1
|
Butler JE, Sinkora M, Wang G, Stepanova K, Li Y, Cai X. Perturbation of Thymocyte Development Underlies the PRRS Pandemic: A Testable Hypothesis. Front Immunol 2019; 10:1077. [PMID: 31156633 PMCID: PMC6529568 DOI: 10.3389/fimmu.2019.01077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes immune dysregulation during the Critical Window of Immunological Development. We hypothesize that thymocyte development is altered by infected thymic antigen presenting cells (TAPCs) in the fetal/neonatal thymus that interact with double-positive thymocytes causing an acute deficiency of T cells that produces "holes" in the T cell repertoire allowing for poor recognition of PRRSV and other neonatal pathogens. The deficiency may be the result of random elimination of PRRSV-specific T cells or the generation of T cells that accept PRRSV epitopes as self-antigens. Loss of helper T cells for virus neutralizing (VN) epitopes can result in the failure of selection for B cells in lymph node germinal centers capable of producing high affinity VN antibodies. Generation of cytotoxic and regulatory T cells may also be impaired. Similar to infections with LDV, LCMV, MCMV, HIV-1 and trypanosomes, the host responds to the deficiency of pathogen-specific T cells and perhaps regulatory T cells, by "last ditch" polyclonal B cell activation. In colostrum-deprived PRRSV-infected isolator piglets, this results in hypergammaglobulinemia, which we believe to be a "red herring" that detracts attention from the thymic atrophy story, but leads to our second independent hypothesis. Since hypergammaglobulinemia has not been reported in PRRSV-infected conventionally-reared piglets, we hypothesize that this is due to the down-regulatory effect of passive maternal IgG and cytokines in porcine colostrum, especially TGFβ which stimulates development of regulatory T cells (Tregs).
Collapse
Affiliation(s)
- John E. Butler
- Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Yuming Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Abstract
We describe the domestication of the species, explore its value to agriculture and bioscience, and compare its immunoglobulin (Ig) genes to those of other vertebrates. For encyclopedic information, we cite earlier reviews and chapters. We provide current gene maps for the heavy and light chain loci and describe their polygeny and polymorphy. B-cell and antibody repertoire development is a major focus, and we present findings that challenge several mouse-centric paradigms. We focus special attention on the role of ileal Peyer's patches, the largest secondary lymphoid tissues in newborn piglets and a feature of all artiodactyls. We believe swine fetal development and early class switch evolved to provide natural secretory IgA antibodies able to prevent translocation of bacteria from the gut while the bacterial PAMPs drive development of adaptive immunity. We discuss the value of using the isolator piglet model to address these issues.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| | - Marek Sinkora
- Laboratory of Gnotobiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
3
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Sinkora M, Butler JE. Progress in the use of swine in developmental immunology of B and T lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:1-17. [PMID: 26708608 DOI: 10.1016/j.dci.2015.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
The adaptive immune system of higher vertebrates is believed to have evolved to counter the ability of pathogens to avoid expulsion because their high rate of germline mutations. Vertebrates developed this adaptive immune response through the evolution of lymphocytes capable of somatic generation of a diverse repertoire of their antigenic receptors without the need to increase the frequency of germline mutation. The focus of our research and this article is on the ontogenetic development of the lymphocytes, and the repertoires they generate in swine. Several features are discussed including (a) the "closed" porcine placenta means that de novo fetal development can be studied for 114 days without passive influence from the mother, (b) newborn piglets are precocial permitting them to be reared without their mothers in germ-free isolators, (c) swine are members of the γδ-high group of mammals and thus provides a greater opportunity to characterize the role of γδ T cells and (d) because swine have a simplified variable heavy and light chain genome they offer a convenient system to study antibody repertoire development.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic.
| | - John E Butler
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Abstract
Porcine reproductive and respiratory disease syndrome (PRRS) is a viral pandemic that especially affects neonates within the “critical window” of immunological development. PRRS was recognized in 1987 and within a few years became pandemic causing an estimated yearly $600,000 economic loss in the USA with comparative losses in most other countries. The causative agent is a single-stranded, positive-sense enveloped arterivirus (PRRSV) that infects macrophages and plasmacytoid dendritic cells. Despite the discovery of PRRSV in 1991 and the publication of >2,000 articles, the control of PRRS is problematic. Despite the large volume of literature on this disease, the cellular and molecular mechanisms describing how PRRSV dysregulates the host immune system are poorly understood. We know that PRRSV suppresses innate immunity and causes abnormal B cell proliferation and repertoire development, often lymphopenia and thymic atrophy. The PRRSV genome is highly diverse, rapidly evolving but amenable to the generation of many mutants and chimeric viruses for experimental studies. PRRSV only replicates in swine which adds to the experimental difficulty since no inbred well-defined animal models are available. In this article, we summarize current knowledge and apply it toward developing a series of provocative and testable hypotheses to explain how PRRSV immunomodulates the porcine immune system with the goal of adding new perspectives on this disease.
Collapse
|
6
|
Sinkora M, Butler JE, Lager KM, Potockova H, Sinkorova J. The comparative profile of lymphoid cells and the T and B cell spectratype of germ-free piglets infected with viruses SIV, PRRSV or PCV2. Vet Res 2014; 45:91. [PMID: 25186625 PMCID: PMC4156959 DOI: 10.1186/s13567-014-0091-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/18/2014] [Indexed: 12/16/2022] Open
Abstract
Lymphocyte subsets isolated from germ-free piglets experimentally infected with swine influenza virus (SIV), porcine reproductive and respiratory syndrome virus (PRRSV) or porcine circovirus type 2 (PCV2) were studied and the profile of these subsets among these three infections was monitored. Germ-free piglets were used since their response could be directly correlated to the viral infection. Because SIV infections are resolved even by colostrum-deprived neonates whereas PRRSV and PCV2 infections are not, SIV was used as a benchmark for an effectively resolved viral infection. PRRSV caused a large increase in the proportion of lymphocytes at the site of infection and rapid differentiation of B cells leading to a high level of Ig-producing cells but a severe reduction in CD2—CD21+ primed B cells. Unlike SIV and PCV2, PRRSV also caused an increase in terminally differentiated subset of CD2+CD8α+ γδ cells and polyclonal expansion of major Vβ families suggesting that non-specific helper T cells drive swift B cell activation. Distinct from infections with SIV and PRRSV, PCV2 infection led to the: (a) prevalence of MHC-II+ T cytotoxic cells, (b) restriction of the T helper compartment in the respiratory tract, (c) generation of a high proportion of FoxP3+ T cells in the blood and (d) selective expansion of IgA and IgE suggesting this virus elicits a mucosal immune response. Our findings suggest that PRRSV and PCV2 may negatively modulate the host immune system by different mechanisms which may explain their persistence.
Collapse
|
7
|
Guo B, Lager KM, Schlink SN, Kehrli ME, Brockmeier SL, Miller LC, Swenson SL, Faaberg KS. Chinese and Vietnamese strains of HP-PRRSV cause different pathogenic outcomes in United States high health swine. Virology 2013; 446:238-50. [PMID: 24074587 DOI: 10.1016/j.virol.2013.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/24/2013] [Accepted: 08/09/2013] [Indexed: 01/12/2023]
Abstract
An infectious clone of a highly pathogenic PRRSV strain from Vietnam (rSRV07) was prepared and was demonstrated to contain multiple amino acid differences throughout the genome when compared to Chinese highly pathogenic PRRSV strain rJXwn06. Virus rescued from the rSRV07 infectious clone was compared to rJXwn06 and US Type 2 prototype strain VR-2332 to examine the effects of virus genotype and phenotype on in vitro growth, and virus challenge dose on in vivo pathogenicity and host response. After swine inoculation at high- and low-doses of virus, rSRV07 was shown to replicate to an approximately 10-fold lower level in serum than rJXwn06, produced lower body temperatures than rJXwn06 and resulted in decreased mortality. Furthermore, a 9-plex cytokine panel revealed that the cytokine responses varied between different strains of PRRSV, as well as between tissues examined and by inoculum dose.
Collapse
Affiliation(s)
- Baoqing Guo
- Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Blood antioxidant enzymes (SOD, GPX), biochemical and haematological parameters in pigs naturally infected with porcine reproductive and respiratory syndrome virus. Pol J Vet Sci 2013; 16:369-76. [PMID: 23971206 DOI: 10.2478/pjvs-2013-0049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has become one of the most economically important diseases for the swine industry worldwide. The objective of the study was to determine selected blood antioxidant enzymes (glutathione peroxidase (GPX), superoxide dismutase (SOD)), biochemical and haematological parameters in PRRS positive and negative pigs of three different categories, mainly to test oxidative stress hypothesis in pigs naturally infected with PRRS virus. Ninety PRRS positive and 90 PRRS negative pigs were included in the study. The presence of PRRS was confirmed by serological detection of antibodies against PRRS virus (PRRSV) and detection of PRRS viral RNA by RT-PCR. Pigs were further divided into three groups of 30: piglets just before weaning (weaners), fatteners and finishers. Blood samples for determining selected blood parameters were collected from the vena cava cranialis. Significantly (P < 0.05) higher activities of SOD in weaners and fatteners and of GPX in weaners were determined in PRRS positive pigs than in corresponding groups of PRRS negative pigs. In contrast, significantly (P < 0.05) lower GPX activity was observed in finishers of PRRS positive pigs than in the corresponding group of PRRS negative pigs. Concentrations of serum total protein in PRRS positive weaners and fatteners were significantly (P < 0.05) higher than those found in PRRS negative pigs. Leukopenia was observed in all three groups of PRRS positive pigs. It has been demonstrated, for the first time, that oxidative stress might be increased in PRRSV naturally infected pigs, especially in weaners.
Collapse
|
9
|
Jiang Z, Zhou X, Michal JJ, Wu XL, Zhang L, Zhang M, Ding B, Liu B, Manoranjan VS, Neill JD, Harhay GP, Kehrli ME, Miller LC. Reactomes of porcine alveolar macrophages infected with porcine reproductive and respiratory syndrome virus. PLoS One 2013; 8:e59229. [PMID: 23527143 PMCID: PMC3602036 DOI: 10.1371/journal.pone.0059229] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/13/2013] [Indexed: 01/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has devastated pig industries worldwide for many years. It is caused by a small RNA virus (PRRSV), which targets almost exclusively pig monocytes or macrophages. In the present study, five SAGE (serial analysis of gene expression) libraries derived from 0 hour mock-infected and 6, 12, 16 and 24 hours PRRSV-infected porcine alveolar macrophages (PAMs) produced a total 643,255 sequenced tags with 91,807 unique tags. Differentially expressed (DE) tags were then detected using the Bayesian framework followed by gene/mRNA assignment, arbitrary selection and manual annotation, which determined 699 DE genes for reactome analysis. The DAVID, KEGG and REACTOME databases assigned 573 of the DE genes into six biological systems, 60 functional categories and 504 pathways. The six systems are: cellular processes, genetic information processing, environmental information processing, metabolism, organismal systems and human diseases as defined by KEGG with modification. Self-organizing map (SOM) analysis further grouped these 699 DE genes into ten clusters, reflecting their expression trends along these five time points. Based on the number one functional category in each system, cell growth and death, transcription processes, signal transductions, energy metabolism, immune system and infectious diseases formed the major reactomes of PAMs responding to PRRSV infection. Our investigation also focused on dominant pathways that had at least 20 DE genes identified, multi-pathway genes that were involved in 10 or more pathways and exclusively-expressed genes that were included in one system. Overall, our present study reported a large set of DE genes, compiled a comprehensive coverage of pathways, and revealed system-based reactomes of PAMs infected with PRRSV. We believe that our reactome data provides new insight into molecular mechanisms involved in host genetic complexity of antiviral activities against PRRSV and lays a strong foundation for vaccine development to control PRRS incidence in pigs.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail: (ZJ) (ZJ); (LCM) (LM)
| | - Xiang Zhou
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Xiao-Lin Wu
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lifan Zhang
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ming Zhang
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Bo Ding
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Bang Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Hubei, China
| | - Valipuram S. Manoranjan
- Department of Mathematics, Washington State University, Pullman, Washington, United States of America
| | - John D. Neill
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, United States of America
| | - Gregory P. Harhay
- Animal Health Research Unit, United States Meat Animal Research Center, United States Department of Agriculture, Agricultural Research Service, Clay Center, Nebraska, United States of America
| | - Marcus E. Kehrli
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Laura C. Miller
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
- * E-mail: (ZJ) (ZJ); (LCM) (LM)
| |
Collapse
|
10
|
Butler JE, Wertz N. The porcine antibody repertoire: variations on the textbook theme. Front Immunol 2012; 3:153. [PMID: 22754553 PMCID: PMC3384076 DOI: 10.3389/fimmu.2012.00153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
The genes encoding the heavy and light chains of swine antibodies are organized in the same manner as in other eutherian mammals. There are ∼30 VH genes, two functional DH genes and one functional JH gene, 14-60 Vκ genes, 5 Jκ segments, 12-13 functional Vλ genes, and two functional Jλ genes. The heavy chain constant regions encode the same repertoire of isotypes common to other eutherian mammals. The piglet models offers advantage over rodent models since the fetal repertoire develops without maternal influences and the precocial nature of their multiple offspring allows the experimenter to control the influences of environmental and maternal factors on repertoire development postnatally. B cell lymphogenesis in swine begins in the fetal yolk sac at 20 days of gestation (DG), moves to the fetal liver at 30 DG and eventually to the bone marrow which dominates until birth (114 DG) and to at least 5 weeks postpartum. There is no evidence that the ileal Peyers patches are a site of B cell lymphogenesis or are required for B cell maintenance. Unlike rodents and humans, light chain rearrangement begins first in the lambda locus; kappa rearrangements are not seen until late gestation. Dissimilar to lab rodents and more in the direction of the rabbit, swine utilize a small number of VH genes to form >90% of their pre-immune repertoire. Diversification in response to environmental antigen does not alter this pattern and is achieved by somatic hypermutation (SHM) of the same small number of VH genes. The situation for light chains is less well studied, but certain Vκ and Jκ and Vλ and Jλ are dominant in transcripts and in contrast to rearranged heavy chains, there is little junctional diversity, less SHM, and mutations are not concentrated in CDR regions. The transcribed and secreted pre-immune antibodies of the fetus include mainly IgM, IgA, and IgG3; this last isotype may provide a type of first responder mucosal immunity. Development of functional adaptive immunity is dependent on bacterial MAMPs or MAMPs provided by viral infections, indicating the importance of innate immunity for development of adaptive immunity. The structural analysis of Ig genes of this species indicate that especially the VH and Cγ gene are the result of tandem gene duplication in the context of genomic gene conversion. Since only a few of these duplicated VH genes substantially contribute to the antibody repertoire, polygeny may be a vestige from a time before somatic processes became prominently evolved to generate the antibody repertoire. In swine we believe such duplications within the genome have very limited functional significance and their occurrence is therefore overrated.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | | |
Collapse
|