1
|
Elshamy YS, Kinsey C, Rustandi RR, Sutton AT. Separation of virus-like particles and nano-emulsions for vaccine development by Capillary Zone Electrophoresis. Anal Chim Acta 2025; 1355:344011. [PMID: 40274334 DOI: 10.1016/j.aca.2025.344011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Nano-emulsions with immunogenic properties can be incorporated into vaccines to act as an adjuvant where they can enhance the immune response of a given vaccine. Analytically, studying vaccine antigens, such as Virus-Like Particles (VLPs), in the presence of adjuvants, like nano-emulsions, is very challenging as they are both heterogenous nano species of similar sizes but very different physiochemical properties. Therefore, typical analysis of nanoparticles using separation approaches such as Size Exclusion Chromatography (SEC) and Field-Flow Fractionation (FFF) is difficult due to the size similarities among these nano-species which complicates their separation. RESULTS In this study, a Capillary Zone Electrophoresis (CZE) method was developed, which utilizes a separation mechanism based on the charge-to-size ratio of the analytes. The method was used to quantify VLPs of the Human Papilloma Virus (HPV) and Squalene Nano-Emulsion (SNE) adjuvant mixtures while also measuring buffer excipients, chloride and histidine. The method was assessed according to International Conference on Harmonization (ICH Q2) guidelines with respect to linearity, ranges, accuracy (87-109 %), precision (≤20 %), quantitation and detection limits. SIGNIFICANCE This study was conducted to prove the feasibility of utilizing CZE to characterize VLPs and SNE mixtures with dilution as the only sample preparation. The CZE conditions are simpler than other CZE conditions suggested for VLPs and easily transferred between users. Similar CZE methods could also be developed for other vaccine and adjuvant mixtures as well as other emulsion and nanoparticle-based systems.
Collapse
Affiliation(s)
- Yousef S Elshamy
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26505, USA; Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Caleb Kinsey
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Richard R Rustandi
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Adam T Sutton
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA.
| |
Collapse
|
2
|
Wan M, Yang X, Chen Z, Su W, Cai L, Hou A, Sun B, Zhang Y, Kong W, Jiang C, Zhou Y. Comparison of Effects of Multiple Adjuvants and Immunization Routes on the Immunogenicity and Protection of HSV-2 gD Subunit Vaccine. Immunol Lett 2023:S0165-2478(23)00097-4. [PMID: 37290556 DOI: 10.1016/j.imlet.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Genital herpes caused by herpes simplex virus type 2 (HSV-2) poses a global health issue. HSV-2 infection increases the risk of acquiring HIV infection. Studies have demonstrated that HSV-2 subunit vaccines have potential benefits, but require adjuvants to induce a balanced Th1/Th2 response. To develop a novel, effective vaccine, in this study, a truncated glycoprotein D (aa 1-285) of HSV-2 was formulated with an Al(OH)3 adjuvant, three squalene adjuvants, MF59, AS03, and AS02, or a mucosal adjuvant, bacterium-like particles (BLPs). The immunogenicity of these subunit vaccines was evaluated in mice. After three immunizations, vaccines formulated with Al(OH)3, MF59, AS03, and AS02 (intramuscularly) induced higher titers of neutralizing antibody than that formulated without adjuvant, and in particular, mice immunized with the vaccine plus AS02 had the highest neutralizing antibody titers and tended to produce a more balanced immune reaction than others. Intranasal gD2-PA-BLPs also induced excellent IgA levels and a more balanced Th1 and Th2 responses than intranasal gD2. After challenge with a lethal dose of HSV-2, all five adjuvants exhibited a positive effect in improving the survival rate. AS02 and gD2-PA-BLPs enhanced survival by 50% and 25%, respectively, when compared with the vaccine without adjuvant. AS02 was the only adjuvant that resulted in complete vaginal virus clearance and genital lesion healing within eight days. These results demonstrate the potential of using AS02 as a subunit vaccine adjuvant, and BLPs as a mucosal vaccine adjuvant.
Collapse
Affiliation(s)
- Mingming Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhijun Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Roy V, Jung W, Linde C, Coates E, Ledgerwood J, Costner P, Yamshchikov G, Streeck H, Juelg B, Lauffenburger DA, Alter G. Differences in HPV-specific antibody Fc-effector functions following Gardasil® and Cervarix® vaccination. NPJ Vaccines 2023; 8:39. [PMID: 36922512 PMCID: PMC10017795 DOI: 10.1038/s41541-023-00628-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
Gardasil® (Merck) and Cervarix® (GlaxoSmithKline) both provide protection against infection with Human Papillomavirus 16 (HPV16) and Human Papillomavirus 18 (HPV18), that account for around 70% of cervical cancers. Both vaccines have been shown to induce high levels of neutralizing antibodies and are known to protect against progression beyond cervical intraepithelial neoplasia grade 2 (CIN2+), although Cervarix® has been linked to enhanced protection from progression. However, beyond the transmission-blocking activity of neutralizing antibodies against HPV, no clear correlate of protection has been defined that may explain persistent control and clearance elicited by HPV vaccines. Beyond blocking, antibodies contribute to antiviral activity via the recruitment of the cytotoxic and opsonophagocytic power of the immune system. Thus, here, we used systems serology to comprehensively profile Gardasil®- and Cervarix®- induced antibody subclass, isotype, Fc-receptor binding, and Fc-effector functions against the HPV16 and HPV18 major capsid protein (L1). Overall, both vaccines induced robust functional humoral immune responses against both HPV16 and HPV18. However, Cervarix® elicited higher IgG3 and antibody-dependent complement activating responses, and an overall more coordinated response between HPV16 and 18 compared to Gardasil®, potentially related to the distinct adjuvants delivered with the vaccines. Thus, these data point to robust Fc-effector functions induced by both Gardasil® and Cervarix®, albeit with enhanced coordination observed with Cervarix®, potentially underlying immunological correlates of post-infection control of HPV.
Collapse
Affiliation(s)
- Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.,Institute of Virology, University Hospital Bonn, Bonn, Germany
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Caitlyn Linde
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Emily Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela Costner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Galina Yamshchikov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hendrik Streeck
- Institute of Virology, University Hospital Bonn, Bonn, Germany
| | - Boris Juelg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Guo J, Guo S, Dong S. Efficacy, immunogenicity and safety of HPV vaccination in Chinese population: A meta-analysis. Front Public Health 2023; 11:1128717. [PMID: 36875363 PMCID: PMC9982050 DOI: 10.3389/fpubh.2023.1128717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Objective To evaluate the efficacy, immunogenicity and safety of HPV vaccination in Chinese population. Methods PubMed, Embase, Web of Science and Cochrane Library from inception to November 2022 were searched to collect information on clinical trials of HPV vaccines. Database search strategy used a combination of subject terms and free terms. Studies were first identified by two authors through reading the title, abstract and full texts and, subsequently, based on the inclusion criteria: Chinese population, with at least one of the following outcomes (efficacy, immunogenicity, and safety), and HPV vaccine RCT, those eligible were included in this paper. Efficacy, immunogenicity and safety data, pooled by random effects models, are presented as risk ratios [95% confidence intervals (CI)]. Results Eleven RCTs and four follow-up studies were included. Meta-analysis showed that HPV vaccine had good profile of efficacy and immunogenicity. The seroconversion rates were significantly higher among the vaccinated, uninfected (initial negative serum antibody) population than the placebo population for both HPV-16 (RR 29.10; 95% CI: 8.40-100.82) and HPV-18 (RR 24.15; 95% CI: 3.82-152.84), respectively. A significant reduction of the incidence of cervical intraepithelial neoplasia grade 1 (CIN1+) (RR 0.05; 95% CI: 0.01-0.23) and CIN2+ (RR 0.09; 95% CI: 0.02-0.40) was also measured. Risk for serious adverse events after HPV vaccination indicated comparable outcomes between vaccination and placebo. Conclusions For Chinese populations, HPV vaccines enhance the level of HPV16- and HPV18-specific antibodies and reduce the incidence of CIN1+ and CIN2+ in uninfected population. Also, the risk of serious adverse events in both groups are almost equivalent. More data are needed to establish vaccine efficacy with cervical cancer.
Collapse
Affiliation(s)
- Jianming Guo
- National Institute of Hospital Administration, National Health Commission, Beijing, China.,Southern Institute of Pharmacoeconomics and Health Technology Assessment, Jinan University, Guangzhou, China
| | - Shuyan Guo
- National Institute of Hospital Administration, National Health Commission, Beijing, China
| | - Siping Dong
- National Institute of Hospital Administration, National Health Commission, Beijing, China.,School of Political Science and Public Administration, Wuhan University, Wuhan, China.,Health Research Institute, Fujian Medical University, Fujian, China
| |
Collapse
|
5
|
Lofano G, Mallett CP, Bertholet S, O’Hagan DT. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. NPJ Vaccines 2020; 5:88. [PMID: 33024579 PMCID: PMC7501859 DOI: 10.1038/s41541-020-00238-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccines represent the most successful medical intervention in history, with billions of lives saved. Although multiple doses of the same vaccine are typically required to reach an adequate level of protection, it would be advantageous to develop vaccines that induce protective immunity with fewer doses, ideally just one. Single-dose vaccines would be ideal to maximize vaccination coverage, help stakeholders to greatly reduce the costs associated with vaccination, and improve patient convenience. Here we describe past attempts to develop potent single dose vaccines and explore the reasons they failed. Then, we review key immunological mechanisms of the vaccine-specific immune responses, and how innovative technologies and approaches are guiding the preclinical and clinical development of potent single-dose vaccines. By modulating the spatio-temporal delivery of the vaccine components, by providing the appropriate stimuli to the innate immunity, and by designing better antigens, the new technologies and approaches leverage our current knowledge of the immune system and may synergize to enable the rational design of next-generation vaccination strategies. This review provides a rational perspective on the possible development of future single-dose vaccines.
Collapse
Affiliation(s)
- Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Corey P. Mallett
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Sylvie Bertholet
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Derek T. O’Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| |
Collapse
|
6
|
Rampling T, Ewer KJ, Bowyer G, Edwards NJ, Wright D, Sridhar S, Payne R, Powlson J, Bliss C, Venkatraman N, Poulton ID, de Graaf H, Gbesemete D, Grobbelaar A, Davies H, Roberts R, Angus B, Ivinson K, Weltzin R, Rajkumar BY, Wille-Reece U, Lee C, Ockenhouse C, Sinden RE, Gerry SC, Lawrie AM, Vekemans J, Morelle D, Lievens M, Ballou RW, Lewis DJM, Cooke GS, Faust SN, Gilbert S, Hill AVS. Safety and efficacy of novel malaria vaccine regimens of RTS,S/AS01B alone, or with concomitant ChAd63-MVA-vectored vaccines expressing ME-TRAP. NPJ Vaccines 2018; 3:49. [PMID: 30323956 PMCID: PMC6177476 DOI: 10.1038/s41541-018-0084-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 11/08/2022] Open
Abstract
We assessed a combination multi-stage malaria vaccine schedule in which RTS,S/AS01B was given concomitantly with viral vectors expressing multiple-epitope thrombospondin-related adhesion protein (ME-TRAP) in a 0-month, 1-month, and 2-month schedule. RTS,S/AS01B was given as either three full doses or with a fractional (1/5th) third dose. Efficacy was assessed by controlled human malaria infection (CHMI). Safety and immunogenicity of the vaccine regimen was also assessed. Forty-one malaria-naive adults received RTS,S/AS01B at 0, 4 and 8 weeks, either alone (Groups 1 and 2) or with ChAd63 ME-TRAP at week 0, and modified vaccinia Ankara (MVA) ME-TRAP at weeks 4 and 8 (Groups 3 and 4). Groups 2 and 4 received a fractional (1/5th) dose of RTS,S/AS01B at week 8. CHMI was delivered by mosquito bite 11 weeks after first vaccination. Vaccine efficacy was 6/8 (75%), 8/9 (88.9%), 6/10 (60%), and 5/9 (55.6%) of subjects in Groups 1, 2, 3, and 4, respectively. Immunological analysis indicated significant reductions in anti-circumsporozoite protein antibodies and TRAP-specific T cells at CHMI in the combination vaccine groups. This reduced immunogenicity was only observed after concomitant administration of the third dose of RTS,S/AS01B with the second dose of MVA ME-TRAP. The second dose of the MVA vector with a four-week interval caused significantly higher anti-vector immunity than the first and may have been the cause of immunological interference. Co-administration of ChAd63/MVA ME-TRAP with RTS,S/AS01B led to reduced immunogenicity and efficacy, indicating the need for evaluation of alternative schedules or immunization sites in attempts to generate optimal efficacy.
Collapse
Affiliation(s)
- Tommy Rampling
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Katie J. Ewer
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Georgina Bowyer
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Danny Wright
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Saranya Sridhar
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Ruth Payne
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | | | - Carly Bliss
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | | | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Hans de Graaf
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Diane Gbesemete
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Amy Grobbelaar
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, CA 92697 USA
| | - Rachel Roberts
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Brian Angus
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | | | - Rich Weltzin
- PATH Malaria Vaccine Initiative, Washington, DC USA
| | | | | | - Cynthia Lee
- PATH Malaria Vaccine Initiative, Washington, DC USA
| | | | - Robert E. Sinden
- Department of Life Sciences, Imperial College London, London, UK
| | - Stephen C. Gerry
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - David J. M. Lewis
- Clinical Research Centre, University of Surrey, Guildford, GU2 7XP UK
| | - Graham S. Cooke
- Infectious Diseases Section, Faculty of Medicine, Department of Medicine, Imperial College London, London, UK
| | - Saul N. Faust
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | | |
Collapse
|
7
|
Reed SG, Carter D, Casper C, Duthie MS, Fox CB. Correlates of GLA family adjuvants' activities. Semin Immunol 2018; 39:22-29. [PMID: 30366662 PMCID: PMC6289613 DOI: 10.1016/j.smim.2018.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharide (LPS) is a well-defined agonist of Toll-like receptor (TLR) 4 that activates innate immune responses and influences the development of the adaptive response during infection with Gram-negative bacteria. Many years ago, Dr. Edgar Ribi separated the adjuvant activity of LPS from its toxic effects, an effort that led to the development of monophosphoryl lipid A (MPL). MPL, derived from Salmonella minnesota R595, has progressed through clinical development and is now used in various product-enabling formulations to support the generation of antigen-specific responses in several commercial and preclinical vaccines. We have generated several synthetic lipid A molecules, foremost glucopyranosyl lipid adjuvant (GLA) and second-generation lipid adjuvant (SLA), and have advanced these to clinical trial for various indications. In this review we summarize the potential and current positioning of TLR4-based adjuvant formulations in approved and emerging vaccines.
Collapse
Affiliation(s)
- Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Darrick Carter
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Corey Casper
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Malcolm S Duthie
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Christopher B Fox
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| |
Collapse
|
8
|
Arbyn M, Xu L, Simoens C, Martin‐Hirsch PPL. Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database Syst Rev 2018; 5:CD009069. [PMID: 29740819 PMCID: PMC6494566 DOI: 10.1002/14651858.cd009069.pub3] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Persistent infection with high-risk human papillomaviruses (hrHPV) types is causally linked with the development of cervical precancer and cancer. HPV types 16 and 18 cause approximately 70% of cervical cancers worldwide. OBJECTIVES To evaluate the harms and protection of prophylactic human papillomaviruses (HPV) vaccines against cervical precancer and HPV16/18 infection in adolescent girls and women. SEARCH METHODS We searched MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL) and Embase (June 2017) for reports on effects from trials. We searched trial registries and company results' registers to identify unpublished data for mortality and serious adverse events. SELECTION CRITERIA Randomised controlled trials comparing efficacy and safety in females offered HPV vaccines with placebo (vaccine adjuvants or another control vaccine). DATA COLLECTION AND ANALYSIS We used Cochrane methodology and GRADE to rate the certainty of evidence for protection against cervical precancer (cervical intraepithelial neoplasia grade 2 and above [CIN2+], CIN grade 3 and above [CIN3+], and adenocarcinoma-in-situ [AIS]), and for harms. We distinguished between the effects of vaccines by participants' baseline HPV DNA status. The outcomes were precancer associated with vaccine HPV types and precancer irrespective of HPV type. Results are presented as risks in control and vaccination groups and risk ratios (RR) with 95% confidence intervals in brackets. MAIN RESULTS We included 26 trials (73,428 participants). Ten trials, with follow-up of 1.3 to 8 years, addressed protection against CIN/AIS. Vaccine safety was evaluated over a period of 6 months to 7 years in 23 studies. Studies were not large enough or of sufficient duration to evaluate cervical cancer outcomes. All but one of the trials was funded by the vaccine manufacturers. We judged most included trials to be at low risk of bias. Studies involved monovalent (N = 1), bivalent (N = 18), and quadrivalent vaccines (N = 7). Most women were under 26 years of age. Three trials recruited women aged 25 and over. We summarize the effects of vaccines in participants who had at least one immunisation.Efficacy endpoints by initial HPV DNA statushrHPV negativeHPV vaccines reduce CIN2+, CIN3+, AIS associated with HPV16/18 compared with placebo in adolescent girls and women aged 15 to 26. There is high-certainty evidence that vaccines lower CIN2+ from 164 to 2/10,000 (RR 0.01 (0 to 0.05)) and CIN3+ from 70 to 0/10,000 (RR 0.01 (0.00 to 0.10). There is moderate-certainty evidence that vaccines reduce the risk of AIS from 9 to 0/10,000 (RR 0.10 (0.01 to 0.82).HPV vaccines reduce the risk of any CIN2+ from 287 to 106/10,000 (RR 0.37 (0.25 to 0.55), high certainty) and probably reduce any AIS lesions from 10 to 0/10,000 (RR 0.1 (0.01 to 0.76), moderate certainty). The size of reduction in CIN3+ with vaccines differed between bivalent and quadrivalent vaccines (bivalent: RR 0.08 (0.03 to 0.23), high certainty; quadrivalent: RR 0.54 (0.36 to 0.82), moderate certainty). Data in older women were not available for this comparison.HPV16/18 negativeIn those aged 15 to 26 years, vaccines reduce CIN2+ associated with HPV16/18 from 113 to 6 /10,000 (RR 0.05 (0.03 to 0.10). In women 24 years or older the absolute and relative reduction in the risk of these lesions is smaller (from 45 to 14/10,000, (RR 0.30 (0.11 to 0.81), moderate certainty). HPV vaccines reduce the risk of CIN3+ and AIS associated with HPV16/18 in younger women (RR 0.05 (0.02 to 0.14), high certainty and RR 0.09 (0.01 to 0.72), moderate certainty, respectively). No trials in older women have measured these outcomes.Vaccines reduce any CIN2+ from 231 to 95/10,000, (RR 0.41 (0.32 to 0.52)) in younger women. No data are reported for more severe lesions.Regardless of HPV DNA statusIn younger women HPV vaccines reduce the risk of CIN2+ associated with HPV16/18 from 341 to 157/10,000 (RR 0.46 (0.37 to 0.57), high certainty). Similar reductions in risk were observed for CIN3+ associated with HPV16/18 (high certainty). The number of women with AIS associated with HPV16/18 is reduced from 14 to 5/10,000 with HPV vaccines (high certainty).HPV vaccines reduce any CIN2+ from 559 to 391/10,000 (RR 0.70 (0.58 to 0.85, high certainty) and any AIS from 17 to 5/10,000 (RR 0.32 (0.15 to 0.67), high certainty). The reduction in any CIN3+ differed by vaccine type (bivalent vaccine: RR 0.55 (0.43 to 0.71) and quadrivalent vaccine: RR 0.81 (0.69 to 0.96)).In women vaccinated at 24 to 45 years of age, there is moderate-certainty evidence that the risks of CIN2+ associated with HPV16/18 and any CIN2+ are similar between vaccinated and unvaccinated women (RR 0.74 (0.52 to 1.05) and RR 1.04 (0.83 to 1.30) respectively). No data are reported in this age group for CIN3+ or AIS.Adverse effectsThe risk of serious adverse events is similar between control and HPV vaccines in women of all ages (669 versus 656/10,000, RR 0.98 (0.92 to 1.05), high certainty). Mortality was 11/10,000 in control groups compared with 14/10,000 (9 to 22) with HPV vaccine (RR 1.29 [0.85 to 1.98]; low certainty). The number of deaths was low overall but there is a higher number of deaths in older women. No pattern in the cause or timing of death has been established.Pregnancy outcomesAmong those who became pregnant during the studies, we did not find an increased risk of miscarriage (1618 versus 1424/10,000, RR 0.88 (0.68 to 1.14), high certainty) or termination (931 versus 838/10,000 RR 0.90 (0.80 to 1.02), high certainty). The effects on congenital abnormalities and stillbirths are uncertain (RR 1.22 (0.88 to 1.69), moderate certainty and (RR 1.12 (0.68 to 1.83), moderate certainty, respectively). AUTHORS' CONCLUSIONS There is high-certainty evidence that HPV vaccines protect against cervical precancer in adolescent girls and young women aged 15 to 26. The effect is higher for lesions associated with HPV16/18 than for lesions irrespective of HPV type. The effect is greater in those who are negative for hrHPV or HPV16/18 DNA at enrolment than those unselected for HPV DNA status. There is moderate-certainty evidence that HPV vaccines reduce CIN2+ in older women who are HPV16/18 negative, but not when they are unselected by HPV DNA status.We did not find an increased risk of serious adverse effects. Although the number of deaths is low overall, there were more deaths among women older than 25 years who received the vaccine. The deaths reported in the studies have been judged not to be related to the vaccine. Increased risk of adverse pregnancy outcomes after HPV vaccination cannot be excluded, although the risk of miscarriage and termination are similar between trial arms. Long-term of follow-up is needed to monitor the impact on cervical cancer, occurrence of rare harms and pregnancy outcomes.
Collapse
Affiliation(s)
- Marc Arbyn
- SciensanoUnit of Cancer Epidemiology, Belgian Cancer CentreJuliette Wytsmanstreet 14BrusselsBelgiumB‐1050
| | - Lan Xu
- SciensanoUnit of Cancer Epidemiology, Belgian Cancer CentreJuliette Wytsmanstreet 14BrusselsBelgiumB‐1050
| | - Cindy Simoens
- University of AntwerpLaboratory of Cell Biology and HistologyGroenenborgerlaan 171AntwerpBelgiumB‐2020
| | - Pierre PL Martin‐Hirsch
- Royal Preston Hospital, Lancashire Teaching Hospital NHS TrustGynaecological Oncology UnitSharoe Green LaneFullwoodPrestonLancashireUKPR2 9HT
| | | |
Collapse
|
9
|
Martinez-Gil L, Goff PH, Tan GS. The Role of Self-Assembling Lipid Molecules in Vaccination. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2018. [PMCID: PMC7147077 DOI: 10.1016/bs.abl.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The advent of vaccines represents one of the most significant advances in medical history. The protection provided by vaccines has greatly contributed in reducing the number of cases of infections and most notably to the eradication of small pox. A large number of new technologies and approaches in vaccine development are currently being investigated with the goal of providing the basis for the next generation of prophylactics against an ever-expanding list of emerging and reemerging pathogens. In this chapter, we will focus on the role of lipids and lipid self-assembling vesicles in new and promising vaccination approaches. We will start by describing how lipids can induce activation of the innate immune system and focus on some lipid-derived vaccine adjuvants. Next, we will review current lipid-based self-assembling particles used as vaccine platforms, specifically liposomes and virus-like particles, and how virus-like particles have facilitated research of highly pathogenic viruses such as Ebola.
Collapse
|
10
|
Luxembourg A, Moeller E. 9-Valent human papillomavirus vaccine: a review of the clinical development program. Expert Rev Vaccines 2017; 16:1119-1139. [PMID: 28956458 DOI: 10.1080/14760584.2017.1383158] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The 9-valent human papillomavirus (9vHPV) vaccine covers the same HPV types (6/11/16/18) as the quadrivalent HPV (qHPV) vaccine and 5 additional cancer-causing types (31/33/45/52/58). Epidemiological studies indicate that the 9vHPV vaccine could prevent approximately 90% of cervical cancers, 70-85% of high-grade cervical dysplasia (precancers), 85-95% of HPV-related vulvar, vaginal, and anal cancers, and 90% of genital warts. Areas covered: Study design features and key findings from the 9vHPV vaccine clinical development program are reviewed. In particular, 9vHPV vaccine efficacy was established in a Phase III study in young women age 16-26 years. Efficacy results in young women were extrapolated to pre- and young adolescent girls and boys and young men by immunological bridging (i.e., demonstration of non-inferior immunogenicity in these groups versus young women). Expert commentary: The development of the 9vHPV vaccine is the outcome of 20 years of continuous clinical research. Broad vaccination programs could help substantially decrease the incidence of HPV-related disease.
Collapse
|
11
|
Cimica V, Galarza JM. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin Immunol 2017; 183:99-108. [PMID: 28780375 DOI: 10.1016/j.clim.2017.08.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/11/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
The development of virus-like particle (VLP) technology has had an enormous impact on modern vaccinology. In order to optimize the efficacy and safety of VLP-based vaccines, adjuvants are included in most vaccine formulations. To date, most licensed VLP-based vaccines utilize the classic aluminum adjuvant compositions. Certain challenging pathogens and weak immune responder subjects may require further optimization of the adjuvant formulation to maximize the magnitude and duration of the protective immunity. Indeed, novel classes of adjuvants such as liposomes, agonists of pathogen recognition receptors, polymeric particles, emulsions, cytokines and bacterial toxins, can be used to further improve the immunostimulatory activity of a VLP-based vaccine. This review describes the current advances in adjuvant technology for VLP-based vaccines directed at viral diseases, and discusses the basic principles for designing adjuvant formulations for enhancing the vaccine immunogenicity.
Collapse
Affiliation(s)
- Velasco Cimica
- TechnoVax, Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Jose M Galarza
- TechnoVax, Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, United States.
| |
Collapse
|
12
|
Haskins-Coulter T, Southern J, Andrews N, Miller E. Reactogenicity of Cervarix and Gardasil human papillomavirus (HPV) vaccines in a randomized single blind trial in healthy UK adolescent females. Hum Vaccin Immunother 2017; 13:1-9. [PMID: 28319456 DOI: 10.1080/21645515.2016.1277846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
One hundred and ninety eight females aged 12-15 y were enrolled in an observer-blinded randomized trial to assess the immunogenicity and reactogenicity of the tetravalent HPV vaccine Gardasil® (group 2), in comparison to the bivalent HPV vaccine, Cervarix® (group 1), which was routinely offered in the national vaccination schedule at the time. Participants were blinded to treatment group until all 3 vaccinations had been given, while laboratory staff were masked during testing. For the majority of local and general reactions, recipients of both vaccines reported comparable frequencies. Local and systemic events were rarely of high severity, except for tenderness at the injection site which reached a severe level after at least one of the doses in 24% of the Cervarix® group and 7% of the Gardasil® group (p = 0.001 comparing groups). For most reactions, no dose response was recorded, except for swelling with higher reporting at dose 3 (17.7%) than dose 1 (3.1%) for Cervarix®. SAE reporting was low (n = 3) and considered unrelated to either vaccine. This paper supports the body of evidence that Gardasil® has an acceptable safety profile when compared with Cervarix® and other vaccines given in the national program.
Collapse
Affiliation(s)
- Tao Haskins-Coulter
- a Immunisation, Hepatitis and Blood Safety Department , Public Health England , London , UK
| | - Jo Southern
- a Immunisation, Hepatitis and Blood Safety Department , Public Health England , London , UK
| | - Nick Andrews
- a Immunisation, Hepatitis and Blood Safety Department , Public Health England , London , UK
| | - Elizabeth Miller
- a Immunisation, Hepatitis and Blood Safety Department , Public Health England , London , UK
| |
Collapse
|
13
|
Fochesato M, Dendouga N, Boxus M. Comparative preclinical evaluation of AS01 versus other Adjuvant Systems in a candidate herpes zoster glycoprotein E subunit vaccine. Hum Vaccin Immunother 2016; 12:2092-2095. [PMID: 26933767 PMCID: PMC4994747 DOI: 10.1080/21645515.2016.1154247] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The candidate vaccine HZ/su is being developed to prevent herpes-zoster disease (HZ). HZ occurrence is attributed to declines in varicella-zoster virus (VZV) specific T-cell immunity. HZ/su contains VZV antigen, gE, and Adjuvant System AS01B (liposome-based formulation of MPL and QS-21). In clinical trials, AS01B enhances CD4+ T-cell responses to gE. In clinical trials of other vaccines, Adjuvant Systems AS03 and AS04 also enhance antigen-specific CD4+ T-cell responses. Hence the purpose of this study was to evaluate gE formulated with AS01B, AS01E (50% less MPL and QS-21 than AS01B), AS03 or AS04 in C57BL6 mice primed with live-attenuated VZV. Four-weeks post-vaccination, the gE-specific CD4+ T-cell response to gE/AS01B was 5.4, 2.8 and 2.2-fold greater than those to gE/AS03, gE/AS04 and gE/AS03, respectively (p<0.001). Therefore in the VZV-primed mouse model, CD4+ T-cell responses to gE appeared most enhanced by AS01B, and adds further support for the use of AS01B in the HZ/su formulation.
Collapse
Affiliation(s)
- Michel Fochesato
- a GSK Vaccines; Rue de l'Institut ; 89; 1330 ; Rixensart ; Belgium
| | - Najoua Dendouga
- a GSK Vaccines; Rue de l'Institut ; 89; 1330 ; Rixensart ; Belgium
| | - Mathieu Boxus
- a GSK Vaccines; Rue de l'Institut ; 89; 1330 ; Rixensart ; Belgium
| |
Collapse
|
14
|
Herrin DM, Coates EE, Costner PJ, Kemp TJ, Nason MC, Saharia KK, Pan Y, Sarwar UN, Holman L, Yamshchikov G, Koup RA, Pang YYS, Seder RA, Schiller JT, Graham BS, Pinto LA, Ledgerwood JE. Comparison of adaptive and innate immune responses induced by licensed vaccines for Human Papillomavirus. Hum Vaccin Immunother 2015; 10:3446-54. [PMID: 25483691 DOI: 10.4161/hv.34408] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two HPV virus-like particle (VLP) vaccines, HPV-16/18 (GlaxoSmithKline, Cervarix®) and HPV-6/11/16/18 (Merck, Gardasil®), are currently licensed in the United States. Given the similar antigenic content but different adjuvant formulations in the 2 vaccines, they provide an efficient method for evaluating adjuvants and comparing the kinetics of the innate and adaptive immune responses. We randomized women to receive either Cervarix® or Gardasil®, followed 6 month vaccination delivery schedules per manufacturer's recommendations, and analyzed the humoral immune response, T cell response, and circulating plasma cytokine levels in response to vaccination. Cervarix® recipients had higher anti-HPV-16 antibody and neutralization titers at month 7, and elevated anti-HPV-18 antibody and neutralization titers at months 7 and 12. Antibody avidity was similar for the 2 vaccines. HPV-31 was the only phylogenetically related non-vaccine HPV type, for which there is evidence of cross-protection, to be cross-neutralized and only in response to Cervarix®. Comparing CD4+ T cell cytokine responses at month 12, there was a trend of increased levels of IL-2 and TNF-α in the Cervarix® groups versus the Gardasil® groups that was consistent across all 4 tested HPV types (16/18/33/45). Elevated levels of circulating plasma cytokine/chemokines were observed post first vaccination in Gardasil® recipients and proinflammatory cytokines were elevated following 1st and 3rd Cervarix® vaccinations. Cervarix® and Gardasil® are both highly immunogenic vaccines. Higher antibody levels and CD4 T cell responses were achieved with Cervarix® after 3 doses, although similar affinity maturation was measured for the 2 vaccines. The clinical implications of the differences in immune responses are unknown.
Collapse
Affiliation(s)
- Douglas M Herrin
- a Vaccine Research Center; National Institute of Allergy and Infectious Disease; National Institutes of Health ; Bethesda , MD USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pitisuttithum P, Velicer C, Luxembourg A. 9-Valent HPV vaccine for cancers, pre-cancers and genital warts related to HPV. Expert Rev Vaccines 2015; 14:1405-19. [PMID: 26366475 DOI: 10.1586/14760584.2015.1089174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human papillomavirus (HPV) is the causative agent of nearly all cervical cancer cases as well as a substantial proportion of anal, vulvar, vaginal, penile and oropharyngeal cancers, making it responsible for approximately 5% of the global cancer burden. The first-generation HPV vaccines that is, quadrivalent HPV type 6/11/16/18 vaccine and bivalent HPV type 16/18 vaccine were licensed in 2006 and 2007, respectively. A second-generation 9-valent HPV type 6/11/16/18/31/33/45/52/58 vaccine with broader cancer coverage was initiated even before the first vaccines were approved. By preventing HPV infection and disease due to HPV31/33/45/52/58, the 9vHPV vaccine has the potential to increase prevention of cervical cancer from 70 to 90%. In addition, the 9vHPV vaccine has the potential to prevent 85-95% of HPV-related vulvar, vaginal and anal cancers. Overall, the 9vHPV vaccine addresses a significant unmet medical need, although further health economics and implementation research is needed.
Collapse
|
16
|
A Randomized, Double-Blind, Phase III Study of the Immunogenicity and Safety of a 9-Valent Human Papillomavirus L1 Virus-Like Particle Vaccine (V503) Versus Gardasil® in 9-15-Year-Old Girls. Pediatr Infect Dis J 2015; 34:992-8. [PMID: 26090572 DOI: 10.1097/inf.0000000000000773] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A 9-valent human papillomavirus (9vHPV) vaccine has been developed to prevent infections and diseases related to HPV 6/11/16/18 [as per the licensed quadrivalent HPV (qHPV) vaccine], as well as 5 additional oncogenic HPV types (HPV 31/33/45/52/58). Compared with the qHPV vaccine, the 9vHPV vaccine potentially increases the coverage of protection from 70% to 90% of cervical cancers. We compared the immunogenicity and safety of the 9vHPV vaccine versus the qHPV vaccine in 9-15-year-old girls. METHODS Participants (n = 600) were randomized to receive 9vHPV or qHPV vaccines on day 1, month 2 and month 6. Serology testing was performed on day 1 and month 7. HPV type-specific antibody titers (anti-HPV 6/11/16/18/31/33/45/52/58) were determined by competitive Luminex immunoassay and expressed as geometric mean titers and seroconversion rates. Vaccine safety was also assessed. RESULTS The HPV 6/11/16/18 immune responses elicited by the 9vHPV vaccine were comparable with those elicited by the qHPV vaccine. All participants (except 1 for HPV 45) receiving the 9vHPV vaccine seroconverted for HPV 31/33/45/52/58. The 9vHPV and qHPV vaccines showed comparable safety profiles, although the incidence of injection-site swelling was higher in the 9vHPV vaccine group. CONCLUSIONS In addition to immune responses to HPV 31/33/45/52/58, a 3-dose regimen of the 9vHPV vaccine elicited a similar immune response to HPV 6/11/16/18 when compared with the qHPV vaccine in girls aged 9-15 years. The safety profile was also similar for the 2 vaccines.
Collapse
|
17
|
Naturally Occurring Capsid Protein Variants of Human Papillomavirus Genotype 31 Represent a Single L1 Serotype. J Virol 2015; 89:7748-57. [PMID: 25995264 DOI: 10.1128/jvi.00842-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/06/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED We investigated naturally occurring variation within the major (L1) and minor (L2) capsid proteins of oncogenic human papillomavirus (HPV) genotype 31 (HPV31) to determine the impact on capsid antigenicity. L1L2 pseudoviruses (PsVs) representing the three HPV31 variant lineages, variant lineages A, B, and C, exhibited comparable particle-to-infectivity ratios and morphologies. Lineage-specific L1L2 PsVs demonstrated subtle differences in susceptibility to neutralization by antibodies elicited following vaccination or preclinical L1 virus-like particle (VLP) immunization or by monoclonal antibodies; however, these differences were generally of a low magnitude. These data indicate that the diagnostic lineage-specific single nucleotide polymorphisms within the HPV31 capsid genes have a limited effect on L1 antibody-mediated neutralization and that the three HPV31 variant lineages belong to a single L1 serotype. These data contribute to our understanding of HPV L1 variant antigenicity. IMPORTANCE The virus coat (capsid) of the human papillomavirus contains major (L1) and minor (L2) capsid proteins. These proteins facilitate host cell attachment and viral infectivity and are the targets for antibodies which interfere with these events. In this study, we investigated the impact of naturally occurring variation within these proteins upon susceptibility to viral neutralization by antibodies induced by L1 VLP immunization. We demonstrate that HPV31 L1 and L2 variants exhibit similar susceptibility to antibody-mediated neutralization and that for the purposes of L1 VLP-based vaccines, these variant lineages represent a single serotype.
Collapse
|
18
|
Geraets DT, Struijk L, Kleter B, Molijn A, van Doorn LJ, Quint WGV, Colau B. The original SPF10 LiPA25 algorithm is more sensitive and suitable for epidemiologic HPV research than the SPF10 INNO-LiPA Extra. J Virol Methods 2015; 215-216:22-9. [PMID: 25698462 DOI: 10.1016/j.jviromet.2015.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two commercial HPV tests target the same 65 bp fragment of the human papillomavirus genome (designated SPF10): the original HPV SPF10 PCR-DEIA-LiPA25 system, version 1, (LiPA25) and the INNO-LiPA HPV Genotyping Extra (INNO-LiPA). The original SPF10 LiPA25 system was designed to have high analytical sensitivity and applied in HPV vaccine and epidemiology studies worldwide. But due to apparent similarities, this test can be easily confused with INNO-LiPA, a more recent assay of which the intended use, i.e., epidemiological or clinical, is currently unclear. The aim was to compare the analytical sensitivity of SPF10 LiPA25 to that of INNO-LiPA on the level of general HPV detection and genotyping. HPV testing by both assays was performed on the same DNA isolated from cervical swab (n = 365) and biopsy (n = 42) specimens. In cervical swabs, SPF10 LiPA25 and INNO-LiPA identified 35.3% and 29.3% multiple infections, 52.6% and 51.5% single infections, and no HPV type in 12.1% and 19.2%, respectively. Genotyping results were 64.7% identical, 26.0% compatible and 9.3% discordant between both methods. SPF10 LiPA25 detected significantly more genotypes (p < 0.001). The higher analytical sensitivity of SPF10 LiPA25 was confirmed by the MPTS123 genotyping assay. HPV positivity by the general probes in SPF10 DEIA was significantly higher (87.9%) than by those on INNO-LiPA (77.0%) (kappa = 0.592, p < 0.001). In cervical biopsies, SPF10 LiPA25 and INNO-LiPA identified 21.4% and 9.5% multiple types, 76.2% and 81.0% single types, and no type in 2.4% and 9.5%, respectively. Between both tests, the identification of genotypes was 76.3% identical, 14.3% compatible and 9.5% discordant. Overall, significantly more genotypes were detected by SPF10 LiPA25 (kappa = 0.853, p = 0.022). HPV positivity was higher by the SPF10 DEIA (97.6%) than by the INNO-LiPA strip (92.9%). These results demonstrate that SPF10 LiPA25 is more suitable for HPV genotyping in epidemiologic and vaccine-related studies, due to its higher analytical sensitivity.
Collapse
Affiliation(s)
- Daan T Geraets
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands.
| | - Linda Struijk
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands
| | - Bernhard Kleter
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands
| | - Anco Molijn
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands
| | - Leen-Jan van Doorn
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands
| | - Wim G V Quint
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands
| | - Brigitte Colau
- GSK Vaccines, Rue de l'Institut 89, B-1330 Rixensart, Belgium
| |
Collapse
|
19
|
Geraets DT, Struijk L, Kleter B, Molijn A, van Doorn LJ, Quint WGV, Colau B. TEMPORARY REMOVAL: The original SPF 10 LiPA 25 algorithm is more sensitive and suitable for epidemiologic HPV research than the SPF 10 INNO-LiPA Extra. J Virol Methods 2014; 213C:1. [PMID: 25476446 DOI: 10.1016/j.jviromet.2014.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/27/2014] [Accepted: 11/11/2014] [Indexed: 11/24/2022]
Abstract
The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Daan T Geraets
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands.
| | - Linda Struijk
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands
| | - Bernhard Kleter
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands
| | - Anco Molijn
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands
| | - Leen-Jan van Doorn
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands
| | - Wim G V Quint
- DDL Diagnostic Laboratory, Visseringlaan 25, 2288 ER Rijswijk, The Netherlands
| | - Brigitte Colau
- GlaxoSmithKline Vaccines, Rue de l'Institut 89, B-1330 Rixensart, Belgium
| |
Collapse
|
20
|
Bissett SL, Mattiuzzo G, Draper E, Godi A, Wilkinson DE, Minor P, Page M, Beddows S. Pre-clinical immunogenicity of human papillomavirus alpha-7 and alpha-9 major capsid proteins. Vaccine 2014; 32:6548-55. [PMID: 25203446 PMCID: PMC4228199 DOI: 10.1016/j.vaccine.2014.07.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/04/2014] [Accepted: 07/30/2014] [Indexed: 01/01/2023]
Abstract
Comprehensive pre-clinical immunogenicity evaluation of HPV L1 major capsid protein. Majority neutralizing antibody response was genotype-specific. Reciprocal cross-neutralization between some Alpha-7 and Alpha-9 genotypes. Tetravalent formulation (HPV16/18/39/58) induced broadly neutralizing antibodies. These data improve our understanding of the antigenic diversity of the L1 protein.
Human papillomavirus (HPV) vaccines confer protection against the oncogenic genotypes HPV16 and HPV18 through the generation of type-specific neutralizing antibodies raised against the constituent virus-like particles (VLP) based upon the major capsid proteins (L1) of these genotypes. The vaccines also confer a degree of cross-protection against some genetically related types from the Alpha-9 (HPV16-like: HPV31, HPV33, HPV35, HPV52, HPV58) and Alpha-7 (HPV18-like: HPV39, HPV45, HPV59, HPV68) species groups. The mechanism of cross-protection is unclear but may involve antibodies capable of recognizing shared inter-genotype epitopes. The relationship(s) between the genetic and antigenic diversity of the L1 protein, particularly for non-vaccine genotypes, is poorly understood. We carried out a comprehensive evaluation of the immunogenicity of L1 VLP derived from genotypes within the Alpha-7 and Alpha-9 species groups in New Zealand White rabbits and used L1L2 pseudoviruses as the target antigens in neutralization assays. The majority antibody response against L1 VLP was type-specific, as expected, but several instances of robust cross-neutralization were nevertheless observed including between HPV33 and HPV58 within the Alpha-9 species and between HPV39, HPV59 and HPV68 in the Alpha-7 species. Immunization with an experimental tetravalent preparation comprising VLP based upon HPV16, HPV18, HPV39 and HPV58 was capable of generating neutralizing antibodies against all the Alpha-7 and Alpha-9 genotypes. Competition of HPV31 and HPV33 cross-neutralizing antibodies in the tetravalent sera confirmed that these antibodies originated from HPV16 and HPV58 VLP, respectively, and suggested that they represent minority specificities within the antibody repertoire generated by the immunizing antigen. These data improve our understanding of the antigenic diversity of the L1 protein per se and may inform the rational design of a next generation vaccine formulation based upon empirical data.
Collapse
Affiliation(s)
- Sara L Bissett
- Virus Reference Department, Public Health England, London, UK
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Eve Draper
- Virus Reference Department, Public Health England, London, UK
| | - Anna Godi
- Virus Reference Department, Public Health England, London, UK
| | - Dianna E Wilkinson
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Philip Minor
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Mark Page
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Simon Beddows
- Virus Reference Department, Public Health England, London, UK.
| |
Collapse
|