1
|
Boerth EM, Gong J, Roffler B, Hancock Z, Berger L, Song B, Malley SF, MacLennan CA, Zhang F, Malley R, Lu YJ. Evaluation of a Quadrivalent Shigella flexneri Serotype 2a, 3a, 6, and Shigella sonnei O-Specific Polysaccharide and IpaB MAPS Vaccine. Vaccines (Basel) 2024; 12:1091. [PMID: 39460258 PMCID: PMC11510904 DOI: 10.3390/vaccines12101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Shigellosis is the leading cause of diarrheal deaths worldwide and is particularly dangerous in children under 5 years of age in low- and middle-income countries. Additionally, the rise in antibiotic resistance has highlighted the need for an effective Shigella vaccine. Previously, we have used the Multiple Antigen-Presenting System (MAPS) technology to generate monovalent and quadrivalent Salmonella MAPS vaccines that induce functional antibodies against Salmonella components. METHODS In this work, we detail the development of several monovalent vaccines using O-specific polysaccharides (OSPs) from four dominant serotypes, S. flexneri 2a, 3a, and 6, and S. sonnei. We tested several rhizavidin (rhavi) fusion proteins and selected a Shigella-specific protein IpaB. Quadrivalent MAPS were made with Rhavi-IpaB protein and tested in rabbits for immunogenicity. RESULTS Individual MAPS vaccines generated robust, functional antibody responses against both IpaB and the individual OSP component. Antibodies to IpaB were effective across Shigella serotypes. We also demonstrate that the OSP antibodies generated are specific to each homologous Shigella O type by performing ELISA and bactericidal assays. We combined the components of each MAPS vaccine to formulate a quadrivalent MAPS vaccine which elicited similar antibody and bactericidal responses compared to their monovalent counterparts. Finally, we show that the quadrivalent MAPS immune sera are functional against several clinical isolates of the serotypes used in the vaccine. CONCLUSIONS This quadrivalent MAPS Shigella vaccine is immunogenicity and warrants further study.
Collapse
Affiliation(s)
- Emily M. Boerth
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce Gong
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Becky Roffler
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zoe Hancock
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Berger
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Boni Song
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha F. Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Calman A. MacLennan
- Enteric & Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Boerth EM, Gong J, Roffler B, Thompson CM, Song B, Malley SF, Hirsch A, MacLennan CA, Zhang F, Malley R, Lu YJ. Induction of Broad Immunity against Invasive Salmonella Disease by a Quadrivalent Combination Salmonella MAPS Vaccine Targeting Salmonella Enterica Serovars Typhimurium, Enteritidis, Typhi, and Paratyphi A. Vaccines (Basel) 2023; 11:1671. [PMID: 38006003 PMCID: PMC10675568 DOI: 10.3390/vaccines11111671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Bloodstream infections in low- and middle-income countries (LMICs) are most frequently attributed to invasive Salmonella disease caused by four primary serovars of Salmonella enterica: Typhi, Paratyphi A, Typhimurium, and Enteritidis. We showed previously that a bivalent vaccine targeting S. Typhi and S. Paratyphi A using a Multiple Antigen-Presenting System (MAPS) induced functional antibodies against S. Typhi and S. Paratyphi. In the current study, we describe the preclinical development of a first candidate quadrivalent combination Salmonella vaccine with the potential to cover all four leading invasive Salmonella serotypes. We showed that the quadrivalent Salmonella MAPS vaccine, containing Vi from S. Typhi, O-specific Polysaccharide (OSP) from S. Paratyphi A, S. Enteritidis and S. Typhimurium, combined with the Salmonella-specific protein SseB, elicits robust and functional antibody responses to each of the components of the vaccine. Our data indicates that the application of MAPS technology to the development of vaccines targeting invasive forms of Salmonella is practical and merits additional consideration.
Collapse
Affiliation(s)
- Emily M. Boerth
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce Gong
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Becky Roffler
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Claudette M. Thompson
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Boni Song
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha F. Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Angelika Hirsch
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Calman A. MacLennan
- Enteric & Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
A Bivalent MAPS Vaccine Induces Protective Antibody Responses against Salmonella Typhi and Paratyphi A. Vaccines (Basel) 2022; 11:vaccines11010091. [PMID: 36679935 PMCID: PMC9865949 DOI: 10.3390/vaccines11010091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Infections by Salmonella Typhi and Paratyphi A strain are still a major cause of morbidity and mortality in developing countries. Generation of antibodies against the Vi capsular polysaccharide of S. Typhi via either pure polysaccharide or protein-polysaccharide conjugate is a very effective way to protect against S. Typhi. To date, there is no commercially available vaccine against S. Paratyphi A. The O-specific polysaccharide (OSP) has been generally considered a good vaccine target for Paratyphi A. Here, a bivalent vaccine against Vi and OSP was generated using the Multiple Antigen Presenting System (MAPS). Three different protein constructs, including CRM197, rEPA of Pseudomonas, and a pneumococcal fusion protein SP1500-SP0785, were fused to Rhizavidin (Rhavi) and evaluated their impact on immunogenicity when incorporated as fusion proteins affinity-bound to the two polysaccharides. We compared the antibody responses, antibody avidity, and cidal activity of sera post-immunization with monovalent vs. combination vaccines. We also wished to evaluate the generation of Vi-specific memory B cells in mice. We found little interference when combination vaccine was compared to monovalent vaccines with respect to antibody concentration and cidal activity of sera. Significant affinity maturation was noted for both Vi and OSP antigens. Thus, our preclinical results with a combination Vi- and OSP-MAPS vaccine strongly support the feasibility of this approach and its application of this approach to other important salmonella and Shigella species.
Collapse
|
4
|
Roy EM, Zhang F, Malley R, Lu YJ. Induction of T Cell Responses by Vaccination of a Streptococcus pneumoniae Whole-Cell Vaccine. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2410:345-355. [PMID: 34914056 DOI: 10.1007/978-1-0716-1884-4_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The induction of T cell responses by vaccination is important for protection against infection. We have previously shown that immunization with a killed Streptococcus pneumoniae whole-cell vaccine (SPWCV) by either intranasal immunization or subcutaneous immunization induced T cell responses to SPWCV. Protection against colonization by S. pneumoniae is dependent on CD4+ IL-17A production induced by immunization. Here, we present detailed protocols for preparation of SPWCV, immunization of mice, and assay for T cell responses in blood and splenocytes in immunized mice.
Collapse
Affiliation(s)
- Emily M Roy
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Vaz MJ, Purrier SA, Bonakdar M, Chamby AB, Ratner AJ, Randis TM. The Impact of Circulating Antibody on Group B Streptococcus Intestinal Colonization and Invasive Disease. Infect Immun 2020; 89:e00348-20. [PMID: 33077619 PMCID: PMC7927928 DOI: 10.1128/iai.00348-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal (GI) colonization with group B Streptococcus (GBS) is an important precursor to late-onset (LO) disease in infants. The host-pathogen interactions that mediate progression to invasive disease remain unknown due, in part, to a paucity of robust model systems. Passively acquired maternal GBS-specific antibodies protect newborns from early-onset disease, yet their impact on GI colonization and LO disease is unexplored. Using murine models of both perinatal and postnatal GBS acquisition, we assessed the kinetics of GBS GI colonization, progression to invasive disease, and the role of GBS-specific IgG production in exposed offspring and juvenile mice at age 12 and 14 days, respectively. We defined LO disease as >7 days of life in the perinatal model. We studied the impact of maternal immunization using a whole-cell GBS vaccine on the duration of intestinal colonization and progression to invasive disease after postnatal GBS exposure in offspring. Animals exhibit sustained GI colonization following both perinatal and postnatal exposure to GBS, with 21% and 27%, respectively, developing invasive disease. Intestinal colonization with GBS induces an endogenous IgG response within 20 days of exposure. Maternal vaccination with whole-cell GBS induces production of GBS-specific IgG in dams that is vertically transmitted to their offspring but does not decrease the duration of GBS intestinal colonization or reduce LO mortality following postnatal GBS exposure. Both perinatal and postnatal murine models of GBS acquisition closely recapitulate the human disease state, in which GBS colonizes the intestine and causes LO disease. We demonstrate both endogenous production of anti-GBS IgG in juvenile mice and vertical transfer of antibodies to offspring following maternal vaccination. These models serve as a platform to study critical host-pathogen interactions that mediate LO GBS disease.
Collapse
Affiliation(s)
- Michelle J Vaz
- Department of Pediatrics, NYU School of Medicine, New York, New York, USA
| | - Sheryl A Purrier
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maryam Bonakdar
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Anna B Chamby
- The University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Adam J Ratner
- Department of Pediatrics, NYU School of Medicine, New York, New York, USA
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Tara M Randis
- Department of Pediatrics, University of South Florida, Tampa, Florida, USA
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Radka CD, DeLucas LJ, Wilson LS, Lawrenz MB, Perry RD, Aller SG. Crystal structure of Yersinia pestis virulence factor YfeA reveals two polyspecific metal-binding sites. Acta Crystallogr D Struct Biol 2017; 73:557-572. [PMID: 28695856 PMCID: PMC5505154 DOI: 10.1107/s2059798317006349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/26/2017] [Indexed: 01/05/2023] Open
Abstract
Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. In Yersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA is polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.
Collapse
Affiliation(s)
- Christopher D. Radka
- Graduate Biomedical Sciences Microbiology Theme, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lawrence J. DeLucas
- Office of the Provost, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Landon S. Wilson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Robert D. Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Stephen G. Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Zhang F, Jun M, Ledue O, Herd M, Malley R, Lu YJ. Antibody-mediated protection against Staphylococcus aureus dermonecrosis and sepsis by a whole cell vaccine. Vaccine 2017; 35:3834-3843. [PMID: 28601365 DOI: 10.1016/j.vaccine.2017.05.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 01/16/2023]
Abstract
Staphylococcus aureus is a very important human pathogen that causes significant morbidity and mortality worldwide. Several vaccine clinical trials based on generating antibody against staphylococcal surface polysaccharides or proteins have been unsuccessful. A killed whole cell lysate preparation (SaWCA) was made by lysing a USA 300 strain with lysostaphin followed by sonication and harvest of the supernatant fraction. Immunization with SaWCA and cholera toxin (CT) generated robust IL-17A but relatively modest antibody responses, and provided protection in the skin abscess but not in the dermonecrosis or invasive infection model. In contrast, parenteral immunization with SaWCA and alum produced robust antibody and IL-17A responses and protected mice in all three models. Sera generated after immunization with SaWCA had measurable antibodies directed against six tested conserved surface proteins, and promoted opsonophagocytosis activity (OPA) against two S. aureus strains. Passive transfer of SaWCA-immune serum protected mice against dermonecrosis and invasive infection but provided no demonstrable effect against skin abscesses, suggesting that antibodies alone may not be sufficient for protection in this model. Thus, immunization with a SA lysate preparation generates potent antibody and T cell responses, and confers protection in systemic and cutaneous staphylococcal infection models.
Collapse
Affiliation(s)
- Fan Zhang
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria Jun
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Olivia Ledue
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Muriel Herd
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Kothari N, Genschmer KR, Kothari S, Kim JA, Briles DE, Rhee DK, Carbis R. Preparation and testing of a Vi conjugate vaccine using pneumococcal surface protein A (PspA) from Streptococcus pneumoniae as the carrier protein. Vaccine 2014; 32:5755-60. [PMID: 25171842 DOI: 10.1016/j.vaccine.2014.08.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/01/2014] [Accepted: 08/15/2014] [Indexed: 11/16/2022]
Abstract
In the current study pneumococcal surface protein A (PspA) was conjugated to Vi capsular polysaccharide from Salmonella Typhi to make available a vaccine against typhoid fever that has the potential to also provide broad protection from Streptococcus pneumoniae. High yielding production processes were developed for the purification of PspAs from families 1 and 2. The purified PspAs were conjugated to Vi with high recovery of both Vi and PspA. The processes developed especially for PspA family 2 could readily be adapted for large scale production under cGMP conditions. Previously we have shown that conjugation of diphtheria toxoid (DT) to Vi polysaccharide improves the immune response to Vi but can also enhance the response to DT. In this study it was shown that conjugation of PspA to Vi enhanced the anti-PspA response and that PspA was a suitable carrier protein as demonstrated by the characteristics of a T-cell dependent response to the Vi. We propose that a bivalent vaccine consisting of PspA from families 1 and 2 bound to Vi polysaccharide would protect against typhoid fever and has the potential to also protect against pneumococcal disease and should be considered for use in developing countries.
Collapse
Affiliation(s)
- Neha Kothari
- Vaccine Development Section, International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 Republic of Korea; School of Pharmacy, Sungkyunkwan University, 300 Chunchun-dong, Suwon 440-746, Republic of Korea
| | - Kristopher R Genschmer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Sudeep Kothari
- Vaccine Development Section, International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 Republic of Korea
| | - Jeong Ah Kim
- Vaccine Development Section, International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 Republic of Korea
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Dong Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, 300 Chunchun-dong, Suwon 440-746, Republic of Korea
| | - Rodney Carbis
- Vaccine Development Section, International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 Republic of Korea.
| |
Collapse
|
9
|
Effect of nonheme iron-containing ferritin Dpr in the stress response and virulence of pneumococci. Infect Immun 2014; 82:3939-47. [PMID: 25001605 DOI: 10.1128/iai.01829-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) produces hydrogen peroxide as a by-product of metabolism and provides a competitive advantage against cocolonizing bacteria. As pneumococci do not produce catalase or an inducible regulator of hydrogen peroxide, the mechanism of resistance to hydrogen peroxide is unclear. A gene responsible for resistance to hydrogen peroxide and iron in other streptococci is that encoding nonheme iron-containing ferritin, dpr, but previous attempts to study this gene in pneumococcus by generating a dpr mutant were unsuccessful. In the current study, we found that dpr is in an operon with the downstream genes dhfr and clpX. We generated a dpr deletion mutant which displayed normal early-log-phase and mid-log-phase growth in bacteriologic medium but survived less well at stationary phase; the addition of catalase partially rescued the growth defect. We showed that the dpr mutant is significantly more sensitive to pH, heat, iron concentration, and oxidative stress due to hydrogen peroxide. Using a mouse model of colonization, we also showed that the dpr mutant displays a reduced ability to colonize and is more rapidly cleared from the nasopharynx. Our results thus suggest that Dpr is important for pneumococcal resistance to stress and for nasopharyngeal colonization.
Collapse
|
10
|
MacLennan CA, Martin LB, Micoli F. Vaccines against invasive Salmonella disease: current status and future directions. Hum Vaccin Immunother 2014; 10:1478-93. [PMID: 24804797 PMCID: PMC4185946 DOI: 10.4161/hv.29054] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Though primarily enteric pathogens, Salmonellae are responsible for a considerable yet under-appreciated global burden of invasive disease. In South and South-East Asia, this manifests as enteric fever caused by serovars Typhi and Paratyphi A. In sub-Saharan Africa, a similar disease burden results from invasive nontyphoidal Salmonellae, principally serovars Typhimurium and Enteritidis. The existing Ty21a live-attenuated and Vi capsular polysaccharide vaccines target S. Typhi and are not effective in young children where the burden of invasive Salmonella disease is highest. After years of lack of investment in new Salmonella vaccines, recent times have seen increased interest in the area led by emerging-market manufacturers, global health vaccine institutes and academic partners. New glycoconjugate vaccines against S. Typhi are becoming available with similar vaccines against other invasive serovars in development. With other new vaccines under investigation, including live-attenuated, protein-based and GMMA vaccines, now is an exciting time for the Salmonella vaccine field.
Collapse
Affiliation(s)
- Calman A MacLennan
- Novartis Vaccines Institute for Global Health; Siena, Italy; Medical Research Council Centre for Immune Regulation and Clinical Immunology Service; Institute of Biomedical Research, School of Immunity and Infection; College of Medicine and Dental Sciences; University of Birmingham; Birmingham, UK
| | - Laura B Martin
- Novartis Vaccines Institute for Global Health; Siena, Italy
| | | |
Collapse
|
11
|
|
12
|
Abstract
PURPOSE OF REVIEW This review summarizes the recent advances in vaccination against Salmonella enterica serovar Typhi and highlights the data supporting the development of next generation vaccines to address paratyphoid fever and invasive nontyphoidal Salmonella (iNTS) disease. RECENT FINDINGS There has been increasing awareness of the disease burden caused by S. Typhi particularly in Africa and greater recognition of S. Paratyphi A's contribution to enteric fever episodes throughout Asia. Groups have been working to improve the existing typhoid vaccines and provide comprehensive data on the feasibility of their implementation in endemic settings. These data have resulted in modifications to the recommendations for typhoid vaccination in traveller markets and endemic settings, and has also led to the development of S. Paratyphi A vaccine components that can be combined with existing typhoid vaccines to generate bivalent formulations against enteric fever. The epidemiology of iNTS serovars as cause of appreciable morbidity and mortality in Africa, and the need for vaccines, has also become more widely appreciated. SUMMARY Current typhoid vaccines, although moderately effective for short periods of time, cannot be used in all age groups and only target one of the clinically relevant Salmonella serovars. Greater effort must be placed on the development and implementation of improved vaccines for the disease burden resulting from Typhi, Paratyphi A or iNTS infections.
Collapse
|
13
|
Li Y, Gierahn T, Thompson CM, Trzciński K, Ford CB, Croucher N, Gouveia P, Flechtner JB, Malley R, Lipsitch M. Distinct effects on diversifying selection by two mechanisms of immunity against Streptococcus pneumoniae. PLoS Pathog 2012; 8:e1002989. [PMID: 23144610 PMCID: PMC3493470 DOI: 10.1371/journal.ppat.1002989] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/29/2012] [Indexed: 12/23/2022] Open
Abstract
Antigenic variation to evade host immunity has long been assumed to be a driving force of diversifying selection in pathogens. Colonization by Streptococcus pneumoniae, which is central to the organism's transmission and therefore evolution, is limited by two arms of the immune system: antibody- and T cell- mediated immunity. In particular, the effector activity of CD4+ TH17 cell mediated immunity has been shown to act in trans, clearing co-colonizing pneumococci that do not bear the relevant antigen. It is thus unclear whether TH17 cell immunity allows benefit of antigenic variation and contributes to diversifying selection. Here we show that antigen-specific CD4+ TH17 cell immunity almost equally reduces colonization by both an antigen-positive strain and a co-colonized, antigen-negative strain in a mouse model of pneumococcal carriage, thus potentially minimizing the advantage of escape from this type of immunity. Using a proteomic screening approach, we identified a list of candidate human CD4+ TH17 cell antigens. Using this list and a previously published list of pneumococcal Antibody antigens, we bioinformatically assessed the signals of diversifying selection among the identified antigens compared to non-antigens. We found that Antibody antigen genes were significantly more likely to be under diversifying selection than the TH17 cell antigen genes, which were indistinguishable from non-antigens. Within the Antibody antigens, epitopes recognized by human antibodies showed stronger evidence of diversifying selection. Taken together, the data suggest that TH17 cell-mediated immunity, one form of T cell immunity that is important to limit carriage of antigen-positive pneumococcus, favors little diversifying selection in the targeted antigen. The results could provide new insight into pneumococcal vaccine design. Streptococcus pneumoniae, or pneumococcus, is a leading cause of morbidity and mortality in young children and elderly persons worldwide. Current pneumococcus vaccines target a limited number of clinically important serotypes, while strains with serotypes not targeted by current vaccines are increasing in importance in both carriage and invasive disease. As a result, there has been a substantial interest to develop novel, cost-effective vaccines based on protein antigens from pneumococcus. To this end, it is critical to understand how the human immune system exerts selection pressures on the targeted antigens. Two immune mechanisms targeting pneumococcal protein antigens have been documented, mediated by antibody and T cells, respectively. In this study, we screened for pneumococcal antigens that are commonly recognized by human CD4+ TH17 cells. Using a mouse model of pneumococcal colonization, we demonstrate that TH17 cell-based immunity almost equally reduces colonization by both an antigen-positive strain and a co-colonizing, antigen-negative strain. Furthermore, we demonstrate that the DNA sequences of TH17 cell antigens demonstrate no detectable signs of being under selective pressure, unlike pneumococcal antigens known to be strong antibody targets. Thus, one form of the T cell-mediated immunity that is important to limit carriage of antigen-positive pneumococcus favors little diversifying selection in the targeted antigen. These results suggest evolution of escape from TH17 -based vaccines may be slower than from antibody-based vaccines.
Collapse
Affiliation(s)
- Yuan Li
- Department of Epidemiology and Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Moffitt KL, Malley R, Lu YJ. Identification of protective pneumococcal T(H)17 antigens from the soluble fraction of a killed whole cell vaccine. PLoS One 2012; 7:e43445. [PMID: 22905267 PMCID: PMC3419164 DOI: 10.1371/journal.pone.0043445] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022] Open
Abstract
Mucosal or parenteral immunization with a killed unencapsulated pneumococcal whole cell antigen (WCA) with an adjuvant protects mice from colonization by a T(H)17 CD4+ cell-mediated mechanism. Using preparative SDS gels, we separated the soluble proteins that compose the WCA in order to identify fractions that were immunogenic and protective. We screened these fractions for their ability to stimulate IL-17A secretion from splenocytes obtained from mice immunized with WCA and adjuvant. We identified 12 proteins within the stimulatory fractions by mass spectrometry; these proteins were then cloned, recombinantly expressed and purified using an Escherichia coli expression system. The ability of these proteins to induce IL-17A secretion was then evaluated by stimulation of mouse splenocytes. Of the four most stimulatory proteins, three were protective in a mouse pneumococcal serotype 6B colonization model. This work thus describes a method for identifying immunogenic proteins from the soluble fraction of pneumococcus and shows that several of the proteins identified protect mice from colonization when used as mucosal vaccines. We propose that, by providing protection against pneumococcal colonization, one or more of these proteins may serve as components of a multivalent pneumococcal vaccine.
Collapse
Affiliation(s)
- Kristin L Moffitt
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|