1
|
Shi Z, Xia Z, Huang S, Chen Z, Yin F, Xin H, Xu F. Anti-tumor effect and immune-related mechanism study of compound aluminum sulfate injection in transplanted tumor-bearing mice. Front Immunol 2025; 16:1583275. [PMID: 40375992 PMCID: PMC12078244 DOI: 10.3389/fimmu.2025.1583275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/08/2025] [Indexed: 05/18/2025] Open
Abstract
This study investigates the antitumor and immunomodulatory effects of compound aluminum sulfate (CAS) solution in murine melanoma models. Using syngeneic B16-F10 and B16-OVA tumor models, we demonstrate that intratumoral CAS injection significantly inhibits primary tumor growth and lung metastasis. Flow cytometry analysis reveals that CAS treatment increases splenic populations of CD3+CD8+ cytotoxic T cells, CD3+CD44+ memory T cells, and NK cells, while enhancing CD8+ T cell infiltration in tumor tissue. ELISA results show elevated levels of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2) in splenic culture supernatants and serum following CAS administration. Immunofluorescence staining confirms increased expression of CD8 and IFN-γ proteins in tumor tissues of CAS-treated mice. Results indicate that CAS exerts its antitumor effects through direct cytotoxicity and by modulating both systemic and local immune responses. The dual action of CAS, which combines tumor necrosis with immunostimulation, positions it as a promising therapeutic agent for cancer treatment. This study offers valuable insights into the mechanisms underlying CAS's action and underscores its potential clinical applications in oncology.
Collapse
Affiliation(s)
- Zhenwei Shi
- Medical School of Chinese People’s Liberation Army General Hospital, Beijing, China
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhifa Xia
- Medical School of Chinese People’s Liberation Army General Hospital, Beijing, China
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Songtao Huang
- Medical School of Chinese People’s Liberation Army General Hospital, Beijing, China
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zeteng Chen
- Medical School of Chinese People’s Liberation Army General Hospital, Beijing, China
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Fan Yin
- The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Haili Xin
- Department of Pharmacy, Medical Supplies Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Fenghua Xu
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
2
|
Mbani CJ, Morvan C, Nekoua MP, Debuysschere C, Alidjinou EK, Moukassa D, Hober D. Enterovirus Antibodies: Friends and Foes. Rev Med Virol 2024; 34:e70004. [PMID: 39505825 DOI: 10.1002/rmv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Enteroviruses (EV) initiate replication by binding to their cellular receptors, leading to the uncoating and release of the viral genome into the cytosol of the host cell. Neutralising antibodies (NAbs) binding to epitopes on enteroviral capsid proteins can inhibit this infectious process through several mechanisms of neutralisation in vitro. Fc-mediated antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis have also been described for some EV. However, antibody binding to virions does not always result in viral neutralisation. Non-neutralising antibodies, or sub-neutralising concentrations of antibodies, can enhance infection of viruses, leading to more severe pathologies. This phenomenon, known as antibody-dependent enhancement (ADE) of infection, has been described in vitro and/or in vivo for EV including poliovirus, coxsackievirus B and EV-A71. It has been shown that ADE of EV infection is mediated by FcγRs expressed by monocytes, macrophages, B lymphocytes and granulocytes. Antibodies play a crucial role in the diagnosis and monitoring of infections. They are valuable markers that have been used to establish a link between enteroviral infection and chronic diseases such as type 1 diabetes. Monoclonal and polyclonal antibodies targeting enteroviral proteins have been developed and shown to be effective to prevent or combat EV infections in vitro and in vivo. In addition, vaccines are under development, and clinical trials of vaccines are underway or have been completed, providing hope for the prevention of diseases due to EV. However, the ADE of the infection should be considered in the development of anti-EV antibodies or safe vaccines.
Collapse
Affiliation(s)
- Chaldam Jespère Mbani
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Corentin Morvan
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Cyril Debuysschere
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| | | | - Donatien Moukassa
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo
| | - Didier Hober
- Laboratoire de Virologie URL3610, Univ. Lille et CHU Lille, Lille, France
| |
Collapse
|
3
|
Hong Q, Wang S, Wang X, Han W, Chen T, Liu Y, Cheng F, Qin S, Zhao S, Liu Q, Cong Y, Huang Z. Vaccine Potency and Structure of Yeast-Produced Polio Type 2 Stabilized Virus-like Particles. Vaccines (Basel) 2024; 12:1077. [PMID: 39340107 PMCID: PMC11435573 DOI: 10.3390/vaccines12091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Poliovirus (PV) is on the brink of eradication due to global vaccination programs utilizing live-attenuated oral and inactivated polio vaccines. Recombinant PV virus-like particles (VLPs) are emerging as a safe next-generation vaccine candidate for the impending polio-free era. In this study, we investigate the production, antigenicity, thermostability, immunogenicity, and structures of VLPs derived from PV serotype 2 (PV2) wildtype strain and thermally stabilized mutant (wtVLP and sVLP, respectively). Both PV2 wtVLP and sVLP are efficiently produced in Pichia pastoris yeast. The PV2 sVLP displays higher levels of D-antigen and significantly enhanced thermostability than the wtVLP. Unlike the wtVLP, the sVLP elicits neutralizing antibodies in mice at levels comparable to those induced by inactivated polio vaccine. The addition of an aluminum hydroxide adjuvant to sVLP results in faster induction and a higher magnitude of neutralizing antibodies. Furthermore, our cryo-EM structural study of both sVLP and wtVLP reveals a native conformation for the sVLP and a non-native expanded conformation for the wtVLP. Our work not only validates the yeast-produced PV2 sVLP as a promising vaccine candidate with high production potential but also sheds light on the structural mechanisms that underpin the assembly and immunogenicity of the PV2 sVLP. These findings may expedite the development of sVLP-based PV vaccines.
Collapse
Affiliation(s)
- Qin Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuxia Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoli Wang
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Wenyu Han
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Tian Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College, Fudan University, Shanghai 200032, China
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Yan Liu
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Fei Cheng
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Song Qin
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Shengtao Zhao
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Qingwei Liu
- Huasong (Shanghai) Biomedical Technology Co., Ltd., Shanghai 201210, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhong Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Matos ADS, Soares IF, Rodrigues-da-Silva RN, Rodolphi CM, Albrecht L, Donassolo RA, Lopez-Camacho C, Ano Bom APD, Neves PCDC, Conte FDP, Pratt-Riccio LR, Daniel-Ribeiro CT, Totino PRR, Lima-Junior JDC. Immunogenicity of PvCyRPA, PvCelTOS and Pvs25 chimeric recombinant protein of Plasmodium vivax in murine model. Front Immunol 2024; 15:1392043. [PMID: 38962015 PMCID: PMC11219565 DOI: 10.3389/fimmu.2024.1392043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
In the Americas, P. vivax is the predominant causative species of malaria, a debilitating and economically significant disease. Due to the complexity of the malaria parasite life cycle, a vaccine formulation with multiple antigens expressed in various parasite stages may represent an effective approach. Based on this, we previously designed and constructed a chimeric recombinant protein, PvRMC-1, composed by PvCyRPA, PvCelTOS, and Pvs25 epitopes. This chimeric protein was strongly recognized by naturally acquired antibodies from exposed population in the Brazilian Amazon. However, there was no investigation about the induced immune response of PvRMC-1. Therefore, in this work, we evaluated the immunogenicity of this chimeric antigen formulated in three distinct adjuvants: Stimune, AddaVax or Aluminum hydroxide (Al(OH)3) in BALB/c mice. Our results suggested that the chimeric protein PvRMC-1 were capable to generate humoral and cellular responses across all three formulations. Antibodies recognized full-length PvRMC-1 and linear B-cell epitopes from PvCyRPA, PvCelTOS, and Pvs25 individually. Moreover, mice's splenocytes were activated, producing IFN-γ in response to PvCelTOS and PvCyRPA peptide epitopes, affirming T-cell epitopes in the antigen. While aluminum hydroxide showed notable cellular response, Stimune and Addavax induced a more comprehensive immune response, encompassing both cellular and humoral components. Thus, our findings indicate that PvRMC-1 would be a promising multistage vaccine candidate that could advance to further preclinical studies.
Collapse
MESH Headings
- Animals
- Plasmodium vivax/immunology
- Plasmodium vivax/genetics
- Mice
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Malaria, Vivax/immunology
- Malaria, Vivax/prevention & control
- Antibodies, Protozoan/immunology
- Mice, Inbred BALB C
- Malaria Vaccines/immunology
- Female
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/genetics
- Disease Models, Animal
- Adjuvants, Immunologic
- Immunogenicity, Vaccine
- Antigens, Surface
Collapse
Affiliation(s)
- Ada da Silva Matos
- Immunoparasitology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Isabela Ferreira Soares
- Immunoparasitology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Letusa Albrecht
- Apicomplexa Research Laboratory, Carlos Chagas Institute, Curitiba, Brazil
| | | | - Cesar Lopez-Camacho
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Immunobiological Technology Institute (Bio-Manguinhos/Fiocruz), Rio de Janeiro, Brazil
| | | | - Fernando de Paiva Conte
- Eukaryotic Pilot Laboratory, Immunobiological Technology Institute (Bio-Manguinhos/Fiocruz), Rio de Janeiro, Brazil
| | | | | | | | - Josué da Costa Lima-Junior
- Immunoparasitology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Kumar P, Bird C, Holland D, Joshi SB, Volkin DB. Current and next-generation formulation strategies for inactivated polio vaccines to lower costs, increase coverage, and facilitate polio eradication. Hum Vaccin Immunother 2022; 18:2154100. [PMID: 36576132 PMCID: PMC9891683 DOI: 10.1080/21645515.2022.2154100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
Implementation of inactivated polio vaccines (IPV) containing Sabin strains (sIPV) will further enable global polio eradication efforts by improving vaccine safety during use and containment during manufacturing. Moreover, sIPV-containing vaccines will lower costs and expand production capacity to facilitate more widespread use in low- and middle-income countries (LMICs). This review focuses on the role of vaccine formulation in these efforts including traditional Salk IPV vaccines and new sIPV-containing dosage forms. The physicochemical properties and stability profiles of poliovirus antigens are described. Formulation approaches to lower costs include developing multidose and combination vaccine formats as well as improving storage stability. Formulation strategies for dose-sparing and enhanced mucosal immunity include employing adjuvants (e.g. aluminum-salt and newer adjuvants) and/or novel delivery systems (e.g. ID administration with microneedle patches). The potential for applying these low-cost formulation development strategies to other vaccines to further improve vaccine access and coverage in LMICs is also discussed.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Christopher Bird
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - David Holland
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
6
|
A combined inactivated cholera and hepatitis A vaccine-induced potent protective immunity in a mouse model. Appl Microbiol Biotechnol 2022; 106:7661-7670. [PMID: 36269328 DOI: 10.1007/s00253-022-12222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
Abstract
Cholera and hepatitis A are serious infections spread by consuming contaminated food or water. Vaccination is the most effective strategy to prevent them. Inactivated vaccines are available for both diseases. Our goal in this study is to evaluate the immunogenic response of hepatitis A and cholera combination vaccines compared to the separate vaccines. Hepatitis A and cholera vaccine formulations with and without adjuvants (alum or chitosan) were developed and injected into mice intraperitoneally. We measured the rate of seroconversion; serum-specific antibody titers; lymphoproliferation analysis; cytokine secretions for IL2, IL4, IL10, and IFN-; and a challenge test against cholera strains in the vaccinated mice. Based on the results, the combined vaccination formulation, whether adjuvanted or not, significantly boosted the immune response on both humoral and cellular levels against both hepatitis A and cholera antigens compared to the individual vaccines. These findings validated an important concept for developing an effective combined cholera and hepatitis A vaccine that could be introduced as a novel combined vaccine for travelers as part of a standard immunization schedule. KEY POINTS: • Cholera and hepatitis A combined vaccines (with or without adjuvants) were prepared. • The vaccines were injected into mice groups for humoral and cellular immunity evaluation. • Combined vaccines gave substantial protection against both immunogens.
Collapse
|
7
|
Rodríguez-Álvarez Y, Batista-Roche LG, Llopiz-Arzuaga A, Puente-Pérez P, Martínez-Castillo R, Castro-Velazco J, Santos-Savio A. Immunogenicity profile in African green monkeys of a vaccine candidate based on a mutated form of human Interleukin-15. BMC Immunol 2021; 22:79. [PMID: 34922462 PMCID: PMC8684083 DOI: 10.1186/s12865-021-00470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interleukin (IL)-15 is a proinflammatory T-cell growth factor overexpressed in several autoimmune diseases such as rheumatoid arthritis. Our initial strategy to neutralize the increased levels of IL-15 consisted in a vaccine candidate based on the recombinant modified human IL-15 (mhIL-15) mixed with the alum adjuvant. A previous study in non-human primates Macaca fascicularis has shown that vaccination induces neutralizing antibodies against native IL-15, without affecting animal behavior, clinical status, or the percentage of IL-15-dependent cell populations. However, the mhIL-15 used as an antigen was active in the IL-2-dependent cytotoxic T-cell line CTLL-2, which could hinder its therapeutic application. The current article evaluated the immunogenicity in African green monkeys of a vaccine candidate based on IL-15 mutant D8SQ108S, an inactive form of human IL-15. RESULTS IL-15 D8SQ108S was inactive in the CTLL-2 bioassay but was able to competitively inhibit the biological activity of human IL-15. Immunization with 200 µg of IL-15 mutant combined with alum elicited anti-IL-15 IgG antibodies after the second and third immunizations. The median values of anti-IL-15 antibody titers were slightly higher than those generated in animals immunized with 200 µg of mhIL-15. The highest antibody titers were induced after the third immunization in monkeys vaccinated with 350 µg of IL-15 D8SQ108S. In addition, sera from immunized animals inhibited the biological activity of human IL-15 in CTLL-2 cells. The maximum neutralizing effect was observed after the third immunization in sera of monkeys vaccinated with the highest dose of the IL-15 mutant. These sera also inhibited the proliferative activity of simian IL-15 in the CTLL-2 bioassay and did not affect the IL-2-induced proliferation of the aforementioned T-cell line. Finally, it was observed that vaccination neither affects the animal behavior nor the general clinical parameters of immunized monkeys. CONCLUSION Immunization with inactive IL-15 D8SQ108S mixed with alum generated neutralizing antibodies specific for human IL-15 in African green monkeys. Based on this fact, the current vaccine candidate could be more effective than the one based on biologically active mhIL-15 for treating autoimmune disorders involving an uncontrolled overproduction of IL-15.
Collapse
Affiliation(s)
- Yunier Rodríguez-Álvarez
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, 10 600, Havana, Cuba.
| | - Lino Gerardo Batista-Roche
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, 10 600, Havana, Cuba
| | - Alexey Llopiz-Arzuaga
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, 10 600, Havana, Cuba
| | - Pedro Puente-Pérez
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, 10 600, Havana, Cuba
| | - Rafael Martínez-Castillo
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, 10 600, Havana, Cuba
| | - Jorge Castro-Velazco
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, 10 600, Havana, Cuba
| | - Alicia Santos-Savio
- Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, 10 600, Havana, Cuba
| |
Collapse
|
8
|
Saponin-adjuvanted recombinant vaccines containing rCP00660, rCP09720 or rCP01850 proteins against Corynebacterium pseudotuberculosis infection in mice. Vaccine 2021; 39:2568-2574. [PMID: 33814234 DOI: 10.1016/j.vaccine.2021.03.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE rCP01850, rCP09729 and rCP00660 proteins from Corynebacterium pseudotuberculosis, predicted as the three best targets to be used in vaccines against Caseous Lymphadenitis in mature epitope density (MED) analysis were tested as vaccinal targets in association to saponin as adjuvant. METHODOLOGY rCP00660, rCP09720 and rCP01850 were expressed in E. coli and purified for immunization assay. Balb/c mice were divided into five groups of sixteen animals each. G1 was injected with saline solution (0.9% NaCl), G2 with saponin, G3, G4 and G5 with, respectively, rCP00660, rCP09720 and rCP01850 added by saponin. Two doses were administered within a 21-days interval, and blood samples were collected for IgG quantification. Twenty-one days after the last immunization, ten mice in each group were challenged with virulent C. pseudotuberculosis MIC-6 strain, and mortality was recorded for 40 days. Meanwhile six mice in each group were used for cytokine quantification by qPCR. RESULTS G2, G3, G4 and G5 presented protection rates of 10, 30, 40 and 60%, respectively. In spite of levels of total IgG were higher in G4 and G5, production of IgG2a was higher than IgG1 for G5. G3, G4 and G5 presented significant high IFN-γ levels, however, only G5 showed high TNF-α while G3 and G4 showed high IL-17. CONCLUSION rCP01850 added by saponin was able to protect efficiently mice against C. pseudotuberculosis challenge, and to induce high IgG, IFN-γ and TNF-α levels. In spite of rCP00660 and rCP09720 had not same adequate protection levels, significant IgG, IFN-γ, and IL-17 levels and further studies aiming to improve protection rates should be conducted.
Collapse
|
9
|
Hernandez-Franco JF, Mosley YYC, Franco J, Ragland D, Yao Y, HogenEsch H. Effective and Safe Stimulation of Humoral and Cell-Mediated Immunity by Intradermal Immunization with a Cyclic Dinucleotide/Nanoparticle Combination Adjuvant. THE JOURNAL OF IMMUNOLOGY 2020; 206:700-711. [PMID: 33380496 DOI: 10.4049/jimmunol.2000703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023]
Abstract
Intradermal (ID) immunization is an attractive route of vaccination because it targets tissue rich in dendritic cells, has dose-sparing potential, and allows needle-free delivery. However, few adjuvants are effective, nonreactogenic, and compatible with needle-free delivery devices. In this study, we demonstrate that a combination adjuvant composed of cyclic-di-AMP (cdAMP) and the plant-derived nanoparticle adjuvant Nano-11 significantly enhanced the immune response to ID-injected vaccines in mice and pigs with minimal local reaction at the injection site. The cdAMP/Nano-11 combination adjuvant increased Ag uptake by lymph node-resident and migratory skin dendritic cell subpopulations, including Langerhans cells. ID immunization with cdAMP/Nano-11 expanded the population of germinal center B cells and follicular helper T cells in the draining lymph node and Ag-specific Th1 and Th17 cells in the spleen. It elicited an enhanced immune response with a significant increase of IgG1 and IgG2a responses in mice at a reduced dose compared with i.m. immunization. An increased IgG response was observed following needle-free ID immunization of pigs. Nano-11 and cdAMP demonstrated a strong synergistic interaction, as shown in the activation of mouse, human, and porcine APC, with increased expression of costimulatory molecules and secretion of TNF and IL-1β. The combination adjuvant induced robust activation of both NF-κB and IFN regulatory factor signaling pathways and the NLRP3 inflammasome. We conclude that the combination of Nano-11 and cdAMP is a promising adjuvant for ID delivery of vaccines that supports a balanced immune response.
Collapse
Affiliation(s)
| | - Yung-Yi C Mosley
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Jackeline Franco
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Darryl Ragland
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, IN 47907; and
| | - Harm HogenEsch
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907; .,Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47907
| |
Collapse
|
10
|
Kaur A, Kaushik D, Piplani S, Mehta SK, Petrovsky N, Salunke DB. TLR2 Agonistic Small Molecules: Detailed Structure-Activity Relationship, Applications, and Future Prospects. J Med Chem 2020; 64:233-278. [PMID: 33346636 DOI: 10.1021/acs.jmedchem.0c01627] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are the pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) in microbial species. Among the various TLRs, TLR2 has a special place due to its ability to sense the widest repertoire of PAMPs owing to its heterodimerization with either TLR1 or TLR6, broadening its ligand diversity against pathogens. Various scaffolds are reported to activate TLR2, which include naturally occurring lipoproteins, synthetic lipopeptides, and small heterocyclic molecules. We described a detailed SAR in TLR2 agonistic scaffolds and also covered the design and chemistry for the conjugation of TLR2 agonists to antigens, carbohydrates, polymers, and fluorophores. The approaches involved in delivery of TLR2 agonists such as lipidation of antigen, conjugation to polymers, phosphonic acids, and other linkers to achieve surface adsorption, liposomal formulation, and encapsulating nanoparticles are elaborated. The crystal structure analysis and computational modeling are also included with the structural features that facilitate TLR2 activation.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Surinder K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India
| |
Collapse
|
11
|
Immunogenicity and safety of an adjuvanted inactivated polio vaccine, IPV-Al, compared to standard IPV: A phase 3 observer-blinded, randomised, controlled trial in infants vaccinated at 6, 10, 14 weeks and 9 months of age. Vaccine 2020; 38:530-538. [PMID: 31703934 PMCID: PMC6983932 DOI: 10.1016/j.vaccine.2019.10.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022]
Abstract
Background A dose-sparing inactivated polio vaccine (IPV-Al), obtained by adsorption of inactivated virus to an aluminium hydroxide adjuvant, can help mitigate global supply and the cost constraints of IPV. The objective of this trial was to demonstrate the non-inferiority of IPV-Al to standard IPV. Methods This phase 3, observer-blinded, randomised, controlled trial was conducted at 5 investigational sites in the Philippines. Infants not previously vaccinated with any polio vaccines were randomised to receive three IPV-Al (n = 502) or IPV vaccinations (n = 500) at 6, 10 and 14 weeks of age plus a booster vaccination at 9 months. The primary endpoint was type-specific seroconversion, defined as an antibody titre ≥4-fold higher than the estimated maternal antibody titre and a titre ≥8, one month after the primary vaccination series. Results Seroconversion rates following primary vaccination with IPV-Al (483 infants in the per-protocol analysis set) or IPV (478 infants) were: polio type 1, 97.1% versus 99.0%; type 2, 94.2% versus 99.0%; and type 3, 98.3% versus 99.6%. IPV-Al was non-inferior to IPV, as the lower 95% confidence limits of the treatment differences were above the predefined −10%-point limit: type 1, −1.85% (−3.85; −0.05); type 2, −4.75% (−7.28; −2.52); type 3, −1.24 (−2.84; 0.13). The booster effect (geometric mean titre (GMT) post-booster / GMT pre-booster) was: type 1, 63 versus 43; type 2, 54 versus 47; type 3, 112 versus 80. IPV-Al was well tolerated with a safety profile comparable to that of IPV. Serious adverse events were recorded for 29 infants (5.8%, 37 events) in the IPV-Al group compared to 28 (5.6%, 48 events) in the IPV group. Conclusion Non-inferiority of IPV-Al to IPV with respect to seroconversion was confirmed and a robust booster response was demonstrated. Both vaccines had a similar safety profile. ClinicalTrials.gov identifier: NCT03032419.
Collapse
|
12
|
Muller DA, Fernando GJP, Owens NS, Agyei-Yeboah C, Wei JCJ, Depelsenaire ACI, Forster A, Fahey P, Weldon WC, Oberste MS, Young PR, Kendall MAF. High-density microprojection array delivery to rat skin of low doses of trivalent inactivated poliovirus vaccine elicits potent neutralising antibody responses. Sci Rep 2017; 7:12644. [PMID: 28974777 PMCID: PMC5626768 DOI: 10.1038/s41598-017-13011-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/12/2017] [Indexed: 01/09/2023] Open
Abstract
To secure a polio-free world, the live attenuated oral poliovirus vaccine (OPV) will eventually need to be replaced with inactivated poliovirus vaccines (IPV). However, current IPV delivery is less suitable for campaign use than OPV, and more expensive. We are progressing a microarray patch delivery platform, the Nanopatch, as an easy-to-use device to administer vaccines, including IPV. The Nanopatch contains an ultra-high density array (10,000/cm2) of short (~230 μm) microprojections that delivers dry coated vaccine into the skin. Here, we compare the relative immunogenicity of Nanopatch immunisation versus intramuscular injection in rats, using monovalent and trivalent formulations of IPV. Nanopatch delivery elicits faster antibody response kinetics, with high titres of neutralising antibody after just one (IPV2) or two (IPV1 and IPV3) immunisations, while IM injection requires two (IPV2) or three (IPV1 and IPV3) immunisations to induce similar responses. Seroconversion to each poliovirus type was seen in 100% of rats that received ~1/40th of a human dose of IPV delivered by Nanopatch, but not in rats given ~1/8th or ~1/40th dose by IM injection. Ease of administration coupled with dose reduction observed in this study suggests the Nanopatch could facilitate inexpensive IPV vaccination in campaign settings.
Collapse
Affiliation(s)
- David A Muller
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Germain J P Fernando
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland, Australia
| | - Nick S Owens
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia
| | - Christiana Agyei-Yeboah
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia
| | - Jonathan C J Wei
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia
| | - Alexandra C I Depelsenaire
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia
| | - Angus Forster
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Paul Fahey
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - William C Weldon
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M Steven Oberste
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R Young
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A F Kendall
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland, Australia.
| |
Collapse
|
13
|
Brum AA, Rezende ADFS, Brilhante FS, Collares T, Begnine K, Seixas FK, Collares TV, Dellagostin OA, Azevedo V, Santos A, Portela RW, Borsuk S. Recombinant esterase from Corynebacterium pseudotuberculosis in DNA and subunit recombinant vaccines partially protects mice against challenge. J Med Microbiol 2017; 66:635-642. [PMID: 28516859 DOI: 10.1099/jmm.0.000477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE We tested the efficacy of the esterase encoded by cp1002_RS09720 from Corynebacteriumpseudotuberculosis in recombinant subunit and DNA caseous lymphadenitis (CLA) vaccines. This target was predicted as one of the best CLA vaccine candidates by mature epitope density analysis. METHODOLOGY Gene cp1002_RS09720 was cloned into two different vectors (pAE for subunit vaccine and pTARGET for DNA vaccine). Four groups of 15 mice each were immunized with the recombinant esterase rCP09720 associated with aluminium hydroxide adjuvant (G1), pTARGET/cp09720 DNA vaccine (G2), a naked pTARGET (G3) or PBS as a negative control (G4). Immunization occurred in two doses intercalated by a 21 day interval. Twenty-one days after the last dose administration, animals were challenged with a virulent C. pseudotuberculosis MIC-6 strain. RESULTS G1 showed high levels of IgG1 and IgG2a on days 21 and 42 post-immunization and a significant level of IFN-γ (P<0.05), suggesting a Th1 response. The protection levels obtained were 58.3 and 16.6 % for G1 and G2, respectively. CONCLUSION The subunit vaccine composed of the recombinant esterase rCP09720 and Al(OH)3 is a promising antigenic formulation for use against CLA.
Collapse
Affiliation(s)
- Alexandre Antunes Brum
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS 96010-900, Brazil
| | - Andrea de Fatima Silva Rezende
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS 96010-900, Brazil
| | - Francisco Silvestre Brilhante
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS 96010-900, Brazil
| | - Thais Collares
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS 96010-900, Brazil
| | - Karine Begnine
- Grupo de Pesquisa em Oncologia Celular e Molecular, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS 96010-900, Brazil
| | - Fabiana Kommling Seixas
- Grupo de Pesquisa em Oncologia Celular e Molecular, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS 96010-900, Brazil
| | - Tiago Veiras Collares
- Grupo de Pesquisa em Oncologia Celular e Molecular, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS 96010-900, Brazil
| | - Odir Antônio Dellagostin
- Laboratório de Biologia Molecular, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS 96010-900, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG 31270-901, Brazil
| | - Anderson Santos
- Faculdade de Computação, UFU, Uberlândia, MG 38400-902, Brazil
| | - Ricardo Wagner Portela
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, UFBA, Salvador, BA 40110-100, Brazil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, UFPel, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
14
|
Immunogenicity and safety of three aluminium hydroxide adjuvanted vaccines with reduced doses of inactivated polio vaccine (IPV-Al) compared with standard IPV in young infants in the Dominican Republic: a phase 2, non-inferiority, observer-blinded, randomised, and controlled dose investigation trial. THE LANCET. INFECTIOUS DISEASES 2017; 17:745-753. [PMID: 28454674 PMCID: PMC5483484 DOI: 10.1016/s1473-3099(17)30177-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cost and supply constraints are key challenges in the use of inactivated polio vaccine (IPV). Dose reduction through adsorption to aluminium hydroxide (Al) is a promising option, and establishing its effectiveness in the target population is a crucial milestone in developing IPV-Al. The aim of this clinical trial was to show the non-inferiority of three IPV-Al vaccines to standard IPV. METHODS In this phase 2, non-inferiority, observer-blinded, randomised, controlled, single-centre trial in the Dominican Republic, healthy infants aged 6 weeks, not previously polio vaccinated, were allocated after computer-generated randomisation by block-size of four, to receive one of four IPV formulations (three-times reduced dose [1/3 IPV-Al], five-times reduced dose [1/5 IPV-Al], ten-times reduced dose [1/10 IPV-Al], or IPV) intramuscularly in the thigh at 6, 10, and 14 weeks of age. The primary outcome was seroconversion for poliovirus types 1, 2, and 3 with titres more than or equal to four-fold higher than the estimated maternal antibody titre and more than or equal to 8 after three vaccinations. Non-inferiority was concluded if the lower two-sided 90% CI of the seroconversion rate difference between IPV-Al and IPV was greater than -10%. The safety analyses were based on the safety analysis set (randomly assigned participants who received at least one trial vaccination) and the immunogenicity analyses were based on the per-protocol population. This study is registered with ClinicalTrials.gov registration, number NCT02347423. FINDINGS Between Feb 2, 2015, and Sept 26, 2015, we recruited 824 infants. The per-protocol population included 820 infants; 205 were randomly assigned to receive 1/3 IPV-Al, 205 to receive 1/5 IPV-Al, 204 to receive 1/10 IPV-Al, and 206 to receive IPV. The proportion of individuals meeting the primary endpoint of seroconversion for poliovirus types 1, 2, and 3 was already high for the three IPV-Al vaccines after two vaccinations, but was higher after three vaccinations (ie, after completion of the expanded programme of immunisation schedule): 1/3 IPV-Al 98·5% (n=202, type 1), 97·6% (n=200; type 2), and 99·5% (n=204, type 3); 1/5 IPV-Al: 99·5% (n=204, type 1), 96·1% (n=197, type 2), and 98·5% (n=202, type 3); and 1/10 IPV-Al: 98·5% (n=201, type 1), 94·6% (n=193, type 2), and 99·5% (n=203, type 3). All three IPV-Al were non-inferior to IPV, with absolute differences in percentage seroconversion for each poliovirus type being greater than -10% (1/3 IPV-Al type 1, -1·46 [-3·60 to 0·10], type 2, -0·98 [-3·62 to 1·49], and type 3, -0·49 [-2·16 to 0·86]; 1/5 IPV-Al type 1, -0·49 [-2·16 to 0·86], type 2, -2·45 [-5·47 to 0·27], and type 3, -1·46 [-3·60 to 0·10]; and 1/10 IPV-Al type 1, -1·47 [-3·62 to 0·10], type 2, -3·94 [-7·28 to -0·97], and type 3, -0·49 [-2·17 to 0·86]). Three serious adverse events occurred that were unrelated to the vaccine. INTERPRETATION The lowest dose (1/10 IPV-Al) of the vaccine performed well both after two and three doses. Based on these results, this new vaccine is under investigation in phase 3 trials. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
15
|
First-in-human safety and immunogenicity investigations of three adjuvanted reduced dose inactivated poliovirus vaccines (IPV-Al SSI) compared to full dose IPV Vaccine SSI when given as a booster vaccination to adolescents with a history of IPV vaccination at 3, 5, 12months and 5years of age. Vaccine 2017; 35:596-604. [PMID: 28027810 PMCID: PMC5267481 DOI: 10.1016/j.vaccine.2016.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/29/2022]
Abstract
Three adjuvanted reduced dose IPV-Al SSI were safe and immunogenic in adolescents. The three IPV-Al SSI were highly immunogenic, but inferior to IPV Vaccine SSI as a booster. Reduced dose IPV-Al SSI is intended for markets in need of affordable IPV.
Background There is a demand of affordable IPV in the World. Statens Serum Institut (SSI) has developed three reduced dose IPV formulations adsorbed to aluminium hydroxide; 1/3 IPV-Al, 1/5 IPV-Al and 1/10 IPV-Al SSI, and now report the results of the first investigations in humans. Methods 240 Danish adolescents, aged 10–15 years, and childhood vaccinated with IPV were booster vaccinated with 1/3 IPV-Al, 1/5 IPV-Al, 1/10 IPV-Al or IPV Vaccine SSI. The booster effects (GMTRs) of the three IPV-Al SSI were compared to IPV Vaccine SSI, and evaluated for non-inferiority. Immunogenicity results The pre-vaccination GMTs were similar across the groups; 926 (type 1), 969 (type 2) and 846 (type 3) in the total trial population. The GMTRs by poliovirus type and IPV formulation were: Type 1: 17.0 (1/3 IPV-Al), 13.0 (1/5 IPV-Al), 7.1 (1/10 IPV-Al) and 42.2 (IPV Vaccine SSI). Type 2: 12.5 (1/3 IPV-Al), 13.1 (1/5 IPV-Al), 7.6 (1/10 IPV-Al) and 47.8 (IPV Vaccine SSI). Type 3: 14.5 (1/3 IPV-Al), 16.2 (1/5 IPV-Al), 8.9 (1/10 IPV-Al) and 62.4 (IPV Vaccine SSI) Thus, the three IPV-Al formulations were highly immunogenic, but inferior to IPV Vaccine SSI, in this booster vaccination trial. Safety results No SAE and no AE of severe intensity occurred. 59.2% of the subjects reported at least one AE. Injection site pain was the most frequent AE in all groups; from 24.6% to 43.3%. Injection site redness and swelling frequencies were < 5% in most and < 10% in all groups. The most frequent systemic AEs were fatigue (from 8.2% to 15.0%) and headache (from 15.0% to 28.3%). Most AEs were of mild intensity. In conclusion, the three IPV-Al SSI were safe in adolescents and the booster effects were satisfactory. ClinicalTrials.gov registration number: NCT02280447.
Collapse
|
16
|
Fox CB, Orr MT, Van Hoeven N, Parker SC, Mikasa TJT, Phan T, Beebe EA, Nana GI, Joshi SW, Tomai MA, Elvecrog J, Fouts TR, Reed SG. Adsorption of a synthetic TLR7/8 ligand to aluminum oxyhydroxide for enhanced vaccine adjuvant activity: A formulation approach. J Control Release 2016; 244:98-107. [PMID: 27847326 PMCID: PMC5176129 DOI: 10.1016/j.jconrel.2016.11.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/10/2016] [Indexed: 11/25/2022]
Abstract
For nearly a century, aluminum salts have been the most widely used vaccine adjuvant formulation, and have thus established a history of safety and efficacy. Nevertheless, for extremely challenging disease targets such as tuberculosis or HIV, the adjuvant activity of aluminum salts may not be potent enough to achieve protective efficacy. Adsorption of TLR ligands to aluminum salts facilitates enhanced adjuvant activity, such as in the human papilloma virus vaccine Cervarix®. However, some TLR ligands such as TLR7/8 agonist imidazoquinolines do not efficiently adsorb to aluminum salts. The present report describes a formulation approach to solving this challenge by developing a lipid-based nanosuspension of a synthetic TLR7/8 ligand (3M-052) that facilitates adsorption to aluminum oxyhydroxide via the structural properties of the helper lipid employed. In immunized mice, the aluminum oxyhydroxide-adsorbed formulation of 3M-052 enhanced antibody and TH1-type cellular immune responses to vaccine antigens for tuberculosis and HIV.
Collapse
Affiliation(s)
- Christopher B Fox
- IDRI, 1616 Eastlake Ave, Seattle, WA 98102, USA; Dept of Global Health, University of Washington, Seattle, WA 98104, USA.
| | - Mark T Orr
- IDRI, 1616 Eastlake Ave, Seattle, WA 98102, USA; Dept of Global Health, University of Washington, Seattle, WA 98104, USA
| | | | | | | | - Tony Phan
- IDRI, 1616 Eastlake Ave, Seattle, WA 98102, USA
| | | | | | | | - Mark A Tomai
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St. Paul, MN 55144, USA
| | - James Elvecrog
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St. Paul, MN 55144, USA
| | | | - Steven G Reed
- IDRI, 1616 Eastlake Ave, Seattle, WA 98102, USA; Dept of Global Health, University of Washington, Seattle, WA 98104, USA
| |
Collapse
|
17
|
Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses. Sci Rep 2016; 6:22094. [PMID: 26911254 PMCID: PMC4766532 DOI: 10.1038/srep22094] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/02/2016] [Indexed: 12/11/2022] Open
Abstract
Polio eradication is progressing rapidly, and the live attenuated Sabin strains in the oral poliovirus vaccine (OPV) are being removed sequentially, starting with type 2 in April 2016. For risk mitigation, countries are introducing inactivated poliovirus vaccine (IPV) into routine vaccination programs. After April 2016, monovalent type 2 OPV will be available for type 2 outbreak control. Because the current IPV is not suitable for house-to-house vaccination campaigns (the intramuscular injections require health professionals), we developed a high-density microprojection array, the Nanopatch, delivered monovalent type 2 IPV (IPV2) vaccine to the skin. To assess the immunogenicity of the Nanopatch, we performed a dose-matched study in rats, comparing the immunogenicity of IPV2 delivered by intramuscular injection or Nanopatch immunisation. A single dose of 0.2 D-antigen units of IPV2 elicited protective levels of poliovirus antibodies in 100% of animals. However, animals receiving IPV2 by IM required at least 3 immunisations to reach the same neutralising antibody titres. This level of dose reduction (1/40th of a full dose) is unprecedented for poliovirus vaccine delivery. The ease of administration coupled with the dose reduction observed in this study points to the Nanopatch as a potential tool for facilitating inexpensive IPV for mass vaccination campaigns.
Collapse
|