1
|
Faisal S, Vats D, Panda S, Sharma V, Luthra K, Mohan A, Kulkarni S, Gupta PK, Singh A. Synergistic role of Mycobacterium indicus pranii and human beta Defensin-2 as adjunctive therapy against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2024; 149:102571. [PMID: 39442483 DOI: 10.1016/j.tube.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Host-directed therapies (HDT) via modulation of specific host responses like inflammation can limit mycobacterial infection. HDTs could be included in current TB therapy as an adjunct to increase bacterial clearance and limit tissue damage to control spread. Individually, Mycobacterium indicus pranii (MIP) and human beta defensin-2 (hBD-2) are promising therapies for tuberculosis (TB). They can directly target the TB bacilli and enhance cell-mediated immune responses, which is limiting with conventional drugs. Therefore, our study investigated the combined application of MIP and hBD-2 to evaluate their efficacy in clearing infections caused by Mycobacterium smegmatis (M.smeg) and Mycobacterium tuberculosis (M.tb) (both avirulent; H37Ra and virulent strain; H37Rv) in THP-1 cells and human monocyte-derived macrophages (MDMs). A strong pro-inflammatory response was observed against the combination of MIP and hBD-2 which also correlated with a significant reduction in the bacterial load. This combination further showed protection against M.tb by enhancing pyroptosis in the infected cells. The study suggests the combined use of these potent immunomodulators, which could be employed as an effective mode of therapy as adjuvants against mycobacterial infections after validation in a suitable animal model.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Deepak Vats
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sudhasini Panda
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vidushi Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anant Mohan
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Savita Kulkarni
- Molecular Immunology and Tuberculosis Section, RMC, BARC, Mumbai, 400012, India
| | - Pramod Kumar Gupta
- Molecular Immunology and Tuberculosis Section, RMC, BARC, Mumbai, 400012, India.
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Stefan K, Gordon R, Rolig A, Honkala A, Tailor D, Davis LE, Modi RI, Joshipura M, Khamar B, Malhotra SV. Mycobacterium w - a promising immunotherapeutic intervention for diseases. Front Immunol 2024; 15:1450118. [PMID: 39534596 PMCID: PMC11554463 DOI: 10.3389/fimmu.2024.1450118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Immunomodulating agents interact with the immune system and alter the outcome of specific immune processes. As our understanding of the immune system continues to evolve, there is a growing effort to identify agents with immunomodulating applications to use therapeutically to treat various diseases. Mycobacterium w (Mw), a heat-killed mycobacterium, is an atypical mycobacterial species that possesses strong immunomodulatory properties. Mw was initially evaluated as an immune-therapeutic against leprosy, but since then Mw has generated a lot of interest and been studied for therapeutic applications across a host of diseases, such as pulmonary tuberculosis, tuberculous pericarditis, sepsis, lung cancer, and more. This article summarizes a large body of work published in the past five decades, describing various aspects of Mw and its potential for further therapeutic development.
Collapse
Affiliation(s)
- Kirsten Stefan
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ryan Gordon
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Annah Rolig
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Alexander Honkala
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Dhanir Tailor
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Lara E. Davis
- Division of Hematology/Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Rajiv I. Modi
- Research & Development Center, Cadila Pharmaceuticals Ltd, Dholka, Gujarat, India
| | - Manjul Joshipura
- Research & Development Center, Cadila Pharmaceuticals Ltd, Dholka, Gujarat, India
| | - Bakulesh Khamar
- Research & Development Center, Cadila Pharmaceuticals Ltd, Dholka, Gujarat, India
| | - Sanjay V. Malhotra
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
3
|
Sefat KMSR, Kumar M, Kehl S, Kulkarni R, Leekha A, Paniagua MM, Ackart DF, Jones N, Spencer C, Podell BK, Ouellet H, Varadarajan N. An intranasal nanoparticle vaccine elicits protective immunity against Mycobacterium tuberculosis. Vaccine 2024; 42:125909. [PMID: 38704256 DOI: 10.1016/j.vaccine.2024.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
Mucosal vaccines have the potential to elicit protective immune responses at the point of entry of respiratory pathogens, thus preventing even the initial seed infection. Unlike licensed injectable vaccines, mucosal vaccines comprising protein subunits are only in development. One of the primary challenges associated with mucosal vaccines has been identifying and characterizing safe yet effective mucosal adjuvants that can effectively prime multi-factorial mucosal immunity. In this study, we tested NanoSTING, a liposomal formulation of the endogenous activator of the stimulator of interferon genes (STING) pathway, cyclic guanosine adenosine monophosphate (cGAMP), as a mucosal adjuvant. We formulated a vaccine based on the H1 antigen (fusion protein of Ag85b and ESAT-6) adjuvanted with NanoSTING. Intranasal immunization of NanoSTING-H1 elicited a strong T-cell response in the lung of vaccinated animals characterized by (a) CXCR3+ KLRG1- lung resident T cells that are known to be essential for controlling bacterial infection, (b) IFNγ-secreting CD4+ T cells which is necessary for intracellular bactericidal activity, and (c) IL17-secreting CD4+ T cells that can confer protective immunity against multiple clinically relevant strains of Mtb. Upon challenge with aerosolized Mycobacterium tuberculosis Erdman strain, intranasal NanoSTING-H1 provides protection comparable to subcutaneous administration of the live attenuated Mycobacterium bovis vaccine strain Bacille-Calmette-Guérin (BCG). Our results indicate that NanoSTING adjuvanted protein vaccines can elicit a multi-factorial immune response that protects from infection by M. tuberculosis.
Collapse
Affiliation(s)
- K M Samiur Rahman Sefat
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Monish Kumar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Stephanie Kehl
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Rohan Kulkarni
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Ankita Leekha
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - Melisa-Martinez Paniagua
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA
| | - David F Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicole Jones
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Charles Spencer
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hugues Ouellet
- Department of Biological Sciences, University of Texas, El Paso, TX 79968, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77054, USA.
| |
Collapse
|
4
|
Singh M, Mehendale S, Guleria R, Sarin R, Tripathy S, Gangakhedkar RR, Katoch K, Pandey RM, Panda S, Pati S, Mohapatra PR, Joshi S, Narasimhaiah S, Kodan P, Bhaskar S, Rani R, Khan AM, Swaminathan S, PreVenTB Trial Team. PreVenTB trial: protocol for evaluation of efficacy and safety of two vaccines VPM1002 and Immuvac (Mw) in preventing tuberculosis (TB) in healthy household contacts of newly diagnosed sputum smear-positive pulmonary TB patients: phase III, randomised, double-blind, three-arm placebo-controlled trial. BMJ Open 2024; 14:e082916. [PMID: 39645271 DOI: 10.1136/bmjopen-2023-082916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION Tuberculosis (TB) continues to be one of the deadliest infectious diseases over the centuries, killing more people worldwide than any other single infectious disease. There is an urgent need for additional strategies which can expedite efforts to combat TB including a preventive vaccine. In this endeavour, we have developed a protocol for a multisite, double-blind, placebo-controlled clinical trial in India that aims to evaluate the efficacy and safety of two TB vaccines; namely, VPM1002 and Immuvac (M.w) (Mycobacterium Indicus Pranii) (MIP) among healthy household contacts (HHCs) of sputum smear-positive pulmonary TB (PTB) patients. METHODS AND ANALYSIS In the three-arm randomised double-blind placebo-controlled trial study protocol, a total of 12 000 HHCs (aged 6-99 years) of sputum smear-positive PTB patients will be randomised to receive either of the two vaccine candidates VPM1002 and MIP or placebo. The primary efficacy endpoint is the prevention of microbiologically confirmed TB. Secondary endpoints will include (1) prevention against Latent TB infection, (2) incidence of adverse events and serious adverse events in study participants, (3) efficacy of vaccine in prevention of PTB/extra PTB in different age groups (6-18 years, 19-35 years, 36-60 years and above 60 years) and (4) immunogenicity of VPM1002 and MIP at month 2 and month 6 after first vaccination in terms of flow cytometric analysis of M.Tb specific CD4+ and CD8+ T cells secreting cytokines and Luminex assays for the presence of different cytokines in the sera and supernatants of peripheral blood mononuclear cells cultures stimulated with whole cell lysates of M.Tb and subsequently similar analysis for the cases who develop TB postvaccination during the follow-up period. ETHICS AND DISSEMINATION Ethics committees' approvals have been granted by the Institutional Human Ethics Committees of all participating centres in this study and the names of the ethics committees and approvals are as follows: (1) National Institute for Research in Tuberculosis (NIRT)-Chennai (including subsites): ECR/135/Inst/TN/2013/RR-19, Approval No. 390/NIRT-Institutional Ethics Committee (IEC)/2018 dated 5 December 2018 (NIRT-Madurai-ECR/1365/Inst/TN/2020; approval dated 8 June 2020; NIRT, Vellore: ECR/1215/Inst/TN/2019; approval dated 26 September 2020); (2) All India Institute of Medical Sciences (AIIMS), Delhi (including subsites)-Institute Ethics Committee, ECR/547/Inst/DL/2014/RR-17 ECR/538/Inst/DL/2014/RR-20; approval No.IEC-385/06-07-2018, approval OP-28/05.04.2019 and SFH- ECR/593/Inst/DL/2014/RR-20 IEC/VMMC/SJH/project/2019-05/25 ; 23 May 2019; (3) National Institute of Tuberculosis and Respiratory Diseases (NITRD), Delhi: ECR/315/Inst/DL/2013/RR-19; approval IEC-No-NITRD/EC/2019/9004; 8 January 2019; (4) Pune-National AIDS Research Institute (NARI) and subsite-ECR/23/Inst/MH/2013/RR-19; IEC-NARI/EC/approval/2018/196; 29 May 2018; (5) Regional Medical Research Centre-Bhubaneshwar-ECR/911/Inst/OR-2017/RR-21; approval, dated 25 April 2018; Subsites- AIIMS, Bhubaneshwar ECR/534/Inst/OD/2014/RR-17 and 20 approval No. T/EMF/Pulm. Med/19/01 dated 13 May 2019; SCB, Cuttack No. No.ECR/84/Inst/OR/2013/RR-20; approval no.186 dated 7 February 2020; (6) NTI-Bengaluru: Ethics Committee-No-ECR/1819/Inst/KA/2019; approval No NTI-IEC/1.2019/principal investigator, dated 31 January 2019; (7) BMMRC, Hyderabad- ECR/450/Inst/AP/2013/RR-16 approval No. 779/BMMRC/2018/IEC, dated 11 June 2018 (Subsite Share India- Mediciti Ethics Committee-ECR/283/Inst/AP/2013/RR-20; Approval no. EC/11/VII/2K20(1) dated 11 July 2020) and (8) SJMC-Bengaluru: ECR/238/Inst/KA/2013/RR-19; approval IEC/1/491/2020; 7 August 2020.The trial findings will be published in accordance with the Consolidated Standards of Reporting Trials guidance. The results of this clinical trial will be presented at scientific conferences and disseminated through publications in peer-reviewed journals, conference presentations and shared with Ministry of Health and Family Welfare, policy-makers and other stakeholders. TRIAL REGISTRATION NUMBER CTRI/2019/01/017026.
Collapse
Affiliation(s)
- Manjula Singh
- ECD, Indian Council of Medical Research, New Delhi, India
| | | | - Randeep Guleria
- Respiratory Medicine, All India Institute of Medical Sciences, New Delhi, India
- Medanta The Medicity, Gurgaon, Haryana, India
| | - Rohit Sarin
- National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Srikanth Tripathy
- ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- Dr D Y Patil Medical College Hospital and Research Centre, Pune, Maharashtra, India
| | | | - Kiran Katoch
- Indian Council of Medical Research, New Delhi, India
| | - Ravindra Mohan Pandey
- Indian Council of Medical Research, New Delhi, India
- Statistics, All India Institute of Medical Sciences, New Delhi, India
| | - Samiran Panda
- ECD, Indian Council of Medical Research, New Delhi, India
| | - Sanghamitra Pati
- Indian Council of Medical Research-Regional Medical Research Center, Chandrasekharpur, Bhubaneswar, Orissa, India
| | - Prasanta Raghab Mohapatra
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Sindhu Joshi
- Bhagwan Mahavir Medical Research Centre (BMMRC), Hyderabad, Telangana, India
| | | | - Parul Kodan
- Indian Council of Medical Research, New Delhi, India
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Rajni Rani
- Indian Council of Medical Research, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Abdul Mabood Khan
- Indian Council of Medical Research, New Delhi, India
- National JALMA Institute of Leprosy and other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Soumya Swaminathan
- Division of HIV/AIDS, World Health Organization, Geneva, Switzerland
- MS Swaminathan Research Foundation, Chennai, Tamil Nadu, India
| | | |
Collapse
Collaborators
Anant Mohan, Urvashi B Singh, Anand Krishnan, D K Mitra, Rakesh Kumar, Anuj Bhatnagar, Neelam Roy, Deepak Gupta, Amitva Sen Gupta, Vikram Vohra, Neeta Singla, Sangeeta Sharma, Vijaya Valluri Ansari, Chitra Iravatham, Shilpa Rakh, D K Prudhula, D K Prudhula, Chala Devi, N Rupa, Chala Devi, K Sailaja, Sheela Godbole, Seema Sahay, Suchit Kamble, Megha Mamulwar, Sandeep Patil, Arati Kishor Mane, Ashwini Vinod Shete, Abhijit Vasantrao Kadam, Vineet Chadha, S Uma Shankar, C Ravichandra, S K Tripathy, Rashmi Rodrigues, George D'Souza, Dasarathi Das, Tahziba Hussain, B Dwibedi, Subrata Kumar Palo, P R Mohapatra, Sourin Bhuniya, Baijayantimala Mishra, Debasish Hota, Sudipta Mohakud, S C B Cuttack, M R Pattnaik, Sabita Mohapatra, Banu Rekha, Mohan Natarajan, Ramesh Kumar, P K Bhavani, D Bella Devaleenal, Syed Hisar, Sriram Selvaraju, S Devarajulu Reddy, Paul Kumaran, Makhesh Kumar, Poorna Ganga Devi, Sunny Omkar Singh, Devi Pratyush, Ritu Gupta, Vidushi Gupta, Geeta Yadav, N Rupa, Parvathi,
Collapse
|
5
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
6
|
Khandelia P, Yadav S, Singh P. An overview of the BCG vaccine and its future scope. Indian J Tuberc 2023; 70 Suppl 1:S14-S23. [PMID: 38110255 DOI: 10.1016/j.ijtb.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/15/2023] [Indexed: 12/20/2023]
Abstract
Despite intense elimination efforts, tuberculosis (TB) still poses a threat to world health, disproportionately affecting less developed and poorer countries. The Bacillus Calmette-Guérin (BCG) vaccine, the only anti-TB authorized vaccine can partially stop TB infection and transmission, however, its effectiveness ranges from 0 to 80%. As a result, there is an urgent need for a more potent TB vaccination given the widespread incidence of the disease. Enhancing BCG's effectiveness is also important due to the lack of other licensed vaccinations. Recently, fascinating research into BCG revaccination techniques by modulating its mode of action i.e., intravenous (IV) BCG delivery has yielded good clinical outcomes showing it still has a place in current vaccination regimens. We must thus go over the recent evidence that suggests trained immunity, and BCG vaccination techniques and describe how the vaccination confers protection against bacteria that cause both TB and non-tuberculosis. This review of the literature offers an updated summary and viewpoints on BCG-based TB immunization regimens (how it affects granulocytes at the epigenetic and hematopoietic stem cell levels which may be related to its efficacy), and also examines how the existing vaccine is being modified to be more effective, which may serve as an inspiration for future studies on the development of TB vaccines.
Collapse
Affiliation(s)
- Pallavi Khandelia
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
7
|
Rawat BS, Kumar D, Soni V, Rosenn EH. Therapeutic Potentials of Immunometabolomic Modulations Induced by Tuberculosis Vaccination. Vaccines (Basel) 2022; 10:vaccines10122127. [PMID: 36560537 PMCID: PMC9781011 DOI: 10.3390/vaccines10122127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is emerging as a promising tool to understand the effect of immunometabolism for the development of novel host-directed alternative therapies. Immunometabolism can modulate both innate and adaptive immunity in response to pathogens and vaccinations. For instance, infections can affect lipid and amino acid metabolism while vaccines can trigger bile acid and carbohydrate pathways. Metabolomics as a vaccinomics tool, can provide a broader picture of vaccine-induced biochemical changes and pave a path to potentiate the vaccine efficacy. Its integration with other systems biology tools or treatment modes can enhance the cure, response rate, and control over the emergence of drug-resistant strains. Mycobacterium tuberculosis (Mtb) infection can remodel the host metabolism for its survival, while there are many biochemical pathways that the host adjusts to combat the infection. Similarly, the anti-TB vaccine, Bacillus Calmette-Guerin (BCG), was also found to affect the host metabolic pathways thus modulating immune responses. In this review, we highlight the metabolomic schema of the anti-TB vaccine and its therapeutic applications. Rewiring of immune metabolism upon BCG vaccination induces different signaling pathways which lead to epigenetic modifications underlying trained immunity. Metabolic pathways such as glycolysis, central carbon metabolism, and cholesterol synthesis play an important role in these aspects of immunity. Trained immunity and its applications are increasing day by day and it can be used to develop the next generation of vaccines to treat various other infections and orphan diseases. Our goal is to provide fresh insight into this direction and connect various dots to develop a conceptual framework.
Collapse
Affiliation(s)
- Bhupendra Singh Rawat
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Deepak Kumar
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence:
| | - Eric H. Rosenn
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
A century of attempts to develop an effective tuberculosis vaccine: Why they failed? Int Immunopharmacol 2022; 109:108791. [PMID: 35487086 DOI: 10.1016/j.intimp.2022.108791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem despite widespread use of the Bacillus BCG vaccine. This situation is worsened by co-infection with HIV, and the development of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains. Thus, novel vaccine candidates and improved vaccination strategies are urgently needed in order to reduce the incidence of TB and even to eradicate TB by 2050. Over the last few decades, 23 novel TB vaccines have entered into clinical trials, more than 13 new vaccines have reached various stages of preclinical development, and more than 50 potential candidates are in the discovery stage as next-generation vaccines. Nevertheless, why has a century of attempts to introduce an effective TB vaccine failed? Who should be blamed -scientists, human response, or Mtb strategies? Literature review reveals that the elimination of latent or active Mtb infections in a given population seems to be an epigenetic process. With a better understanding of the connections between bacterial infections and gene expression conditions in epigenetic events, opportunities arise in designing protective vaccines or therapeutic agents, particularly as epigenetic processes can be reversed. Therefore, this review provides a brief overview of different approaches towards novel vaccination strategies and the mechanisms underlying these approaches.
Collapse
|
9
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
10
|
Cho T, Khatchadourian C, Nguyen H, Dara Y, Jung S, Venketaraman V. A review of the BCG vaccine and other approaches toward tuberculosis eradication. Hum Vaccin Immunother 2021; 17:2454-2470. [PMID: 33769193 PMCID: PMC8475575 DOI: 10.1080/21645515.2021.1885280] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 02/02/2023] Open
Abstract
Despite aggressive eradication efforts, Tuberculosis (TB) remains a global health burden, one that disproportionally affects poorer, less developed nations. The only vaccine approved for TB, the Bacillus of Calmette and Guérin (BCG) vaccine remains controversial because it's stated efficacy has been cited as anywhere from 0 to 80%. Nevertheless, there have been exciting discoveries about the mechanism of action of the BCG vaccine that suggests it has a role in immunization schedules today. We review recent data suggesting the vaccine imparts protection against both tuberculosis and non-tuberculosis pathogens via a newly discovered immune system called trained immunity. BCG's efficacy also appears to be tied to its affect on granulocytes at the epigenetic and hematopoietic stem cell levels, which we discuss in this article at length. We also write about how the different strains of the BCG vaccine elicit different immune responses, suggesting that certain BCG strains are more immunogenic than others. Finally, our review delves into how the current vaccine is being reformulated to be more efficacious, and track the development of the next generation vaccines against TB.
Collapse
Affiliation(s)
- Thomas Cho
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | | | - Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yash Dara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Shuna Jung
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
11
|
Costa DL, Amaral EP, Namasivayam S, Mittereder LR, Andrade BB, Sher A. Enhancement of CD4 + T Cell Function as a Strategy for Improving Antibiotic Therapy Efficacy in Tuberculosis: Does It Work? Front Cell Infect Microbiol 2021; 11:672527. [PMID: 34235093 PMCID: PMC8256258 DOI: 10.3389/fcimb.2021.672527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) remains a major public health problem worldwide due in part to the lack of an effective vaccine and to the lengthy course of antibiotic treatment required for successful cure. Combined immuno/chemotherapeutic intervention represents a major strategy for developing more effective therapies against this important pathogen. Because of the major role of CD4+ T cells in containing Mtb infection, augmentation of bacterial specific CD4+ T cell responses has been considered as an approach in achieving this aim. Here we present new data from our own research aimed at determining whether boosting CD4+ T cell responses can promote antibiotic clearance. In these studies, we first characterized the impact of antibiotic treatment of infected mice on Th1 responses to major Mtb antigens and then performed experiments aimed at sustaining CD4+ T cell responsiveness during antibiotic treatment. These included IL-12 infusion, immunization with ESAT-6 and Ag85B immunodominant peptides and adoptive transfer of Th1-polarized CD4+ T cells specific for ESAT-6 or Ag85B during the initial month of chemotherapy. These approaches failed to enhance antibiotic clearance of Mtb, indicating that boosting Th1 responses to immunogenic Mtb antigens highly expressed by actively dividing bacteria is not an effective strategy to be used in the initial phase of antibiotic treatment, perhaps because replicating organisms are the first to be eliminated by the drugs. These results are discussed in the context of previously published findings addressing this concept along with possible alternate approaches for harnessing Th1 immunity as an adjunct to chemotherapy.
Collapse
Affiliation(s)
- Diego L Costa
- Departmento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lara R Mittereder
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Division of Bacterial, Parasitic and Allergenic Products, Laboratory of Mucosal Pathogens and Cellular Immunology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Bruno B Andrade
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Afkhami S, Villela AD, D’Agostino MR, Jeyanathan M, Gillgrass A, Xing Z. Advancing Immunotherapeutic Vaccine Strategies Against Pulmonary Tuberculosis. Front Immunol 2020; 11:557809. [PMID: 33013927 PMCID: PMC7509172 DOI: 10.3389/fimmu.2020.557809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Chemotherapeutic intervention remains the primary strategy in treating and controlling tuberculosis (TB). However, a complex interplay between therapeutic and patient-related factors leads to poor treatment adherence. This in turn continues to give rise to unacceptably high rates of disease relapse and the growing emergence of drug-resistant forms of TB. As such, there is considerable interest in strategies that simultaneously improve treatment outcome and shorten chemotherapy duration. Therapeutic vaccines represent one such approach which aims to accomplish this through boosting and/or priming novel anti-TB immune responses to accelerate disease resolution, shorten treatment duration, and enhance treatment success rates. Numerous therapeutic vaccine candidates are currently undergoing pre-clinical and clinical assessment, showing varying degrees of efficacy. By dissecting the underlying mechanisms/correlates of their successes and/or shortcomings, strategies can be identified to improve existing and future vaccine candidates. This mini-review will discuss the current understanding of therapeutic TB vaccine candidates, and discuss major strategies that can be implemented in advancing their development.
Collapse
Affiliation(s)
- Sam Afkhami
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Anne Drumond Villela
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michael R. D’Agostino
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Amy Gillgrass
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Zhou Xing
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Li J, Zhao A, Tang J, Wang G, Shi Y, Zhan L, Qin C. Tuberculosis vaccine development: from classic to clinical candidates. Eur J Clin Microbiol Infect Dis 2020; 39:1405-1425. [PMID: 32060754 PMCID: PMC7223099 DOI: 10.1007/s10096-020-03843-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Bacillus Calmette-Guérin (BCG) has been in use for nearly 100 years and is the only licensed TB vaccine. While BCG provides protection against disseminated TB in infants, its protection against adult pulmonary tuberculosis (PTB) is variable. To achieve the ambitious goal of eradicating TB worldwide by 2050, there is an urgent need to develop novel TB vaccines. Currently, there are more than a dozen novel TB vaccines including prophylactic and therapeutic at different stages of clinical research. This literature review provides an overview of the clinical status of candidate TB vaccines and discusses the challenges and future development trends of novel TB vaccine research in combination with the efficacy of evaluation of TB vaccines, provides insight for the development of safer and more efficient vaccines, and may inspire new ideas for the prevention of TB.
Collapse
Affiliation(s)
- Junli Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Aihua Zhao
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, People's Republic of China
| | - Jun Tang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Guozhi Wang
- Division of Tuberculosis Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, 102629, People's Republic of China
| | - Yanan Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China
| | - Lingjun Zhan
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China.
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China.
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China.
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China.
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, 100021, People's Republic of China.
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, 100021, People's Republic of China.
- Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China.
- Tuberculosis Center, Chinese Academy of Medical Sciences (CAMS), Beijing, 100021, People's Republic of China.
| |
Collapse
|
14
|
Mycobacteria-Based Vaccines as Immunotherapy for Non-urological Cancers. Cancers (Basel) 2020; 12:cancers12071802. [PMID: 32635668 PMCID: PMC7408281 DOI: 10.3390/cancers12071802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
The arsenal against different types of cancers has increased impressively in the last decade. The detailed knowledge of the tumor microenvironment enables it to be manipulated in order to help the immune system fight against tumor cells by using specific checkpoint inhibitors, cell-based treatments, targeted antibodies, and immune stimulants. In fact, it is widely known that the first immunotherapeutic tools as immune stimulants for cancer treatment were bacteria and still are; specifically, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) continues to be the treatment of choice for preventing cancer recurrence and progression in non-invasive bladder cancer. BCG and also other mycobacteria or their components are currently under study for the immunotherapeutic treatment of different malignancies. This review focuses on the preclinical and clinical assays using mycobacteria to treat non-urological cancers, providing a wide knowledge of the beneficial applications of these microorganisms to manipulate the tumor microenvironment aiming at tumor clearance.
Collapse
|
15
|
Combination of Mycobacterium indicus pranii and Heat-Induced Promastigotes Cures Drug-Resistant Leishmania Infection: Critical Role of Interleukin-6-Producing Classical Dendritic Cells. Infect Immun 2020; 88:IAI.00222-19. [PMID: 32229617 DOI: 10.1128/iai.00222-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
The major issues in available therapeutic modalities against leishmaniasis are cost, toxicity, and the emergence of drug resistance. The aim of this work was to develop a successful therapeutic adjuvant against drug-resistant Leishmania donovani infection by means of combining Mycobacterium indicus pranii with heat-induced promastigotes (HIP). One-month postinfected BALB/c mice were administered subcutaneously with M. indicus pranii (108 cells) and HIP (100 μg) for 5 days. Spleens were harvested for flow cytometric and reverse transcriptase PCR analysis. The antileishmanial effect of the combination strategy was associated with induction of a disease-resolving Th1 and Th17 response with simultaneous downregulation of CD4+ CD25+ Foxp3+ (nTreg) cells and CD4+ CD25- Foxp3- (Tr1) cells in the spleen. The significant expansion of CD4+ TCM (CD4+ CD44hi CD11ahi CD62Lhi) cells was a further interesting outcome of this therapeutic strategy in the context of long-term protection of hosts against secondary infection. Toll-like receptor 2 (TLR2) was also found instrumental in this antiparasitic therapy. Induced interleukin-6 (IL-6) production from expanded CD11c+ CD8α+ (cDC1) and CD11c+ CD11b+ (cDC2) dendritic cells (DCs) but not from the CD11b+ Ly6c+ inflammatory monocytes (iMOs), was found critical in the protective expansion of Th17 as evidenced by an in vivo IL-6 neutralization assay. It also promoted the hematopoietic conversion toward DC progenitors (pre-DCs) from common dendritic cell progenitors (CDPs), the immediate precursors, in bone marrow. This novel combinational strategy demonstrated that expansion of Th17 by IL-6 released from CD11c+ classical DCs is crucial, together with the conventional Th1 response, to control drug-resistant infection.
Collapse
|
16
|
Gupta A, Saqib M, Singh B, Pal L, Nishikanta A, Bhaskar S. Mycobacterium indicus pranii Induced Memory T-Cells in Lung Airways Are Sentinels for Improved Protection Against M.tb Infection. Front Immunol 2019; 10:2359. [PMID: 31681272 PMCID: PMC6813244 DOI: 10.3389/fimmu.2019.02359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022] Open
Abstract
The lungs are the most vulnerable site for air-borne infections. Immunologic compartmentalization of the lungs into airway lumen and interstitium has paved the way to determine the immune status of the site of pathogen entry, which is crucial for the outcome of any air-borne infections. Vaccination via the nasal route with Mycobacterium indicus pranii (MIP), a prospective candidate vaccine against tuberculosis (TB), has been reported to confer superior protection as compared to the subcutaneous (s.c.) route in small-animal models of TB. However, the immune mechanism remains only partly understood. Here, we showed that intranasal (i.n.) immunization of mice with MIP resulted in a significant recruitment of CD4+ and CD8+ T-cells expressing activation markers in the lung airway lumen. A strong memory T-cell response was observed in the lung airway lumen after i.n. MIP vaccination, compared with s.c. vaccination. The recruitment of these T-cells was regulated primarily by CXCR3–CXCL11 axis in “MIP i.n.” group. MIP-primed T-cells in the lung airway lumen effectively transferred protective immunity into naïve mice against Mycobacterium tuberculosis (M.tb) infection and helped reducing the pulmonary bacterial burden. These signatures of protective immune response were virtually absent or very low in unimmunized and subcutaneously immunized mice, respectively, before and after M.tb challenge. Our study provides mechanistic insights for MIP-elicited protective response against M.tb infection.
Collapse
Affiliation(s)
- Ananya Gupta
- National Institute of Immunology, Product Development Cell-I, New Delhi, India
| | - Mohd Saqib
- National Institute of Immunology, Product Development Cell-I, New Delhi, India.,Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Bindu Singh
- National Institute of Immunology, Product Development Cell-I, New Delhi, India
| | - Lalit Pal
- National Institute of Immunology, Product Development Cell-I, New Delhi, India
| | - Akoijam Nishikanta
- National Institute of Immunology, Product Development Cell-I, New Delhi, India
| | - Sangeeta Bhaskar
- National Institute of Immunology, Product Development Cell-I, New Delhi, India
| |
Collapse
|
17
|
Garnica O, Das K, Devasundaram S, Dhandayuthapani S. Enhanced delivery of Mycobacterium tuberculosis antigens to antigen presenting cells using RVG peptide. Tuberculosis (Edinb) 2019; 116S:S34-S41. [PMID: 31064713 DOI: 10.1016/j.tube.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 10/26/2022]
Abstract
Among the various strategies to improve vaccines against infectious diseases, targeting of antigens to dendritic cells (DCs), which are professional antigen presenting cells (APCs), has received increased attention in recent years. Here, we investigated whether a synthetic peptide region named RVG, originated from Rabies Virus Glycoprotein that binds to the α-7 subunit of the nicotinic acetylcholine receptors (AchR-α7) of APCs, could be used for the delivery of Mycobacterium tuberculosis (Mtb) peptide antigens to DCs and macrophages. Mouse bone marrow derived DCs (BMDCs) and human THP-1 macrophages stimulated with RVG fused peptide epitopes 85B241 and 85B96 (represent Ag85B241-256 and Ag85B96-111, respectively) from antigen 85B (Ag85B) of Mtb showed enhanced antigen presentation as compared to unfused peptide epitopes and BCG. Further, BMDCs stimulated with RVG fused 85B241 showed higher levels of IL-12 positive cells. Consistent with in vitro data, splenocytes of mice immunized with RVG-85B241 showed increased number of antigen specific IFN-γ, IL-2, and TNF-α producing cells in relation to splenocytes from mice immunized with 85B241 alone. These results suggest that RVG may be a promising tool to develop effective alternate vaccines against tuberculosis (TB).
Collapse
Affiliation(s)
- Omar Garnica
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Kishore Das
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Santhi Devasundaram
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
18
|
Cell wall fraction of Mycobacterium indicus pranii shows potential Th1 adjuvant activity. Int Immunopharmacol 2019; 70:408-416. [PMID: 30856391 DOI: 10.1016/j.intimp.2019.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 12/29/2022]
Abstract
Very few adjuvants inducing Th1 immune response have been developed and are under clinical investigation. Hence, there is the need to find an adjuvant that elicits strong Th1 immune response which should be safe when injected in the host along with vaccines. Mycobacterium indicus pranii (MIP), a non-pathogenic vaccine candidate, has shown strong immunomodulatory activity in leprosy/tuberculosis/cancer and in genital warts patients where its administration shifted the host immune response towards Th1 type. These findings prompted us to study the components of MIP in detail for their Th1 inducing property. Since mycobacterial cell wall is very rich in immunostimulatory components and is known to play important role in immune modulation, we investigated the activity of MIP cell wall using Ovalbumin antigen (OVA) as model antigen. 'Whole cell wall' (CW) and 'aqueous soluble cell wall fractions' (ACW) induced significant Th1 immune response while 'cell wall skeleton' (CWS) induced strong Th2 type of immune response. Finally, functional activity of fractions having Th1 inducing activity was evaluated in mouse model of melanoma. CW demonstrated significant anti-tumor activity similar to whole MIP. Anti-tumor activity of CW could be correlated with enhanced tumor antigen specific Th1 immune response observed in tumor draining lymph nodes.
Collapse
|
19
|
AlMatar M, Makky EA, AlMandeal H, Eker E, Kayar B, Var I, Köksal F. Does the Development of Vaccines Advance Solutions for Tuberculosis? Curr Mol Pharmacol 2018; 12:83-104. [PMID: 30474542 DOI: 10.2174/1874467212666181126151948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial. OBJECTIVE The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitusu) Cukurova University, Adana, Turkey
| | - Essam A Makky
- Department of Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), Kuantan, Malaysia
| | - Husam AlMandeal
- Freiburg Universität, Moltkestraße 90, 76133 karlsruhe Augenklinik, Germany
| | - Emel Eker
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
20
|
Méndez-Samperio P. Development of tuberculosis vaccines in clinical trials: Current status. Scand J Immunol 2018; 88:e12710. [PMID: 30175850 DOI: 10.1111/sji.12710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is an important infectious disease worldwide. Currently, Bacillus Calmette-Guérin (BCG) remains the only TB vaccine licensed for human use. This TB vaccine is effective in protecting children against severe military TB but offers variable protective efficacy in adults. Therefore, new vaccines against TB are needed to overcome this serious disease. At present, around 14 TB vaccine candidates are in different phases of clinical trials. These TB vaccines in clinical evaluation can be classified into two groups including preventive pre- and post-exposure vaccines: subunit vaccines (attenuated viral vectors or adjuvanted fusion proteins), and whole-cell vaccines (genetically attenuated Mycobacterium tuberculosis (M. tb), recombinant BCG, killed M. tb or M. vaccae). Although, over the last two decades a great progress in the search for a more effective TB vaccine has been demonstrated there is still no replacement for the licensed BCG vaccine. This article summarizes the current status of TB vaccine development and identifies crucial gaps of research for the development of an effective TB vaccine in all age groups.
Collapse
|
21
|
Mohareer K, Asalla S, Banerjee S. Cell death at the cross roads of host-pathogen interaction in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 113:99-121. [PMID: 30514519 DOI: 10.1016/j.tube.2018.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) continues to be the leading cause of death by any single infectious agent, accounting for around 1.7 million annual deaths globally, despite several interventions and support programs by national and international agencies. With the development of drug resistance in Mycobacterium tuberculosis (M. tb), there has been a paradigm shift in TB research towards host-directed therapy. The potential targets include the interactions between host and bacterial proteins that are crucial for pathogenesis. Hence, collective efforts are being made to understand the molecular details of host-pathogen interaction for possible translation into host-directed therapy. The present review focuses on 'host cell death modalities' of host-pathogen interaction, which play a crucial role in determining the outcome of TB disease progression. Several cell death modalities that occur in response to mycobacterial infection have been identified in human macrophages either as host defences for bacterial clearance or as pathogen strategies for multiplication and dissemination. These cell death modalities include apoptosis, necrosis, pyroptosis, necroptosis, pyronecrosis, NETosis, and autophagy. These processes are highly overlapping with several mycobacterial proteins participating in more than one cell death pathway. Until now, reviews in M. tb and host cell death have discussed either focusing on host evasion strategies, apoptosis, autophagy, and necrosis or describing all these forms with limited discussions of their role in host-pathogen interactions. Here, we present a comprehensive review of various mycobacterial factors modulating host cell death pathways and the cross-talk between them. Besides this, we have discussed the networking of host cell death pathways including the interference of host miRNA during M. tb infection with their respective targets. Through this review, we present the host targets that overlap across several cell death modalities and the technical limitations of methodology in cell death research. Given the compelling need to discover alternative drug target(s), this review identifies these overlapping cell death factors as potential targets for host-directed therapy.
Collapse
Affiliation(s)
- Krishnaveni Mohareer
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046
| | - Suman Asalla
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046
| | - Sharmistha Banerjee
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046.
| |
Collapse
|
22
|
Mycobacterium indicus pranii protein MIP_05962 induces Th1 cell mediated immune response in mice. Int J Med Microbiol 2018; 308:1000-1008. [PMID: 30190103 DOI: 10.1016/j.ijmm.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 01/25/2023] Open
Abstract
Utility of Mycobacterium indicus pranii (MIP) as a multistage vaccine against mycobacterial infections demands identification of its protective antigens. We explored antigenicity and immunogenicity of a candidate protein MIP_05962 that depicts homology to HSP18 of M. leprae and antigen1 of Mycobacterium tuberculosis. This protein elicited substantial antibody response in immunized mice along with modulation of cellular immune response towards protective Th1 type. Both CD4+ and CD8+ subsets from immunized mice produced hallmark protective cytokines, IFN-γ, TNF-α and IL-2. This protein also enhanced the CD4+ effector memory that could act as first line of defence during infections. These results point to MIP_05962 as a protective antigen that contributes, in conjunction with others, to the protective immunity of this live vaccine candidate.
Collapse
|
23
|
Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 2018; 14:1697-1716. [PMID: 29601253 DOI: 10.1080/21645515.2018.1458806] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), one of the top 10 causes of death worldwide. TB results in more fatalities than multi-drug resistant (MDR) HIV strain related coinfection. Vaccines play a key role in the prevention and control of infectious diseases. Unfortunately, the only licensed preventive vaccine against TB, bacilli Calmette-Guérin (BCG), is ineffective for prevention of pulmonary TB in adults. Therefore, it is very important to develop novel vaccines for TB prevention and control. This literature review provides an overview of the innate and adaptive immune response during M. tuberculosis infection, and presents current developments and challenges to novel TB vaccines. A comprehensive understanding of vaccines in preclinical and clinical studies provides extensive insight for the development of safer and more efficient vaccines, and may inspire new ideas for TB prevention and treatment.
Collapse
Affiliation(s)
- Wenping Gong
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Yan Liang
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Xueqiong Wu
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| |
Collapse
|
24
|
Kwon BE, Ahn JH, Min S, Kim H, Seo J, Yeo SG, Ko HJ. Development of New Preventive and Therapeutic Vaccines for Tuberculosis. Immune Netw 2018; 18:e17. [PMID: 29732235 PMCID: PMC5928416 DOI: 10.4110/in.2018.18.e17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is a contagious disease that has been responsible for the death of one billion people in the last 200 years. Until now, the only vaccine approved for the prevention of TB is Bacillus Calmette-Guérin (BCG), which is prepared by attenuating Mycobacterium bovis. However, one of the limitations of BCG is that its preventive effect against pulmonary TB varies from person to person. Therefore, there arises a need for a new TB vaccine to replace or supplement BCG. In this review, we have summarized the findings of current clinical trials on preventive and therapeutic TB vaccine candidates. In addition, we have discussed a novel vaccination approach using the cell-based vaccine presenting early secretory antigenic target-6 (ESAT-6), which is a potent immunogenic antigen. The role of ESAT-6 in hosts has also been described.
Collapse
Affiliation(s)
- Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| | - Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| | - Seunghwan Min
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| | - Hyeongseop Kim
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| | - Jungheun Seo
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| | - Sang-Gu Yeo
- Division of Vaccine Research, Korea National Research Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju 28159, Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, Kangwon National University, College of Pharmacy, Chuncheon 24341, Korea
| |
Collapse
|
25
|
Autophagy induction by Mycobacterium indicus pranii promotes Mycobacterium tuberculosis clearance from RAW 264.7 macrophages. PLoS One 2017; 12:e0189606. [PMID: 29236768 PMCID: PMC5728553 DOI: 10.1371/journal.pone.0189606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium indicus pranii (MIP) is a potent vaccine candidate against tuberculosis (TB) as it has demonstrated significant protection in animal models of tuberculosis as well as in clinical trials. Higher protective efficacy of MIP against TB as compared to BCG provoked the efforts to gain insight into the molecular mechanisms underlying MIP mediated protection against Mycobacterium tuberculosis (M.tb). Autophagy, initially described as a cell survival mechanism during starvation, also plays a key role in host resistance to M.tb. Virulent mycobacteria like M.tb, suppresses host autophagy response to increase its survival in macrophages. Since mycobacterial species have been shown to vary widely in their autophagy-inducing properties, in the present study, we examined the autophagy inducing efficacy of MIP and its role in MIP-mediated protection against M.tb. MIP was found to be potent inducer of autophagy in macrophages. Induced autophagy was responsible for reversal of the phagosome maturation block and phagolysosome fusion inhibition in M.tb infected macrophages, which ultimately lead to significantly enhanced clearance of M.tb from the macrophages. This is an important study which further delineated the underlying mechanisms for significant immunotherapeutic activity observed in TB patients / animal models of tuberculosis, given MIP therapy along with chemotherapy.
Collapse
|
26
|
Sharma SK, Katoch K, Sarin R, Balambal R, Kumar Jain N, Patel N, Murthy KJR, Singla N, Saha PK, Khanna A, Singh U, Kumar S, Sengupta A, Banavaliker JN, Chauhan DS, Sachan S, Wasim M, Tripathi S, Dutt N, Jain N, Joshi N, Penmesta SRR, Gaddam S, Gupta S, Khamar B, Dey B, Mitra DK, Arora SK, Bhaskar S, Rani R. Efficacy and Safety of Mycobacterium indicus pranii as an adjunct therapy in Category II pulmonary tuberculosis in a randomized trial. Sci Rep 2017; 7:3354. [PMID: 28611374 PMCID: PMC5469738 DOI: 10.1038/s41598-017-03514-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/28/2017] [Indexed: 11/09/2022] Open
Abstract
Prolonged treatment of tuberculosis (TB) often leads to poor compliance, default and relapse, converting primary TB patients into category II TB (Cat IITB) cases, many of whom may convert to multi-drug resistant TB (MDR-TB). We have evaluated the immunotherapeutic potential of Mycobacterium indicus pranii (MIP) as an adjunct to Anti-Tubercular Treatment (ATT) in Cat II pulmonary TB (PTB) patients in a prospective, randomized, double blind, placebo controlled, multicentric clinical trial. 890 sputum smear positive Cat II PTB patients were randomized to receive either six intra-dermal injections (2 + 4) of heat-killed MIP at a dose of 5 × 108 bacilli or placebo once in 2 weeks for 2 months. Sputum smear and culture examinations were performed at different time points. MIP was safe with no adverse effects. While sputum smear conversion did not show any statistically significant difference, significantly higher number of patients (67.1%) in the MIP group achieved sputum culture conversion at fourth week compared to the placebo (57%) group (p = 0.0002), suggesting a role of MIP in clearance of the bacilli. Since live bacteria are the major contributors for sustained incidence of TB, the potential of MIP in clearance of the bacilli has far reaching implications in controlling the spread of the disease.
Collapse
Affiliation(s)
| | - Kiran Katoch
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Rohit Sarin
- National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Raman Balambal
- National Institute of Research in Tuberculosis (ICMR), Chennai, India
| | - Nirmal Kumar Jain
- SMS Medical College (Hospital for Chest Diseases and TB), Jaipur, Rajasthan, India
| | - Naresh Patel
- NHL Municipal Medical College, Ahmadabad, Gujarat, India
| | | | - Neeta Singla
- National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - P K Saha
- All India Institute of Medical Sciences, New Delhi, India
| | - Ashwani Khanna
- All India Institute of Medical Sciences, New Delhi, India
| | - Urvashi Singh
- All India Institute of Medical Sciences, New Delhi, India
| | - Sanjiv Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - A Sengupta
- All India Institute of Medical Sciences, New Delhi, India.,Chest Clinic and Hospital, New Delhi, India
| | - J N Banavaliker
- All India Institute of Medical Sciences, New Delhi, India.,RBTB Hospital, New Delhi, India
| | - D S Chauhan
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Shailendra Sachan
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Mohammad Wasim
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | | | - Nilesh Dutt
- NHL Municipal Medical College, Ahmadabad, Gujarat, India
| | - Nitin Jain
- SMS Medical College (Hospital for Chest Diseases and TB), Jaipur, Rajasthan, India
| | - Nalin Joshi
- SMS Medical College (Hospital for Chest Diseases and TB), Jaipur, Rajasthan, India
| | | | - Sumanlatha Gaddam
- Mahavir Hospital and Research Centre, Hyderabad, Andhra Pradesh, India
| | - Sanjay Gupta
- Catalyst Clinical Services Pvt. Ltd., New Delhi, India
| | | | - Bindu Dey
- Department of Biotechnology, New Delhi, India
| | | | - Sunil K Arora
- Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | | | - Rajni Rani
- National Institute of Immunology, New Delhi, India. .,Systems Biology laboratory, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India.
| |
Collapse
|
27
|
Sharma A, Equbal MJ, Pandey S, Sheikh JA, Ehtesham NZ, Hasnain SE, Chaudhuri TK. Immunodominant protein MIP_05962 from Mycobacterium indicus pranii displays chaperone activity. FEBS J 2017; 284:1338-1354. [PMID: 28296245 DOI: 10.1111/febs.14057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022]
Abstract
Tuberculosis, a contagious disease of infectious origin is currently a major cause of deaths worldwide. Mycobacterium indicus pranii (MIP), a saprophytic nonpathogen and a potent immunomodulator is currently being investigated as an intervention against tuberculosis along with many other diseases with positive outcome. The apparent paradox of multiple chaperones in mycobacterial species and enigma about the cellular functions of the client proteins of these chaperones need to be explored. Chaperones are the known immunomodulators; thus, there is need to exploit the proteome of MIP for identification and characterization of putative chaperones. One of the immunogenic proteins, MIP_05962 is a member of heat shock protein (HSP) 20 family due to the presence of α-crystallin domain, and has amino acid similarity with Mycobacterium lepraeHSP18 protein. The diverse functions of M. lepraeHSP18 in stress conditions implicate MIP_05962 as an important protein that needs to be explored. Biophysical and biochemical characterization of the said protein proved it to be a chaperone. The observations of aggregation prevention and refolding of substrate proteins in the presence of MIP_05962 along with interaction with non-native proteins, surface hydrophobicity, formation of large oligomers, in-vivo thermal rescue of Escherichia coli expressing MIP_05962, enhancing solubility of insoluble protein maltodextrin glucosidase (MalZ) under in-vivo conditions, and thermal stability and reversibility confirmed MIP_05962 as a molecular chaperone.
Collapse
Affiliation(s)
- Ashish Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Md Javed Equbal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Saurabh Pandey
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Javaid A Sheikh
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Nasreen Z Ehtesham
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.,Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
28
|
Méndez-Samperio P. Global Efforts in the Development of Vaccines for Tuberculosis: Requirements for Improved Vaccines Against Mycobacterium tuberculosis. Scand J Immunol 2017; 84:204-10. [PMID: 27454335 DOI: 10.1111/sji.12465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/13/2016] [Indexed: 11/28/2022]
Abstract
Currently, more than 9.0 million people develop acute pulmonary tuberculosis (TB) each year and about 1.5 million people worldwide die from this infection. Thus, developing vaccines to prevent active TB disease remains a priority. This article discusses recent progress in the development of new vaccines against TB and focusses on the main requirements for development of improved vaccines against Mycobacterium tuberculosis (M. tb). Over the last two decades, significant progress has been made in TB vaccine development, and some TB vaccine candidates have currently completed a phase III clinical trial. The potential public health benefits of these vaccines are possible, but it will need much more effort, including new global governance investment on this research. This investment would certainly be less than the annual global financial toll of TB treatment.
Collapse
Affiliation(s)
- P Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN, CD México, México.
| |
Collapse
|
29
|
Mycobacterium indicus pranii as a booster vaccine enhances BCG induced immunity and confers higher protection in animal models of tuberculosis. Tuberculosis (Edinb) 2016; 101:164-173. [PMID: 27865389 DOI: 10.1016/j.tube.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 11/20/2022]
Abstract
BCG, the only approved vaccine protects against severe form of childhood tuberculosis but its protective efficacy wanes in adolescence. BCG has reduced the incidence of infant TB considerably in endemic areas; therefore prime-boost strategy is the most realistic measure for control of tuberculosis in near future. Mycobacterium indicus pranii (MIP) shares significant antigenic repertoire with Mtb and BCG and has been shown to impart significant protection in animal models of tuberculosis. In this study, MIP was given as a booster to BCG vaccine which enhanced the BCG mediated immune response, resulting in higher protection. MIP booster via aerosol route was found to be more effective in protection than subcutaneous route of booster immunization. Pro-inflammatory cytokines like IFN-γ, IL-12 and IL-17 were induced at higher level in infected lungs of 'BCG-MIP' group both at mRNA expression level and in secretory form when compared with 'only BCG' group. BCG-MIP groups had increased frequency of multifunctional T cells with high MFI for IFN-γ and TNF-α in Mtb infected mice. Our data demonstrate for the first time, potential application of MIP as a booster to BCG vaccine for efficient protection against tuberculosis. This could be very cost effective strategy for efficient control of tuberculosis.
Collapse
|
30
|
Scriba TJ, Kaufmann SHE, Henri Lambert P, Sanicas M, Martin C, Neyrolles O. Vaccination Against Tuberculosis With Whole-Cell Mycobacterial Vaccines. J Infect Dis 2016; 214:659-64. [PMID: 27247343 DOI: 10.1093/infdis/jiw228] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
Live attenuated and killed whole-cell vaccines (WCVs) offer promising vaccination strategies against tuberculosis. A number of WCV candidates, based on recombinant bacillus Calmette-Guerin (BCG), attenuated Mycobacterium tuberculosis, or related mycobacterial species are in various stages of preclinical or clinical development. In this review, we discuss the vaccine candidates and key factors shaping the development pathway for live and killed WCVs and provide an update on progress.
Collapse
Affiliation(s)
- Thomas J Scriba
- Department of Pathology, South African Tuberculosis Vaccine Initiative Institute of Infectious Disease and Molecular Medicine Division of Immunology, University of Cape Town, South Africa
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Paul Henri Lambert
- Center of Vaccinology, University Medical Center, University of Geneva, Switzerland
| | | | - Carlos Martin
- Department of Microbiology, Faculty of Medicine, University of Zaragoza ISS Aragón Zaragoza CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Olivier Neyrolles
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale) Université de Toulouse, UPS, IPBS, France
| |
Collapse
|
31
|
Vaccines for TB: Lessons from the Past Translating into Future Potentials. J Immunol Res 2015; 2015:916780. [PMID: 26146643 PMCID: PMC4469767 DOI: 10.1155/2015/916780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023] Open
Abstract
Development of vaccines for infectious diseases has come a long way with recent advancements in adjuvant developments and discovery of new antigens that are capable of eliciting strong immunological responses for sterile eradication of disease. Tuberculosis (TB) that kills nearly 2 million of the population every year is also one of the highlights of the recent developments. The availability or not of diagnostic methods for infection has implications for the control of the disease by the health systems but is not related to the immune surveillance, a phenomenon derived from the interaction between the bacteria and their host. Here, we will review the immunology of TB and current vaccine candidates for TB. Current strategies of developing new vaccines against TB will also be reviewed in order to further discuss new insights into immunotherapeutic approaches involving adjuvant and antigens combinations that might be of potential for the control of TB.
Collapse
|
32
|
Kumar P, John V, Marathe S, Das G, Bhaskar S. Mycobacterium indicus pranii induces dendritic cell activation, survival, and Th1/Th17 polarization potential in a TLR-dependent manner. J Leukoc Biol 2015; 97:511-20. [PMID: 25593326 DOI: 10.1189/jlb.1a0714-361r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
MIP is a nonpathogenic, soil-borne predecessor of Mycobacterium avium. It has been reported previously that MIP possesses strong immunomodulatory properties and confers protection against experimental TB and tumor. DCs, by virtue of their unmatched antigen-presentation potential, play a critical role in activation of antitumor and antimycobacterial immune response. The effect of MIP on the behavior of DCs and the underlying mechanisms, however, have not been investigated so far. In the present study, we showed that MIP induces significant secretion of IL-6, IL-12p40, IL-10, and TNF-α by DCs and up-regulates the expression of costimulatory molecules CD40, CD80, and CD86. MIP(L) induced a significantly higher response compared with MIP(K). PI and Annexin V staining showed that MIP increases DC survival by inhibiting apoptosis. Consistently, higher expression of antiapoptotic proteins Bcl-2 and Bcl-xl was observed in MIP-stimulated DCs. Cytokines, produced by naïve T cells, cocultured with MIP-stimulated DCs, showed that MIP promotes Th1/Th17 polarization potential in DCs. Response to MIP was lost in MyD88(-/-)DCs, underscoring the critical role of TLRs in MIP-induced DC activation. Further studies revealed that TLR2 and TLR9 are involved in DC activation by MIP(L), whereas MIP(K) activates the DCs through TLR2. Our findings establish the DC activation by MIP, define the behavior of MIP-stimulated DCs, and highlight the role of TLRs in MIP-induced DC activation.
Collapse
Affiliation(s)
- Pawan Kumar
- *National Institute of Immunology, New Delhi, India; and International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vini John
- *National Institute of Immunology, New Delhi, India; and International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Soumitra Marathe
- *National Institute of Immunology, New Delhi, India; and International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gobardhan Das
- *National Institute of Immunology, New Delhi, India; and International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sangeeta Bhaskar
- *National Institute of Immunology, New Delhi, India; and International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
33
|
Kumar P, Tyagi R, Das G, Bhaskar S. Mycobacterium indicus pranii and Mycobacterium bovis BCG lead to differential macrophage activation in Toll-like receptor-dependent manner. Immunology 2014; 143:258-68. [PMID: 24766519 DOI: 10.1111/imm.12306] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/26/2014] [Accepted: 04/22/2014] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium indicus pranii (MIP) is an atypical mycobacterial species possessing strong immunomodulatory properties. It is a potent vaccine candidate against tuberculosis, promotes Th1 immune response and protects mice from tumours. In previous studies, we demonstrated higher protective efficacy of MIP against experimental tuberculosis as compared with bacillus Calmette-Guérin (BCG). Since macrophages play an important role in the pathology of mycobacterial diseases and cancer, in the present study, we evaluated the MIP in live and killed form for macrophage activation potential, compared it with BCG and investigated the underlying mechanisms. High levels of tumour necrosis factor-α, interleukin-12p40 (IL-12p40), IL-6 and nitric oxide were produced by MIP-stimulated macrophages as compared with BCG-stimulated macrophages. Prominent up-regulation of co-stimulatory molecules CD40, CD80 and CD86 was also observed in response to MIP. Loss of response in MyD88-deficient macrophages showed that both MIP and BCG activate the macrophages in a MyD88-dependent manner. MyD88 signalling pathway culminates in nuclear factor-κB/activator protein-1 (NF-κB/AP-1) activation and higher activation of NF-κB/AP-1 was observed in response to MIP. With the help of pharmacological inhibitors and Toll-like receptor (TLR) -deficient macrophages, we observed the role of TLR2, TLR4 and intracellular TLRs in MIP-mediated macrophage activation. Stimulation of HEK293 cells expressing TLR2 in homodimeric or heterodimeric form showed that MIP has a distinctly higher level of TLR2 agonist activity compared with BCG. Further experiments suggested that TLR2 ligands are well exposed in MIP whereas they are obscured in BCG. Our findings establish the higher macrophage activation potential of MIP compared with BCG and delineate the underlying mechanism.
Collapse
Affiliation(s)
- Pawan Kumar
- National Institute of Immunology, New Delhi, India
| | | | | | | |
Collapse
|
34
|
Gene cooption in Mycobacteria and search for virulence attributes: Comparative proteomic analyses of Mycobacterium tuberculosis, Mycobacterium indicus pranii and other mycobacteria. Int J Med Microbiol 2014; 304:742-8. [DOI: 10.1016/j.ijmm.2014.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023] Open
|
35
|
Abstract
The tuberculosis (TB) pandemic continues to rampage despite widespread use of the BCG (Bacillus Calmette-Guérin) vaccine. Novel vaccination strategies are urgently needed to arrest global transmission and prevent the uncontrolled development of multidrug-resistant forms of Mycobacterium tuberculosis. Over the last two decades, considerable progress has been made in the field of vaccine development with numerous innovative preclinical candidates and more than a dozen vaccines in clinical trials. These vaccines are developed either as boosters of the current BCG vaccine or as novel prime vaccines to replace BCG. Given the enormous prevalence of latent TB infection, vaccines that are protective on top of an already established infection remain a high priority and a significant scientific challenge. Here we discuss the current state of TB vaccine research and development, our understanding of the underlying immunology, and the requirements for an efficient TB vaccine.
Collapse
|
36
|
Progress in tuberculosis vaccine development and host-directed therapies--a state of the art review. THE LANCET RESPIRATORY MEDICINE 2014; 2:301-20. [PMID: 24717627 DOI: 10.1016/s2213-2600(14)70033-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tuberculosis continues to kill 1·4 million people annually. During the past 5 years, an alarming increase in the number of patients with multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has been noted, particularly in eastern Europe, Asia, and southern Africa. Treatment outcomes with available treatment regimens for drug-resistant tuberculosis are poor. Although substantial progress in drug development for tuberculosis has been made, scientific progress towards development of interventions for prevention and improvement of drug treatment outcomes have lagged behind. Innovative interventions are therefore needed to combat the growing pandemic of multidrug-resistant and extensively drug-resistant tuberculosis. Novel adjunct treatments are needed to accomplish improved cure rates for multidrug-resistant and extensively drug-resistant tuberculosis. A novel, safe, widely applicable, and more effective vaccine against tuberculosis is also desperately sought to achieve disease control. The quest to develop a universally protective vaccine for tuberculosis continues. So far, research and development of tuberculosis vaccines has resulted in almost 20 candidates at different stages of the clinical trial pipeline. Host-directed therapies are now being developed to refocus the anti-Mycobacterium tuberculosis-directed immune responses towards the host; a strategy that could be especially beneficial for patients with multidrug-resistant tuberculosis or extensively drug-resistant tuberculosis. As we are running short of canonical tuberculosis drugs, more attention should be given to host-directed preventive and therapeutic intervention measures.
Collapse
|
37
|
Abstract
Very substantial efforts have been made over the past decade or more to develop vaccines against tuberculosis. Historically, this began with a view to replace the current vaccine, Bacillus Calmette Guérin (BCG), but more recently most candidates are either new forms of this bacillus, or are designed to boost immunity in children given BCG as infants. Good progress is being made, but very few have, as yet, progressed into clinical trials. The leading candidate has advanced to phase IIb efficacy testing, with disappointing results. This article discusses the various types of vaccines, including those designed to be used in a prophylactic setting, either alone or BCG-boosting, true therapeutic (post-exposure) vaccines, and therapeutic vaccines designed to augment chemotherapy. While there is no doubt that progress is still being made, we have a growing awareness of the limitations of our animal model screening processes, further amplified by the fact that we still do not have a clear picture of the immunological responses involved, and the precise type of long-lived immunity that effective new vaccines will need to induce.
Collapse
Affiliation(s)
- Ian M Orme
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|