic areas, and genetic changes of different B. pertussis strains. Due to the rising incidence of pertussis, probable solution strategies are discussed. Cocooning strategies (vaccination of close contact persons) and immunizations during pregnancy appear to be an approach to reduce neonatal contagiousness. During the past years, studies focused on the pathway of the immune modulation done by B. pertussis to provide a basis for the identification of new therapeutic targets to enhance the host's immune response and to probably modulate certain virulence factors.
Collapse
Affiliation(s)
- Manuela Zlamy
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
van Twillert I, Han WGH, van Els CACM. Waning and aging of cellular immunity to Bordetella pertussis. Pathog Dis 2015; 73:ftv071. [PMID: 26371178 DOI: 10.1093/femspd/ftv071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 02/04/2023] Open
Abstract
While it is clear that the maintenance of Bordetella pertussis-specific immunity evoked both after vaccination and infection is insufficient, it is unknown at which pace waning occurs and which threshold levels of sustained functional memory B and T cells are required to provide long-term protection. Longevity of human cellular immunity to B. pertussis has been studied less extensively than serology, but is suggested to be key for the observed differences between the duration of protection induced by acellular vaccination and whole cell vaccination or infection. The induction and maintenance of levels of protective memory B and T cells may alter with age, associated with changes of the immune system throughout life and with accumulating exposures to circulating B. pertussis or vaccine doses. This is relevant since pertussis affects all age groups. This review summarizes current knowledge on the waning patterns of human cellular immune responses to B. pertussis as addressed in diverse vaccination and infection settings and in various age groups. Knowledge on the effectiveness and flaws in human B. pertussis-specific cellular immunity ultimately will advance the improvement of pertussis vaccination strategies.
Collapse
Affiliation(s)
- Inonge van Twillert
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, the Netherlands
| |
Collapse
|
12
|
A single dose of inactivated hepatitis A vaccine promotes HAV-specific memory cellular response similar to that induced by a natural infection. Vaccine 2015; 33:3813-20. [DOI: 10.1016/j.vaccine.2015.06.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/22/2022]
|
13
|
Identification of pertussis-specific effector memory T cells in preschool children. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:561-9. [PMID: 25787136 DOI: 10.1128/cvi.00695-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/11/2015] [Indexed: 02/07/2023]
Abstract
Whooping cough remains a problem despite vaccination, and worldwide resurgence of pertussis is evident. Since cellular immunity plays a role in long-term protection against pertussis, we studied pertussis-specific T-cell responses. Around the time of the preschool acellular pertussis (aP) booster dose at 4 years of age, T-cell memory responses were compared in children who were primed during infancy with either a whole-cell pertussis (wP) or an aP vaccine. Peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with pertussis vaccine antigens for 5 days. T cells were characterized by flow-based analysis of carboxyfluorescein succinimidyl ester (CFSE) dilution and CD4, CD3, CD45RA, CCR7, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) expression. Before the aP preschool booster vaccination, both the proliferated pertussis toxin (PT)-specific CD4(+) and CD8(+) T-cell fractions (CFSE(dim)) were higher in aP- than in wP-primed children. Post-booster vaccination, more pertussis-specific CD4(+) effector memory cells (CD45RA(-) CCR7(-)) were induced in aP-primed children than in those primed with wP. The booster vaccination did not appear to significantly affect the T-cell memory subsets and functionality in aP-primed or wP-primed children. Although the percentages of Th1 cytokine-producing cells were alike in aP- and wP-primed children pre-booster vaccination, aP-primed children produced more Th1 cytokines due to higher numbers of proliferated pertussis-specific effector memory cells. At present, infant vaccinations with four aP vaccines in the first year of life result in pertussis-specific CD4(+) and CD8(+) effector memory T-cell responses that persist in children until 4 years of age and are higher than those in wP-primed children. The booster at 4 years of age is therefore questionable; this may be postponed to 6 years of age.
Collapse
|
14
|
Humoral and B-cell memory responses in children five years after pertussis acellular vaccine priming. Vaccine 2014; 32:2093-9. [DOI: 10.1016/j.vaccine.2014.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/21/2014] [Accepted: 02/04/2014] [Indexed: 11/30/2022]
|
15
|
Han WGH, van Twillert I, Poelen MCM, Helm K, van de Kassteele J, Verheij TJM, Versteegh FGA, Boog CJP, van Els CACM. Loss of multi-epitope specificity in memory CD4(+) T cell responses to B. pertussis with age. PLoS One 2013; 8:e83583. [PMID: 24391789 PMCID: PMC3877060 DOI: 10.1371/journal.pone.0083583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/06/2013] [Indexed: 02/05/2023] Open
Abstract
Pertussis is still occurring in highly vaccinated populations, affecting individuals of all ages. Long-lived Th1 CD4(+) T cells are essential for protective immunity against pertussis. For better understanding of the limited immunological memory to Bordetella pertussis, we used a panel of Pertactin and Pertussis toxin specific peptides to interrogate CD4(+) T cell responses at the epitope level in a unique cohort of symptomatic pertussis patients of different ages, at various time intervals after infection. Our study showed that pertussis epitope-specific T cell responses contained Th1 and Th2 components irrespective of the epitope studied, time after infection, or age. In contrast, the breadth of the pertussis-directed CD4(+) T cell response seemed dependent on age and closeness to infection. Multi-epitope specificity long-term after infection was lost in older age groups. Detailed knowledge on pertussis specific immune mechanisms and their insufficiencies is important for understanding resurgence of pertussis in highly vaccinated populations.
Collapse
Affiliation(s)
- Wanda G. H. Han
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Inonge van Twillert
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martien C. M. Poelen
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kina Helm
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jan van de Kassteele
- Department of Statistics, Mathematical Modelling and Data Logistics, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Theo J. M. Verheij
- Julius Center Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Cécile A. C. M. van Els
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
16
|
Smits K, Pottier G, Smet J, Dirix V, Vermeulen F, De Schutter I, Carollo M, Locht C, Ausiello CM, Mascart F. Different T cell memory in preadolescents after whole-cell or acellular pertussis vaccination. Vaccine 2013; 32:111-8. [PMID: 24176499 DOI: 10.1016/j.vaccine.2013.10.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/03/2013] [Accepted: 10/16/2013] [Indexed: 01/08/2023]
Abstract
To better understand vaccine-induced protection and its potential failure in light of recent whooping cough resurgence, we evaluated quantity as well as quality of memory T cell responses in B. pertussis-vaccinated preadolescent children. Using a technique based on flow cytometry to detect proliferation, cytokine production and phenotype of antigen-specific cells, we evaluated residual T cell memory in a cohort of preadolescents who received a whole-cell pertussis (wP; n=11) or an acellular pertussis vaccine (aP; n=13) during infancy, and with a median of 4 years elapsed from the last pertussis booster vaccine, which was aP for all children. We demonstrated that B. pertussis-specific memory T cells are detectable in the majority of preadolescent children several years after vaccination. CD4(+) and CD8(+) T cell proliferation in response to pertussis toxin and/or filamentous hemagglutinin was detected in 79% and 60% of the children respectively, and interferon-γ or tumor necrosis factor-α producing CD4(+) T cells were detected in 65% and 53% of the children respectively. Phenotyping of the responding cells showed that the majority of antigen-specific cells, whether defined by proliferation or cytokine production, were CD45RA(-)CCR7(-) effector memory T cells. Although the time since the last booster vaccine was significantly longer for wP-compared to aP-vaccinated children, their proliferation capacity in response to antigenic stimulation was comparable, and more children had a detectable cytokine response after wP- compared to aP-vaccination. This study supports at the immunological level recent epidemiological studies indicating that infant vaccination with wP induces longer lasting immunity than vaccination with aP-vaccines.
Collapse
Affiliation(s)
- Kaatje Smits
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaelle Pottier
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Smet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Françoise Vermeulen
- Pediatric Department, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Iris De Schutter
- Department of Pediatric Pulmonology, Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Maria Carollo
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Camille Locht
- INSERM U 1019, Lille, France; CNRS, UMR8204, Lille, France; Université Lille Nord de France, Lille, France; Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Clara Maria Ausiello
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Clinic, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
17
|
Carollo M, Palazzo R, Bianco M, Pandolfi E, Chionne P, Fedele G, Tozzi AE, Carsetti R, Romanò L, Ausiello CM. Hepatitis B specific T cell immunity induced by primary vaccination persists independently of the protective serum antibody level. Vaccine 2012; 31:506-13. [PMID: 23174200 DOI: 10.1016/j.vaccine.2012.11.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 01/25/2023]
Abstract
In 2005, in accordance with recommendations made by the European Medicines Agency, the Italian Drug Agency ordered withdrawal of the hexavalent Hexavac(®) vaccine (Sanofi Pasteur MSD) from the market. Concerns had been raised about the low immunogenicity of the hepatitis B virus component of the vaccine, assessed by measurement of serum antibody levels, and its potential consequences on long-term protection against hepatitis B infection. We evaluated memory T cell response to establish whether there are differences in the protective mechanisms among children who had received either Hexavac(®) or Infanrix-hexa(®) (GlaxoSmithKline) as their primary vaccination. Immunological memory was determined by measuring the ability of T cells to proliferate and secrete IFNγ by ELISA and intracellular cytokines (IFNγ and IL-2) when cultured with hepatitis B surface antigen (HBsAg). The different memory subsets of T cells were also measured. The results indicate that, although they generate different serum antibody levels, both vaccines are efficient in generating T recall responses in vitro five years after the primary vaccination. The less immunogenic Hexavac(®) vaccine induces a strong T antigen response, as indicated by increased blast proliferation and the enhanced presence of memory subsets after HBsAg recall stimulation. These findings suggest that cellular immune response should be considered alongside serological markers as a surrogate of protection.
Collapse
Affiliation(s)
- Maria Carollo
- Anti-Infectious Immunity Unit, Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schure RM, de Rond L, Öztürk K, Hendrikx L, Sanders E, Berbers G, Buisman AM. Pertussis circulation has increased T-cell immunity during childhood more than a second acellular booster vaccination in Dutch children 9 years of age. PLoS One 2012; 7:e41928. [PMID: 22860033 PMCID: PMC3409203 DOI: 10.1371/journal.pone.0041928] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022] Open
Abstract
UNLABELLED Here we report the first evaluation of T-cell responses upon a second acellular pertussis booster vaccination in Dutch children at 9 years of age, 5 years after a preschool booster vaccination. Blood samples of children 9 years of age were studied longitudinally until 1 year after the second aP booster and compared with those after the first aP booster in children 4 and 6 years of age from a cross-sectional study. After stimulation with pertussis-vaccine antigens, Th1, Th2 and Th17 cytokine responses were measured and effector memory cells (CCR7-CD45RA-) were characterized by 8-colour FACS analysis. The second aP booster vaccination at pre-adolescent age in wP primed individuals did increase pertussis-specific Th1 and Th2 cytokine responses. Noticeably, almost all T-cell responses had increased with age and were already high before the booster vaccination at 9 years of age. The enhancement of T-cell immunity during the 5 year following the booster at 4 years of age is probably caused by natural boosting due to the a high circulation of pertussis. However, the incidence of pertussis is high in adolescents and adults who have only received the Dutch wP vaccine during infancy and no booster at 4 years of age. Therefore, an aP booster vaccination at adolescence or later in these populations might improve long-term immunity against pertussis and reduce the transmission to the vulnerable newborns. TRIAL REGISTRATION Controlled-Trials.com ISRCTN64117538.
Collapse
Affiliation(s)
- Rose-Minke Schure
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
- Department of Pediatric Immunology, University Medical Center/Wilhelmina Kinder Ziekenhuis, Utrecht, the Netherlands
| | - Lia de Rond
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
| | - Kemal Öztürk
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
| | - Lotte Hendrikx
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
| | - Elisabeth Sanders
- Department of Pediatric Immunology, University Medical Center/Wilhelmina Kinder Ziekenhuis, Utrecht, the Netherlands
| | - Guy Berbers
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
| | - Anne-Marie Buisman
- Laboratory for Infectious Disease and Perinatal Screening, Center for Infectious Diseases Control, National Institute for Public Health, Bilthoven, the Netherlands
- * E-mail:
| |
Collapse
|