1
|
Nazir J, Manzoor T, Saleem A, Gani U, Bhat SS, Khan S, Haq Z, Jha P, Ahmad SM. Combatting Salmonella: a focus on antimicrobial resistance and the need for effective vaccination. BMC Infect Dis 2025; 25:84. [PMID: 39833704 PMCID: PMC11744889 DOI: 10.1186/s12879-025-10478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Salmonella infections represent a major global public health concern due to their widespread zoonotic transmission, antimicrobial resistance, and associated morbidity and mortality. This review aimed to summarize the zoonotic nature of Salmonella, the challenges posed by antimicrobial resistance, the global burden of infections, and the need for effective vaccination strategies to mitigate the rising threat of Salmonella. METHODS A systematic review of literature was conducted using databases such as PubMed, Scopus, Web of Science, and Google Scholar. Relevant studies published in English were identified using keywords including Salmonella, vaccination, antimicrobial resistance, and public health. Articles focusing on epidemiology, vaccine development, and strategies to control Salmonella infections were included, while conference abstracts and non-peer-reviewed studies were excluded. RESULTS Salmonella infections result in approximately 95 million global cases annually, with an estimated 150,000 deaths. Regional variations were evident, with higher infection rates in low- and middle-income countries due to poor sanitation and food safety standards. Salmonella Enteritidis and S. Typhimurium were the most prevalent serovars associated with human infections. The review highlighted an alarming rise in multidrug-resistant (MDR) Salmonella strains, particularly due to the overuse of antibiotics in humans and livestock. Despite progress in vaccine development, challenges remain in achieving a universal vaccine that targets diverse Salmonella serovars. Live-attenuated, killed, recombinant, subunit, and conjugate vaccines are currently under development, but limitations such as efficacy, cost, and accessibility persist. CONCLUSIONS Salmonella infections continue to impose a significant burden on global health, exacerbated by rising antimicrobial resistance. There is an urgent need for a multifaceted approach, including improved sanitation, prudent antibiotic use, and the development of affordable, broad-spectrum vaccines. Strengthening surveillance systems and promoting collaborative global efforts are essential to effectively control and reduce the burden of Salmonella.
Collapse
Affiliation(s)
- Junaid Nazir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Ubaid Gani
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Shabir Khan
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India
| | - Zulfqarul Haq
- Division of Livestock Production and Management, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, India
| | - Priyanka Jha
- Department of Clinical Biochemistry, Lovely Professional University, Phagwara, Punjab, India.
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST Kashmir, Shuhama, J&K, 190006, India.
| |
Collapse
|
2
|
Imdad MJ, Khan MN, Alam HS, Khan AB, Mirani ZA, Khan A, Ahmed F. Design and in silico analysis of mRNA vaccine construct against Salmonella. J Biomol Struct Dyn 2023; 41:7248-7264. [PMID: 36093938 DOI: 10.1080/07391102.2022.2119280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Salmonella infections are continuously growing. Causative serovars have gained enhanced drug resistance and virulence. Current vaccines have fallen short of providing sufficient protection. mRNA vaccines have come up with huge success against SARS-CoV-2; Pfizer-BioNTech and Moderna vaccines have resulted in >90% efficacy with efficient translocation, expression, and presentation of antigen to the host immune system. Herein, based on the same approach a mRNA vaccine construct has been designed and analyzed against Salmonella by joining regions of genes of outer membrane proteins C and F of S. Typhi through a flexible linker. Construct was flanked by regulatory regions that have previously shown better expression and translocation of encoded protein. GC content of the construct was improved to attain structural and thermodynamic stability and smooth translation. Sites of strong binding miRNAs were removed through codon optimization. Protein encoded by this construct is structurally plausible, highly antigenic, non-allergen to humans, and does not cross-react to the human proteome. It is enriched in potent, highly antigenic, and conserved linear and conformational epitopes. Most conserved conformational epitopes of core protein lie on extended beta hairpins exposed to the cellular exterior. Stability and thermodynamic attributes of the final construct were found highly comparable to the Pfizer-BioNTech vaccine construct. Both contain a stable stem-loop structure downstream of the start codon and do not offer destabilizing secondary structures upstream of the start codon. Given structural and thermodynamic stability, effective immune response, and epitope composition the construct is expected to provide broad-spectrum protection against clinically important Salmonella serovars.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Janees Imdad
- Department of Microbiology, University of Karachi, Karachi, Pakistan
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | - Muhammad Naseem Khan
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | | | - Abdul Basit Khan
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | - Zulfiqar Ali Mirani
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | - Adnan Khan
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Faraz Ahmed
- Microbiology Section, FMRRC, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| |
Collapse
|
3
|
Feng K, Li T, Ye C, Gao X, Yue X, Ding S, Dong Q, Yang M, Huang G, Zhang J. A novel electrochemical immunosensor based on Fe 3O 4@graphene nanocomposite modified glassy carbon electrode for rapid detection of Salmonella in milk. J Dairy Sci 2022; 105:2108-2118. [PMID: 34998563 DOI: 10.3168/jds.2021-21121] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022]
Abstract
Foods contaminated by foodborne pathogens have always been a great threat to human life. Herein, we constructed an electrochemical immunosensor for Salmonella detection by using a Fe3O4@graphene modified electrode. Because of the excellent electrical conductivity and mechanical stability of graphene and the large specific surface area of Fe3O4, the Fe3O4@graphene nanocomposite exhibits an excellent electrical signal, which greatly increased the sensitivity of the immunosensor. Gold nanoparticles were deposited on Fe3O4@graphene nanocomposite by electrochemical technology for the immobilization of the antibody. Cyclic voltammetry was selected to electrochemically characterize the construction process of immunosensors. The microstructure and morphology of related nanocomposites were analyzed by scanning electron microscopy. Under optimized experimental conditions, a good linear relationship was achieved in the Salmonella concentration range of 2.4 × 102 to 2.4 × 107 cfu/mL, and the limit of detection of the immunosensor was 2.4 × 102 cfu/mL. Additionally, the constructed immunosensor exhibited acceptable selectivity, reproducibility, and stability and provides a new reference for detecting pathogenic bacteria in milk.
Collapse
Affiliation(s)
- Kaiwen Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ting Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Cuizhu Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaoyu Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xianglin Yue
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Shuangyan Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Qiuling Dong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| |
Collapse
|
4
|
Masuet-Aumatell C, Atouguia J. Typhoid fever infection - Antibiotic resistance and vaccination strategies: A narrative review. Travel Med Infect Dis 2020; 40:101946. [PMID: 33301931 DOI: 10.1016/j.tmaid.2020.101946] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Typhoid fever is a bacterial infection caused by the Gram-negative bacterium Salmonella enterica subspecies enterica serovar Typhi (S. Typhi), prevalent in many low- and middle-income countries. In high-income territories, typhoid fever is predominantly travel-related, consequent to travel in typhoid-endemic regions; however, data show that the level of typhoid vaccination in travellers is low. Successful management of typhoid fever using antibiotics is becoming increasingly difficult due to drug resistance; emerging resistance has spread geographically due to factors such as increasing travel connectivity, affecting those in endemic regions and travellers alike. This review provides an overview of: the epidemiology and diagnosis of typhoid fever; the emergence of drug-resistant typhoid strains in the endemic setting; drug resistance observed in travellers; vaccines currently available to prevent typhoid fever; vaccine recommendations for people living in typhoid-endemic regions; strategies for the introduction of typhoid vaccines and stakeholders in vaccination programmes; and travel recommendations for a selection of destinations with a medium or high incidence of typhoid fever.
Collapse
Affiliation(s)
- Cristina Masuet-Aumatell
- Preventive Medicine Department, Bellvitge Biomedical Research Institute (IDIBELL), University Hospital of Bellvitge, Faculty of Medicine, University of Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Catalonia, Spain.
| | - Jorge Atouguia
- Instituto Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junquiera, 100, Lisbon, Portugal.
| |
Collapse
|
5
|
Ahmed A, Akhade AS, Qadri A. Accessibility of O Antigens Shared between Salmonella Serovars Determines Antibody-Mediated Cross-Protection. THE JOURNAL OF IMMUNOLOGY 2020; 205:438-446. [PMID: 32540995 DOI: 10.4049/jimmunol.1900624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/05/2020] [Indexed: 11/19/2022]
Abstract
Pathogenic Salmonella serovars produce clinical manifestations ranging from systemic infection typhoid to invasive nontyphoidal Salmonella disease in humans. These serovars share a high degree of homology at the genome and the proteome level. However, whether infection or immunization with one serovar provides protection against other serovars has not been well studied. We show in this study that immunization of mice with live typhoidal serovar, Salmonella Typhi, generates cross-reactive immune responses, which provide far greater resistance against challenge with nontyphoidal serovar Salmonella Enteritidis than with another nontyphoidal serovar, Salmonella Typhimurium. Splenic T cells from these immunized mice produced similar levels of IL-2 and IFN-γ upon ex vivo stimulation with Ags prepared from S Enteritidis and S Typhimurium. In contrast, Abs against S Typhi interacted with live intact S Enteritidis but did not bind intact S Typhimurium. These pathogen-reactive Abs were largely directed against oligosaccharide (O)-antigenic determinant of LPS that S Typhi shares with S Enteritidis. Abs against the O determinant, which S Typhi shares with S Typhimurium, were present in the sera of immunized mice but did not bind live intact Salmonella because of surface inaccessibility of this determinant. Similar accessibility-regulated interaction was seen with Abs generated against S Typhimurium and S Enteritidis. Our results suggest that the ability of protective Abs elicited with one Salmonella serovar to engage with and consequently provide protection against another Salmonella serovar is determined by the accessibility of shared O Ags. These findings have significant and broader implications for immunity and vaccine development against pathogenic Salmonellae.
Collapse
Affiliation(s)
- Anees Ahmed
- Hybridoma Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Ajay Suresh Akhade
- Hybridoma Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Ayub Qadri
- Hybridoma Laboratory, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
6
|
Valero-Pacheco N, Blight J, Aldapa-Vega G, Kemlo P, Pérez-Toledo M, Wong-Baeza I, Kurioka A, Perez-Shibayama C, Gil-Cruz C, Sánchez-Torres LE, Pastelin-Palacios R, Isibasi A, Reyes-Sandoval A, Klenerman P, López-Macías C. Conservation of the OmpC Porin Among Typhoidal and Non-Typhoidal Salmonella Serovars. Front Immunol 2020; 10:2966. [PMID: 31998292 PMCID: PMC6962181 DOI: 10.3389/fimmu.2019.02966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 12/03/2019] [Indexed: 01/31/2023] Open
Abstract
Salmonella enterica infections remain a challenging health issue, causing significant morbidity and mortality worldwide. Current vaccines against typhoid fever display moderate efficacy whilst no licensed vaccines are available for paratyphoid fever or invasive non-typhoidal salmonellosis. Therefore, there is an urgent need to develop high efficacy broad-spectrum vaccines that can protect against typhoidal and non-typhoidal Salmonella. The Salmonella outer membrane porins OmpC and OmpF, have been shown to be highly immunogenic antigens, efficiently eliciting protective antibody, and cellular immunity. Furthermore, enterobacterial porins, particularly the OmpC, have a high degree of homology in terms of sequence and structure, thus making them a suitable vaccine candidate. However, the degree of the amino acid conservation of OmpC among typhoidal and non-typhoidal Salmonella serovars is currently unknown. Here we used a bioinformatical analysis to classify the typhoidal and non-typhoidal Salmonella OmpC amino acid sequences into different clades independently of their serological classification. Further, our analysis determined that the porin OmpC contains various amino acid sequences that are highly conserved among both typhoidal and non-typhoidal Salmonella serovars. Critically, some of these highly conserved sequences were located in the transmembrane β-sheet within the porin β-barrel and have immunogenic potential for binding to MHC-II molecules, making them suitable candidates for a broad-spectrum Salmonella vaccine. Collectively, these findings suggest that these highly conserved sequences may be used for the rational design of an effective broad-spectrum vaccine against Salmonella.
Collapse
Affiliation(s)
- Nuriban Valero-Pacheco
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Joshua Blight
- Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Gustavo Aldapa-Vega
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Phillip Kemlo
- Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Marisol Pérez-Toledo
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ayako Kurioka
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | | | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Luvia E Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Armando Isibasi
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Henry Wellcome Building for Molecular Physiology, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Visiting Professor of Immunology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Mexican Translational Immunology Research Group, FOCIS Centres of Excellence, Cuernavaca, Mexico
| |
Collapse
|
7
|
Harris A, Viswanathan S, Aghoram R. Myositis associated with Salmonella paratyphi A bacteremia appears to be common. J Family Med Prim Care 2019; 8:125-129. [PMID: 30911492 PMCID: PMC6396611 DOI: 10.4103/jfmpc.jfmpc_202_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Fever and severe myalgia in a tropical country like India bring to mind leptospirosis, rickettsioses, dengue, and other viral fevers. Enteric fever is widely prevalent in Asia, but myositis has not been previously described in Salmonella paratyphi A bacteremia. Materials and Methods Retrospectively, we recruited patients with enteric fever admitted to our treating unit over a 6-month period. Demography, historical, clinical, and laboratory data were obtained. Data of culture-positive S. paratyphi A patients were analyzed and were compared with those patients with culture-negative enteric fever. Results Forty-three cases were found in total with 19 of S. paratyphi A bacteremia. Elevations in creatine kinase (CK) ranged from one-and-half to six times normal. Forty-seven percent had thrombocytopenia and alanine transaminase elevations, while aspartate transaminase elevations were seen in 17 patients, which corresponded to those with elevated CK levels. Conclusions Myositis associated with S. typhi and S. paratyphi is very rare and is more often due to non-typhoidal Salmonellae. Elevated creatine kinase was seen in most of our patients with S. paratyphi A bacteremia. Such myositis has not been described previously and hence, myalgia with fever in a tropical country could be a harbinger of paratyphoid fever.
Collapse
Affiliation(s)
- Adline Harris
- Department of General Medicine, Indira Gandhi Medical College and Research Institute, Puducherry, India
| | - Stalin Viswanathan
- Department of General Medicine, Indira Gandhi Medical College and Research Institute, Puducherry, India
| | | |
Collapse
|
8
|
Creighton RL, Woodrow KA. Microneedle-Mediated Vaccine Delivery to the Oral Mucosa. Adv Healthc Mater 2019; 8:e1801180. [PMID: 30537400 PMCID: PMC6476557 DOI: 10.1002/adhm.201801180] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/12/2018] [Indexed: 12/28/2022]
Abstract
The oral mucosa is a minimally invasive and immunologically rich site that is underutilized for vaccination due to physiological and immunological barriers. To develop effective oral mucosal vaccines, key questions regarding vaccine residence time, uptake, adjuvant formulation, dose, and delivery location must be answered. However, currently available dosage forms are insufficient to address all these questions. An ideal oral mucosal vaccine delivery system would improve both residence time and epithelial permeation while enabling efficient delivery of physicochemically diverse vaccine formulations. Microneedles have demonstrated these capabilities for dermal vaccine delivery. Additionally, microneedles enable precise control over delivery properties like depth, uniformity, and dosing, making them an ideal tool to study oral mucosal vaccination. Select studies have demonstrated the feasibility of microneedle-mediated oral mucosal vaccination, but they have only begun to explore the broad functionality of microneedles. This review describes the physiological and immunological challenges related to oral mucosal vaccine delivery and provides specific examples of how microneedles can be used to address these challenges. It summarizes and compares the few existing oral mucosal microneedle vaccine studies and offers a perspective for the future of the field.
Collapse
Affiliation(s)
- Rachel L Creighton
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
9
|
Petersiel N, Shresta S, Tamrakar R, Koju R, Madhup S, Shresta A, Bedi TRS, Zmora N, Paran Y, Schwartz E, Neuberger A. The epidemiology of typhoid fever in the Dhulikhel area, Nepal: A prospective cohort study. PLoS One 2018; 13:e0204479. [PMID: 30261024 PMCID: PMC6160059 DOI: 10.1371/journal.pone.0204479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/11/2018] [Indexed: 11/25/2022] Open
Abstract
Introduction Typhoid fever (TF) continues to cause considerable morbidity and mortality in Nepal, but only limited epidemiologic data is available about TF outside Kathmandu. Methods As part of an interventional trial, we performed a prospective cohort study of bacteremic TF patients in Dhulikhel Hospital between October 2012 and October 2014. Demographic, epidemiological, clinical, and microbiologic data were recorded. Results 116 bacteremic typhoid patients were included in the study. Most were young, healthy, adults (mean age 27.9±12 years), 41.4% of whom were female. More than 70% of patients were employed in non-manual services or were university students. Salmonella Typhi accounted for 64/115 (55.7%) of all isolates, while Salmonella Paratyphi accounted for 51/115 (44.3%), of which 42 were Paratyphi A and 9 Paratyphi B. A significant proportion of TF cases occurred also during the dry season (48/116, 41.6%). The clinical presentation of Salmonella Typhi and Paratyphi infections was similar, except for a greater proportion of arthralgia in patients with Salmonella Typhi. Most Salmonella Typhi and Paratyphi isolates were resistant to nalidixic acid and susceptible to older antibiotics. One Salmonella Paratyphi isolate was resistant to ceftriaxone. Conclusions TF remains common in the Dhulikhel area, even among those with a high level of education. Public health measures aimed at reducing the incidence of TF in the Dhulikhel area are warranted. The relative burden of TF caused by Salmonella Paratyphi is rising; a vaccine with activity against Salmonella Paratyphi is needed. Since Salmonella Paratyphi B was more prevalent in this cohort than in large cohorts of patients from Kathmandu, it is likely that there are significant regional variations in the epidemiology of TF outside Kathmandu.
Collapse
Affiliation(s)
- Neta Petersiel
- Unit of Infectious Diseases–Tropical Diseases & Travel Medicine, Internal Medicine B, Rambam Medical Center, Haifa, Israel
- * E-mail:
| | - Sudeep Shresta
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | | | - Rajendra Koju
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | - Surendra Madhup
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | - Ashish Shresta
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | - TRS Bedi
- Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | - Niv Zmora
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Paran
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Schwartz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Geographic Medicine and Tropical Diseases, the Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Ami Neuberger
- Unit of Infectious Diseases–Tropical Diseases & Travel Medicine, Internal Medicine B, Rambam Medical Center, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
10
|
Parker AR, Bradley C, Harding S, Sánchez-Ramón S, Jolles S, Kiani-Alikhan S. Measurement and interpretation of Salmonella typhi Vi IgG antibodies for the assessment of adaptive immunity. J Immunol Methods 2018; 459:1-10. [PMID: 29800575 DOI: 10.1016/j.jim.2018.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/26/2018] [Accepted: 05/21/2018] [Indexed: 01/15/2023]
Abstract
Response to polysaccharide vaccination can be an invaluable tool for assessing functionality of the adaptive immune system. Measurement of antibodies raised in response to Pneumovax®23 is the current gold standard test, but there are significant challenges and constraints in both the measurement and interpretation of the response. An alternative polysaccharide vaccine approach (Salmonella typhi Vi capsule (ViCPS)) has been suggested. In the present article, we review current evidence for the measurement of ViCPS antibodies in the diagnosis of primary and secondary antibody deficiencies. In particular, we review emerging data suggesting their interpretation in combination with the response to Pneumovax®23 and comment upon the utility of these vaccines to assess humoral immune responses while receiving immunoglobulin replacement therapy (IGRT).
Collapse
Affiliation(s)
| | | | | | - Silvia Sánchez-Ramón
- Department of Clinical Immunology Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Sorena Kiani-Alikhan
- Department of Immunology, Barts and The London National Health Service Trust, London, UK
| |
Collapse
|
11
|
Zuckerman JN, Hatz C, Kantele A. Review of current typhoid fever vaccines, cross-protection against paratyphoid fever, and the European guidelines. Expert Rev Vaccines 2018; 16:1029-1043. [PMID: 28856924 DOI: 10.1080/14760584.2017.1374861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Typhoid and paratyphoid fever remain a global health problem, which - in non-endemic countries - are mainly seen in travelers, particularly in VFRs (visiting friends and relatives), with occasional local outbreaks occurring. A rise in anti-microbial resistance emphasizes the role of preventive measures, especially vaccinations against typhoid and paratyphoid fever for travelers visiting endemic countries. Areas covered: This state-of-the-art review recapitulates the epidemiology and mechanisms of disease of typhoid and paratyphoid fever, depicts the perspective of non-endemic countries and travelers (VFRs), and collectively presents current European recommendations for typhoid fever vaccination. We provide a brief overview of available (and developmental) vaccines in Europe, present current data on cross-protection to S. Paratyphi, and aim to provide a background for typhoid vaccine decision-making in travelers. Expert commentary: European recommendations are not harmonized. Experts must assess vaccination of travelers based on current country-specific recommendations. Travel health practitioners should be aware of the issues surrounding vaccination of travelers and be motivated to increase awareness of typhoid and paratyphoid fever risks.
Collapse
Affiliation(s)
- Jane N Zuckerman
- a Department of Infection and Immunity , Royal Free London Travel Health and Immunisation Clinic , London , UK
| | - Christoph Hatz
- b Department of Medicine and Diagnostics , Swiss Tropical and Public Health Institute , Basel , Switzerland.,c Epidemiology, Biostatistics and Prevention Institute , University of Zurich , Zurich , Switzerland
| | - Anu Kantele
- d Department of Clinical Medicine , University of Helsinki , Helsinki , Finland.,e Inflammation Center, Division of Infectious Diseases , Helsinki University Hospital , Helsinki , Finland.,f Unit of Infectious Diseases , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
12
|
Park KS, Kim H, Kim S, Lee K, Park S, Song J, Min C, Khanam F, Rashu R, Bhuiyan TR, Ryan ET, Qadri F, Weissleder R, Cheon J, Charles RC, Lee H. Nanomagnetic System for Rapid Diagnosis of Acute Infection. ACS NANO 2017; 11:11425-11432. [PMID: 29121461 PMCID: PMC6296367 DOI: 10.1021/acsnano.7b06074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pathogen-activated antibody-secreting cells (ASCs) produce and secrete antigen-specific antibodies. ASCs are detectable in the peripheral blood as early as 3 days after antigen exposure, which makes ASCs a potential biomarker for early disease detection. Here, we present a magnetic capture and detection (MCD) assay for sensitive, on-site detection of ASCs. In this approach, ASCs are enriched through magnetic capture, and secreted antibodies are magnetically detected by a miniaturized nuclear magnetic resonance (μNMR) system. This approach is based entirely on magnetics, which supports high contrast against biological background and simplifies assay procedures. We advanced the MCD system by (i) synthesizing magnetic nanoparticles with high magnetic moments for both cell capture and antibody detection, (ii) developing a miniaturized magnetic device for high-yield cell capture, and (iii) optimizing the μNMR assay for antibody detection. Antibody responses targeting hemolysin E (HlyE) can accurately identify individuals with acute enteric fever. As a proof-of-concept, we applied MCD to detect antibodies produced by HlyE-specific hybridoma cells. The MCD achieved high sensitivity in detecting antibodies secreted from as few as 5 hybridoma cells (50 cells/mL). Importantly, the assay could be performed with whole blood with minimal sample processing.
Collapse
Affiliation(s)
- Ki Soo Park
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Hoyoung Kim
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Soojin Kim
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyungheon Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Sohyeon Park
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jun Song
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Changwook Min
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rasheduzzaman Rashu
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jinwoo Cheon
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Richelle C. Charles
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Pakkanen SH, Kantele JM, Rombo L, Kantele A. Specific and Cross-reactive Plasmablast Response in Humans after Primary and Secondary Immunization with Vi Capsular Polysaccharide Typhoid Vaccine. Scand J Immunol 2017; 86:207-215. [DOI: 10.1111/sji.12583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/27/2017] [Indexed: 11/28/2022]
Affiliation(s)
- S. H. Pakkanen
- Department of Bacteriology and Immunology; University of Helsinki; Helsinki Finland
| | - J. M. Kantele
- Occupational Health and Environmental Medicine; Department of Public Health; University of Turku; Turku Finland
| | - L. Rombo
- Department of Medicine/Solna; Unit for Infectious Diseases; Karolinska Institute; Stockholm Sweden
- Centre for Clinical Research; Sörmland County Council; Eskilstuna Sweden
- Uppsala University; Uppsala Sweden
| | - A. Kantele
- Department of Bacteriology and Immunology; University of Helsinki; Helsinki Finland
- Department of Medicine/Solna; Unit for Infectious Diseases; Karolinska Institute; Stockholm Sweden
- Department of Medicine; Clinicum; University of Helsinki; Helsinki Finland
- Division of Infectious Diseases; Inflammation Center; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Aava Travel Clinic; Medical Centre Aava; Helsinki Finland
| |
Collapse
|
14
|
Hu X, Chen Z, Xiong K, Wang J, Rao X, Cong Y. Vi capsular polysaccharide: Synthesis, virulence, and application. Crit Rev Microbiol 2016; 43:440-452. [PMID: 27869515 DOI: 10.1080/1040841x.2016.1249335] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Vi capsular polysaccharide, a linear homopolymer of α-1,4-linked N-acetylgalactosaminuronate, is characteristically produced by Salmonella enterica serovar Typhi. The Vi capsule covers the surface of the producing bacteria and serves as an virulence factor via inhibition of complement-mediated killing and promoting resistance against phagocytosis. Furthermore, Vi also represents a predominant protective antigen and plays a key role in the development of vaccines against typhoid fever. Herein, we reviewed the latest advances associated with the Vi polysaccharide, from its synthesis and transport within bacterial cells, mechanisms involved in virulence, immunological characteristics, and applications in vaccine, as well as its purification and detection methods.
Collapse
Affiliation(s)
- Xiaomei Hu
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Zhijin Chen
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Kun Xiong
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Jing Wang
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Xiancai Rao
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| | - Yanguang Cong
- a Department of Microbiology , Third Military Medical University , Chongqing , China
| |
Collapse
|