1
|
Gerber-Tichet E, Blanchet FP, Majzoub K, Kremer EJ. Toll-like receptor 4 - a multifunctional virus recognition receptor. Trends Microbiol 2025; 33:34-47. [PMID: 39179422 DOI: 10.1016/j.tim.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
Since the initial description of Toll receptors in Drosophila and their mammalian counterparts Toll-like receptors (TLRs), numerous fundamental and applied studies have explored their crucial role as sensors of pathogen-associated molecular patterns (PAMPs). Among the ten human TLRs, TLR4 is particularly well known for its ability to detect lipopolysaccharides (LPS), a component of the Gram-negative bacterial cell wall. In addition to its archetypal functions, TLR4 is also a versatile virus sensor. This review provides a background on the discovery of TLR4 and how this knowledge laid a foundation for characterization of its diverse roles in antiviral responses, examined through genetic, biochemical, structural, and immunological approaches. These advances have led to a deeper understanding of the molecular functions that enable TLR4 to orchestrate multi-nodal control by professional antigen-presenting cells (APCs) to initiate appropriate and regulated antiviral immune responses.
Collapse
Affiliation(s)
- Elina Gerber-Tichet
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34090 Montpellier, France
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France.
| |
Collapse
|
2
|
Oboge H, Riitho V, Nyamai M, Omondi GP, Lacasta A, Githaka N, Nene V, Aboge G, Thumbi SM. Safety and efficacy of toll-like receptor agonists as therapeutic agents and vaccine adjuvants for infectious diseases in animals: a systematic review. Front Vet Sci 2024; 11:1428713. [PMID: 39355141 PMCID: PMC11442433 DOI: 10.3389/fvets.2024.1428713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Strengthening global health security relies on adequate protection against infectious diseases through vaccination and treatment. Toll-like receptor (TLR) agonists exhibit properties that can enhance immune responses, making them potential therapeutic agents or vaccine adjuvants. Methods We conducted an extensive systematic review to assess the efficacy of TLR agonists as therapeutic agents or vaccine adjuvants for infectious diseases and their safety profile in animals, excluding rodents and cold-blooded animals. We collected qualitative and available quantitative data on the efficacy and safety outcomes of TLR agonists and employed descriptive analysis to summarize the outcomes. Results Among 653 screened studies, 51 met the inclusion criteria. In this review, 82% (42/51) of the studies used TLR agonists as adjuvants, while 18% (9/51) applied TLR agonist as therapeutic agents. The predominant TLR agonists utilized in animals against infectious diseases was CpG ODN, acting as a TLR9 agonist in mammals, and TLR21 agonists in chickens. In 90% (46/51) of the studies, TLR agonists were found effective in stimulating specific and robust humoral and cellular immune responses, thereby enhancing the efficacy of vaccines or therapeutics against infectious diseases in animals. Safety outcomes were assessed in 8% (4/51) of the studies, with one reporting adverse effects. Discussion Although TLR agonists are efficacious in enhancing immune responses and the protective efficacy of vaccines or therapeutic agents against infectious diseases in animals, a thorough evaluation of their safety is imperative to in-form future clinical applications in animal studies. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=323122.
Collapse
Affiliation(s)
- Harriet Oboge
- Department of Public Health Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Victor Riitho
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - Mutono Nyamai
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - George P Omondi
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Anna Lacasta
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Naftaly Githaka
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Vishvanath Nene
- Animal and Human Health, International Livestock Research Institute, Nairobi, Kenya
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
| | - Gabriel Aboge
- Department of Public Health Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
- Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | - S M Thumbi
- Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
- Feed the Future Innovation Lab for Animal Health, Washington State University, Pullman, WA, United States
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Integration of gene expression profile data to screen and verify immune-related genes of chicken erythrocytes involved in Marek's disease virus. Microb Pathog 2020; 148:104454. [PMID: 32818575 DOI: 10.1016/j.micpath.2020.104454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/04/2023]
Abstract
Chicken erythrocytes participated in immunity, but the role of erythrocytes in the immunity of Marek's disease virus (MDV) has not been reported related to the immunity genes. The purpose of this study was to screen and verify the immune-related genes of chicken erythrocytes which could be proven as a biomarker in MDV. The datasets (GPL8764-Chicken Gene Expression Microarray) were downloaded from the GEO profile database for control and MDV infected chickens to obtain differentially expressed genes (DEGs) through bioinformatics methods. Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed to find enriched pathways, including Gene Ontology (GO). Based on enriched pathways, the top 19 immune-related genes were screened-out and process further to construct the protein-protein interaction (PPI) networks. The screened genes were validated on RT-PCR and qPCR. Results suggested that the mRNA transcription of Toll-like receptors 2, 3, 4, 6 (TLR2, TLR3, TLR4, TLR6), major histocompatibility complex-II (MHCII), interleukin-7 (IL-7), interferon-βeta (IFN-β), chicken myelomonocytic growth factor (cMGF) and myeloid differentiation primary response 88 (MyD88) were significantly up-regulated. The expression of toll-like receptor 5, 7 (TLR5, TLR7) interleukin-12 (IL-12 p40), interleukin-13 (IL-13), and interferon-αlpha (IFN-α) were significantly down-regulated in the erythrocytes of the infected group (P < 0.05). In contrast, the expression of toll-like receptor-1, 15, 21 (TLR1, TLR15, TLR21), major histocompatibility complex I (MHCI) and Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) were not significant. In conclusion, it has been verified on qRT-PCR results that 19 immune-related genes, which included TLRs, cytokines and MHC have immune functions in MDV infected chickens.
Collapse
|
4
|
Jaime J, Vargas-Bermúdez DS, Yitbarek A, Reyes J, Rodríguez-Lecompte JC. Differential immunomodulatory effect of vitamin D (1,25 (OH) 2 D 3) on the innate immune response in different types of cells infected in vitro with infectious bursal disease virus. Poult Sci 2020; 99:4265-4277. [PMID: 32867971 PMCID: PMC7598002 DOI: 10.1016/j.psj.2020.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/11/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
It has been demonstrated that vitamin D (Vit D) included in diets offers a beneficial effect by improving innate immune responses in chickens. However, its mechanisms of action and the effect on immunosuppressive pathogens, such as infectious bursal disease virus, are not yet known. In the present study, we have studied the immunomodulatory effect of Vit D on the innate immune response in 3 cell lines: fibroblast cells (DF-1), macrophages (HD11), and B cells (DT-40) infected with IBDV (intermediate vaccine) at 2 multiplicity of infections (MOI) (1 and 0.1). Genes associated with innate immune responses (TLR-3, TLR-21, MDA-5, MyD88, TRIF, IRF-7, INF-α, INF-β, PKR, OAS, viperin, IL-1β, IL-6, and IL-12) were evaluated at different time points (3, 6, 12, 24, and 36 h after infection, h.p.i). Virus production reached a maximum at 24 h.p.i., which was significantly (P < 0.05) higher in DF-1 cells, followed by HD-11 and DT-40 cells. Mainly in HD-11 cells, there was a significant (P < 0.05) effect of Vit D supplementation on receptors TLR-3, TLR-21, and MDA-5 after 12 h.p.i, independent of MOI. DT-40 cells showed the highest antiviral activity, with a significant (P < 0.05) effect on IRF-7, IFN-β, OAS, and PKR gene expression, where expression of IRF-7 and IFN-β correlated positively with Vit D supplementation, while OAS and PKR were independent of Vit D. Proinflammatory cytokines were significantly (P < 0.05) upregulated and found to be Vit D and MOI dependent. In conclusion, this study demonstrated the capacity of IBDV to trigger a strong innate immune response in chicken cells and contributes to the understanding of the activation pathways of innate immunity induced by IBDV and further shows the benefitial effect of Vit D supplementation as an immunomodulator.
Collapse
Affiliation(s)
- J Jaime
- Universidad Nacional de Colombia, sede Bogotá. Facultad de Medicina Veterinaria y de Zootecnia. Departamento de Salud Animal. Centro de Investigación en Inmunología e Infectología Veterinaria (CI(3)V), Bogotá CP 11001, Colombia
| | - D S Vargas-Bermúdez
- Universidad Nacional de Colombia, sede Bogotá. Facultad de Medicina Veterinaria y de Zootecnia. Departamento de Salud Animal. Centro de Investigación en Inmunología e Infectología Veterinaria (CI(3)V), Bogotá CP 11001, Colombia
| | - A Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph N1G 2W1, ON, Canada
| | - J Reyes
- Grupo de investigacion Biogenesis, Universidad de Antioquia, Medellín, Colombia
| | - J C Rodríguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada, C1A 4P3.
| |
Collapse
|
5
|
Immunomodulation of Avian Dendritic Cells under the Induction of Prebiotics. Animals (Basel) 2020; 10:ani10040698. [PMID: 32316442 PMCID: PMC7222706 DOI: 10.3390/ani10040698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Dendritic cells recognize pathogen-associated molecular patterns in chicken intestines and are part of the initial immune response. The immunoregulatory properties of prebiotics acting in several ways in poultry have been known for many years. According to their function, dendritic cells should play an indispensable role in the proven effects of prebiotics on the intestinal immune system, such as through activation of T and B cells and cytokine production. Currently, there are no studies concerning direct interactions in poultry between non-digestible feed components and dendritic cells. Whereas most in vitro experiments with chicken dendritic cells have studied their interactions with pathogens, in vitro studies are now needed to determine the impacts of prebiotics on the gastrointestinal dendritic cells themselves. The present lack of information in this area limits the development of effective feed additives for poultry production. The main purpose of this review is to explore ideas regarding potential mechanisms by which dendritic cells might harmonize the immune response after prebiotic supplementation and thereby provide a basis for future studies. Abstract Although the immunomodulatory properties of prebiotics were demonstrated many years ago in poultry, not all mechanisms of action are yet clear. Dendritic cells (DCs) are the main antigen-presenting cells orchestrating the immune response in the chicken gastrointestinal tract, and they are the first line of defense in the immune response. Despite the crucial role of DCs in prebiotic immunomodulatory properties, information is lacking about interaction between prebiotics and DCs in an avian model. Mannan-oligosaccharides, β-glucans, fructooligosaccharides, and chitosan-oligosaccharides are the main groups of prebiotics having immunomodulatory properties. Because pathogen-associated molecular patterns on these prebiotics are recognized by many receptors of DCs, prebiotics can mimic activation of DCs by pathogens. Short-chain fatty acids are products of prebiotic fermentation by microbiota, and their anti-inflammatory properties have also been demonstrated in DCs. This review summarizes current knowledge about avian DCs in the gastrointestinal tract, and for the first-time, their role in the immunomodulatory properties of prebiotics within an avian model.
Collapse
|
6
|
Avian Pattern Recognition Receptor Sensing and Signaling. Vet Sci 2020; 7:vetsci7010014. [PMID: 32012730 PMCID: PMC7157566 DOI: 10.3390/vetsci7010014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are a class of immune sensors that play a critical role in detecting and responding to several conserved patterns of microorganisms. As such, they play a major role in the maintenance of immune homeostasis and anti-microbial defense. Fundamental knowledge pertaining to the discovery of PRR functions and their ligands continue to advance the understanding of immune system and disease resistance, which led to the rational design and/or application of various PRR ligands as vaccine adjuvants. In addition, the conserved nature of many PRRs throughout the animal kingdom has enabled the utilization of the comparative genomics approach in PRR identification and the study of evolution, structural features, and functions in many animal species including avian. In the present review, we focused on PRR sensing and signaling functions in the avian species, domestic chicken, mallard, and domestic goose. In addition to summarizing recent advances in the understanding of avian PRR functions, the present review utilized a comparative biology approach to identify additional PRRs, whose functions have been well studied in mammalians but await functional characterization in avian.
Collapse
|
7
|
Toll like receptors and cytokines as immunostimulatory adjuvants in poultry vaccines: current status and future trends. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933919000242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Nawab A, An L, Wu J, Li G, Liu W, Zhao Y, Wu Q, Xiao M. Chicken toll-like receptors and their significance in immune response and disease resistance. Int Rev Immunol 2019; 38:284-306. [PMID: 31662000 DOI: 10.1080/08830185.2019.1659258] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infectious diseases are a major challenge for the poultry industry that causes widespread production losses. Thus, management and control of poultry health and diseases are essential for the viability of the industry. Toll-like receptors are best characterized as membrane-bound receptors that perform a central role in immune homeostasis and disease resistance by recognition of pathogen-associated molecular patterns. In response to pathogen recognition, TLRs initiate both innate and adaptive immune responses which may help to develop immunomodulatory therapeutics for TLR associated diseases. Vaccination produces specific immunity in the animal's body towards pathogens. However, due to certain disadvantages of vaccines, (inactivation of attenuated pathogens into the virulent strains and weak immunogenicity of inactivated vaccines) there is a crucial need to develop the safe and effective therapeutic intervention. TLR ligands have been classified as a potential adjuvant against the infectious diseases in farm animals. TLR adjuvants induce both specific and nonspecific immune responses in chickens to combat several bacterial, viral and parasitic diseases. Therefore, the aim of this review was to explore the chicken TLR4 and their role in immune responses and disease resistance to develop disease resistance poultry breeds in future.
Collapse
Affiliation(s)
- Aamir Nawab
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China.,Faculty of Veterinary Medicine, PMAS- Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Lilong An
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jiang Wu
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guanghui Li
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Wenchao Liu
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yi Zhao
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Qimin Wu
- Mechanical and Power Engineering College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Mei Xiao
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
9
|
Role of cytosine-phosphate-guanosine-Oligodeoxynucleotides (CpG ODNs) as adjuvant in poultry vaccines. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933918000508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Gao S, Wang Z, Jiang H, Sun J, Diao Y, Tang Y, Hu J. Transcriptional analysis of host responses related to immunity in chicken spleen tissues infected with reticuloendotheliosis virus strain SNV. INFECTION GENETICS AND EVOLUTION 2019; 74:103932. [PMID: 31228642 DOI: 10.1016/j.meegid.2019.103932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/09/2019] [Accepted: 06/18/2019] [Indexed: 11/15/2022]
Abstract
In avian species, the Reticuloendotheliosis virus (REV) causes severe immunosuppression and other symptoms, including avian dwarfing syndrome, and chronic tumors in lymphoid and other tissues. The pathogenesis of REV and its interaction with the host have yet to be fully elucidated with transcriptional studies on the changes in host gene expression after REV infection at the body level. In this study, the Spleen Necrosis Virus (SNV) was used to inoculate the one-day-old specific pathogen free (SPF) chicken to simulate congenital infection. We identified 1507 differentially expressed genes (DEGs) at 7, 14 and 21 dpi using Next Generation Sequencing (NGS) technology. Through the Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of these DEGs, it was found that DEGs were mainly involved in the categories of signal transduction, immune system and signaling molecules and interaction. Among them, Pattern recognition receptors (PRRs), chemokine, T cell receptor, JAK-STAT, TNF, and NF-kappa B signaling pathway, and the Hematopoietic cell lineage play an important role in the tumorigenic and immunosuppressive regulation of REV. In addition, a series of DEGs associated with inflammatory factors (CCL4, TNFRSF18, CDKN2), apoptosis (IRF1, PDCD1, WNT5A), innate immunity (TLR, MAD5, TRIM25), and adaptive immunity (LY6E, CD36, LAG3) were also discovered. We further verified 33 selected immune- relevant DEGs using quantitative RT-PCR (qRT-PCR). These findings provide new insights and research directions for revealing the pathogenesis of REV infection and the interaction between REV and the chicken immune system.
Collapse
Affiliation(s)
- Shuo Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Zhenzhong Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hao Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jie Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Youxiang Diao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yi Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.
| | - Jingdong Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
11
|
Bavananthasivam J, Read L, Astill J, Yitbarek A, Alkie TN, Abdul-Careem MF, Wootton SK, Behboudi S, Sharif S. The effects of in ovo administration of encapsulated Toll-like receptor 21 ligand as an adjuvant with Marek's disease vaccine. Sci Rep 2018; 8:16370. [PMID: 30401976 PMCID: PMC6219601 DOI: 10.1038/s41598-018-34760-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/25/2018] [Indexed: 11/22/2022] Open
Abstract
Marek’s Disease Virus (MDV) is the causative agent of a lymphoproliferative disease, Marek’s disease (MD) in chickens. MD is only controlled by mass vaccination; however, immunity induced by MD vaccines is unable to prevent MDV replication and transmission. The herpesvirus of turkey (HVT) vaccine is one of the most widely used MD vaccines in poultry industry. Vaccines can be adjuvanted with Toll-like receptor ligands (TLR-Ls) to enhance their efficacy. In this study, we examined whether combining TLR-Ls with HVT can boost host immunity against MD and improve its efficacy. Results demonstrated that HVT alone or HVT combined with encapsulated CpG-ODN partially protected chickens from tumor incidence and reduced virus replication compared to the control group. However, encapsulated CpG-ODN only moderately, but not significantly, improved HVT efficacy and reduced tumor incidence from 53% to 33%. Further investigation of cytokine gene profiles in spleen and bursa of Fabricius revealed an inverse association between interleukin (IL)-10 and IL-18 expression and protection conferred by different treatments. In addition, the results of this study raise the possibility that interferon (IFN)-β and IFN-γ induced by the treatments may exert anti-viral responses against MDV replication in the bursa of Fabricius at early stage of MDV infection in chickens.
Collapse
Affiliation(s)
- Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Leah Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Tamiru N Alkie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Biology, Wilfred Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and public health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.,Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
12
|
Bavananthasivam J, Alkie TN, Astill J, Abdul-Careem MF, Wootton SK, Behboudi S, Yitbarek A, Sharif S. In ovo administration of Toll-like receptor ligands encapsulated in PLGA nanoparticles impede tumor development in chickens infected with Marek's disease virus. Vaccine 2018; 36:4070-4076. [PMID: 29859800 DOI: 10.1016/j.vaccine.2018.05.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 05/21/2018] [Indexed: 01/17/2023]
Abstract
One of the economically important diseases in the poultry industry is Marek's disease (MD) which is caused by Marek's disease virus (MDV). The use of current vaccines provides protection against clinical signs of MD in chickens. However, these vaccines do not prevent the transmission of MDV to susceptible hosts, hence they may promote the development of new virulent strains of MDV. This issue persuaded us to explore alternative approaches to control MD in chickens. Induction of innate responses at the early stage of life in the chicken may help to prevent or reduce MDV infection. Further, prophylactic use of Toll-like receptor ligands (TLR-Ls) has been shown to generate host immunity against infectious diseases. In this regard, encapsulation of TLR-Ls in Poly(d, l-lactic-co-glycolic acid) (PLGA) may further enhance host responses by controlled release of TLR-Ls for an extended period. Hence, in the current study, protective effects of encapsulated TLR4 and TLR21 ligands, LPS and CpG, respectively, were investigated against MD. Results indicated that administration of encapsulated CpG and LPS first at embryonic day (ED) 18, followed by post-hatch at 14 days-post infection (dpi) intramuscularly, diminished tumor incidence by 60% and 42.8%, respectively at 21dpi compared to the MDV only group. In addition, analysis of cytokine gene profiles of interferon (IFN)-α, IFN-β, IFN-γ, inducible nitric oxide synthase (iNOS), interleukin (IL)-1β, IL-18 and IL-10 in spleen and bursa of Fabricius at different time points suggests that TLR-Ls possibly triggered host responses through the expression of IL-1β and IL-18 to reduce tumor formation. However, further studies are needed to explore the role of these pro-inflammatory cytokines and other influencing elements like lymphocytes in the hindrance of tumor development by TLR-Ls treatment in chickens.
Collapse
Affiliation(s)
- Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Tamiru N Alkie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom; Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Alexander Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
13
|
Kim S, Kaiser P, Borowska D, Vervelde L. Synergistic effect of co-stimulation of membrane and endosomal TLRs on chicken innate immune responses. Vet Immunol Immunopathol 2018; 199:15-21. [PMID: 29678225 DOI: 10.1016/j.vetimm.2018.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 11/18/2022]
Abstract
Toll-like receptor (TLR) ligands (TLR-Ls) are critical activators of immunity and are successfully being developed as vaccine adjuvants in both mammals and birds. In this study, we investigated the synergistic effect of co-stimulation of membrane and endosomal TLRs on the innate immune responses using chicken bone marrow-derived macrophages (BMMs), and studied the effect of age on the induction of innate responses. BMMs from 1 and 4-week-old birds were stimulated with Pam3Cys-SK4 (PCSK; TLR2), synthetic monophosphoryl lipid A (MPLA), Di[3-deoxy-d-manno-octulosonyl]-lipid A ammonium salt (KLA; TLR4), Gardiquimod, Resiquimod (R848; TLR7), CpG class B and C (TLR21). Nitric oxide (NO) production and mRNA levels of IL-1β, IL-10 and IL-12p40 showed macrophages from 4-week-old birds showed more sensitive responses compared to 1-week-old birds. The most potent TLR-Ls, PCSK, MPLA and CpG B were used to study the effect of co-stimulation on macrophages. Co-stimulation with TLR21 and TLR4 synergistically up-regulated inflammatory-related genes, as well as NO production. However, incubation of splenocytes with PCSK, MPLA and CpG B did not induce cell proliferation. Moreover, treatment with CpG B led to significant cell death.
Collapse
Affiliation(s)
- Sungwon Kim
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Pete Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Dominika Borowska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
14
|
Characterization of innate responses induced by in ovo administration of encapsulated and free forms of ligands of Toll-like receptor 4 and 21 in chicken embryos. Res Vet Sci 2017; 125:405-415. [PMID: 29126629 DOI: 10.1016/j.rvsc.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are a family of innate receptors that recognize pathogen-associated molecular patterns, including double-stranded RNA, CpG DNA and lipopolysaccharide (LPS). After interaction with their ligands, TLRs initiate innate responses that are manifested by activating cells and inducing expression of cytokines that help mediate adaptive immune responses. TLR ligands (TLR-Ls) have the potential to be used prophylactically (alone) or as vaccine adjuvants to promote host immunity. Encapsulating TLR-Ls in nanoparticles, such as Poly (d,l-lactic-co-glycolic acid), may prolong responses through sustained release of the ligands. PLGA nanoparticles protect encapsulated TLR-Ls from degradation and extend the half-life of these ligands by reducing their rapid removal from the body. In this study, encapsulated and free forms of LPS and CpG ODN were administered to embryonation day 18 (ED18) chicken embryos. Spleen, lungs and bursa of Fabricius were collected at 6, 18 and 48hour post-stimulation (hps) and cytokine gene expressions were evaluated using quantitative real-time PCR. Results indicate that both the free and encapsulated forms of LPS and CpG ODN induced innate immune responses in ED18 chicken embryos. Innate responses induced in embryos seem similar to those reported in mature chickens. Significant upregulation of cytokine genes generally occurred by 48hps. Further studies are needed to evaluate long term immunomodulatory effects of encapsulated TLR-Ls and their ability to mediate protection against pathogens of young chicks.
Collapse
|
15
|
Boodhoo N, Gurung A, Sharif S, Behboudi S. Marek's disease in chickens: a review with focus on immunology. Vet Res 2016; 47:119. [PMID: 27894330 PMCID: PMC5127044 DOI: 10.1186/s13567-016-0404-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), is a commercially important neoplastic disease of poultry which is only controlled by mass vaccination. Importantly, vaccines that can provide sterile immunity and inhibit virus transmission are lacking; such that vaccines are only capable of preventing neuropathy, oncogenic disease and immunosuppression, but are unable to prevent MDV transmission or infection, leading to emergence of increasingly virulent pathotypes. Hence, to address these issues, developing more efficacious vaccines that induce sterile immunity have become one of the important research goals for avian immunologists today. MDV shares very close genomic functional and structural characteristics to most mammalian herpes viruses such as herpes simplex virus (HSV). MD also provides an excellent T cell lymphoma model for gaining insights into other herpesvirus-induced oncogenesis in mammals and birds. For these reasons, we need to develop an in-depth knowledge and understanding of the host-viral interaction and host immunity against MD. Similarly, the underlying genetic variation within different chicken lines has a major impact on the outcome of infection. In this review article, we aim to investigate the pathogenesis of MDV infection, host immunity to MD and discuss areas of research that need to be further explored.
Collapse
Affiliation(s)
- Nitish Boodhoo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Angila Gurung
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| |
Collapse
|
16
|
Yan B, Zhang J, Zhang W, Wang M, Jia R, Zhu D, Liu M, Yang Q, Wu Y, Sun K, Chen X, Cheng A, Chen S. GoTLR7 but not GoTLR21 mediated antiviral immune responses against low pathogenic H9N2 AIV and Newcastle disease virus infection. Immunol Lett 2016; 181:6-15. [PMID: 27832963 DOI: 10.1016/j.imlet.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/21/2016] [Accepted: 11/05/2016] [Indexed: 12/21/2022]
Abstract
Aquatic birds are considered the biological and genetic reservoirs of avian influenza virus and play a critical role in the transmission and dissemination of Newcastle Disease Virus (NDV). Both TLR7 and TLR21 are important for the host antiviral immune response. In an in vivo study, goTLR7, not goTLR21, was significantly up-regulated in the lungs of geese at 3 to 7 d after challenge with H9N2. And goOASL expression was induced in the bursa of fabricius, harderian glands and lungs. An increase in goRIG-I was detected in the lung and small intestine, whereas goPKR was increased in the lung but decreased in the thymus. In the in vitro study, goTLR7 and goRIG-I but not goTLR21 were highly induced by H9N2. Moreover, goOASL and goPKR were significantly induced in H9N2-treated PBMCs, whereas goMx was suppressed. The over-expression of goTLR7, not goTLR21, controlled NDV replication in DF-1 cells, resulting in a decrease in viral copies and the viral titres. Furthermore, we explored the cellular localization of goTLR7 and goTLR21 in heterologous (DF-1 and BHK21) and homologous cells (GEF) through ectopic expression of goTLRs. The antiviral functions of goTLR7 and goTLR21 during H9N2 and NDV infection and their cellular locations were reported here for the first time. These results will contribute to better understand the TLR-dependent antiviral immune responses of waterfowl.
Collapse
Affiliation(s)
- Bing Yan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jinyue Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
17
|
Perumbakkam S, Hunt HD, Cheng HH. Differences in CD8αα and cecal microbiome community during proliferation and late cytolytic phases of Marek's disease virus infection are associated with genetic resistance to Marek's disease. FEMS Microbiol Ecol 2016; 92:fiw188. [PMID: 27604255 DOI: 10.1093/femsec/fiw188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/12/2022] Open
Abstract
Marek's disease (MD) is an important neoplastic disease of chickens caused by Marek ': s disease virus (MDV), a highly oncogenic alphaherpesvirus. In this study using two chicken lines, one resistant and another susceptible to MD, splenic T cells and cecal microbiome were profiled to gain a better understanding of primary differences in these lines. The percent of splenic CD4+ T cells were similar regardless of MDV challenge status in both bird lines. In contrast, CD8αα profiles were different (P < 0.005) between chicken lines under naïve status and under MDV challenge, suggesting that CD8αα T cells play a key role in mediating MDV infection. Microbiome composition was different between naïve resistant (Blautia spp.) and susceptible birds (Streptococcus spp.) (P < 0.05) during initial colonization. With MDV challenge, both chicken lines showed lower numbers of beneficial Faecalibacterium spp. and increased number of Lactobacillus spp. Metabolic profiles between naïve chicken types were similar but with MDV challenge, there were differences in metabolism in both chicken lines, with amino acid metabolism impacted in resistant birds and lipid metabolism in susceptible birds. These results provide insights into immune response and potential interplay with the microbiome during infection with an oncogenic virus.
Collapse
Affiliation(s)
- Sudeep Perumbakkam
- USDA, ARS, Avian Diseases and Oncology Laboratory, East Lansing, MI 48823, USA Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Henry D Hunt
- USDA, ARS, Avian Diseases and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Hans H Cheng
- USDA, ARS, Avian Diseases and Oncology Laboratory, East Lansing, MI 48823, USA
| |
Collapse
|
18
|
Honda-Okubo Y, Ong CH, Petrovsky N. Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single-dose influenza vaccine protection. Vaccine 2015; 33:4892-900. [PMID: 26232344 PMCID: PMC4562881 DOI: 10.1016/j.vaccine.2015.07.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/10/2015] [Accepted: 07/17/2015] [Indexed: 01/16/2023]
Abstract
A single dose of Advax-adjuvanted influenza vaccine in 7-day-old pups protected against lethal influenza infection. Advax adjuvant enhanced both B-cell and T-cell memory in neonates. Influenza protection in Advax-immunized neonates was dependent on memory B-cells. Advax adjuvant confirmed to be safe and well tolerated in neonates.
Neonates are at high risk for influenza morbidity and mortality due to immune immaturity and lack of priming by prior influenza virus exposure. Inactivated influenza vaccines are ineffective in infants under six months and to provide protection in older children generally require two doses given a month apart. This leaves few options for rapid protection of infants, e.g. during an influenza pandemic. We investigated whether Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles could help overcome neonatal immune hypo-responsiveness. We first tested whether it was possible to use Advax to obtain single-dose vaccine protection of neonatal pups against lethal influenza infection. Inactivated influenza A/H1N1 vaccine (iH1N1) combined with Advax™ adjuvant administered as a single subcutaneous immunization to 7-day-old mouse pups significantly enhanced serum influenza-specific IgM, IgG1, IgG2a and IgG2b levels and was associated with a 3–4 fold increase in the frequency of splenic influenza-specific IgM and IgG antibody secreting cells. Pups immunized with Advax had significantly higher splenocyte influenza-stimulated IFN-γ, IL-2, IL-4, and IL-10 production by CBA and a 3–10 fold higher frequency of IFN-γ, IL-2, IL-4 or IL-17 secreting T cells by ELISPOT. Immunization with iH1N1 + Advax induced robust protection of pups against virus challenge 3 weeks later, whereas pups immunized with iH1N1 antigen alone had no protection. Protection by Advax-adjuvanted iH1N1 was dependent on memory B cells rather than memory T cells, with no protection in neonatal μMT mice that are B-cell deficient. Hence, Advax adjuvant overcame neonatal immune hypo-responsiveness and enabled single-dose protection of pups against otherwise lethal influenza infection, thereby supporting ongoing development of Advax™ as a neonatal vaccine adjuvant.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia
| | - Chun Hao Ong
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia; Department of Endocrinology, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
19
|
Gupta SK, Deb R, Dey S, Chellappa MM. Toll-like receptor-based adjuvants: enhancing the immune response to vaccines against infectious diseases of chicken. Expert Rev Vaccines 2014; 13:909-25. [PMID: 24855906 DOI: 10.1586/14760584.2014.920236] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Huge productivity loss due to infectious diseases in chickens is a major problem and, hence, robust development of the poultry industry requires control of poultry health. Immunization using vaccines is routine practice; however, to combat infectious diseases, conventional vaccines as well as new-generation recombinant vaccines alone, due to relatively weak immunogenicity, may not be effective enough to provide optimum immunity. With this in mind, there is a need to incorporate better and more suitable adjuvants in the vaccines to elicit the elevated immune response in the host. Over last few decades, with the increase in the knowledge of innate immune functioning, efforts have been made to enhance vaccine potency using novel adjuvants like Toll-like receptor based adjuvant systems. In this review, we will discuss the potential use of toll-like receptor ligands as an adjuvant in vaccines against the infectious diseases of chickens.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Division of Veterinary Biotechnology, Recombinant DNA Lab, Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, UP, India
| | | | | | | |
Collapse
|