1
|
Noor L, Upadhyay A, Joshi V. Role of T Lymphocytes in Glioma Immune Microenvironment: Two Sides of a Coin. BIOLOGY 2024; 13:846. [PMID: 39452154 PMCID: PMC11505600 DOI: 10.3390/biology13100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Glioma is known for its immunosuppressive microenvironment, which makes it challenging to target through immunotherapies. Immune cells like macrophages, microglia, myeloid-derived suppressor cells, and T lymphocytes are known to infiltrate the glioma tumor microenvironment and regulate immune response distinctively. Among the variety of immune cells, T lymphocytes have highly complex and multifaceted roles in the glioma immune landscape. T lymphocytes, which include CD4+ helper and CD8+ cytotoxic T cells, are known for their pivotal roles in anti-tumor responses. However, these cells may behave differently in the highly dynamic glioma microenvironment, for example, via an immune invasion mechanism enforced by tumor cells. Therefore, T lymphocytes play dual roles in glioma immunity, firstly by their anti-tumor responses, and secondly by exploiting gliomas to promote immune invasion. As an immunosuppression strategy, glioma induces T-cell exhaustion and suppression of effector T cells by regulatory T cells (Tregs) or by altering their signaling pathways. Further, the expression of immune checkpoint inhibitors on the glioma cell surface leads to T cell anergy and dysfunction. Overall, this dynamic interplay between T lymphocytes and glioma is crucial for designing more effective immunotherapies. The current review provides detailed knowledge on the roles of T lymphocytes in the glioma immune microenvironment and helps to explore novel therapeutic approaches to reinvigorate T lymphocytes.
Collapse
Affiliation(s)
- Laiba Noor
- Department of Biotechnology, Bennett University, Greater Noida 201310, Uttar Pradesh, India
| | - Arun Upadhyay
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
2
|
Alzeeb G, Tortorelli C, Taleb J, De Luca F, Berge B, Bardet C, Limagne E, Brun M, Chalus L, Pinteur B, Bravetti P, Gongora C, Apetoh L, Ghiringhelli F. Efficacy of novel allogeneic cancer cells vaccine to treat colorectal cancer. Front Oncol 2024; 14:1427428. [PMID: 39114302 PMCID: PMC11303197 DOI: 10.3389/fonc.2024.1427428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden, emphasizing the need for innovative treatment strategies. 95% of the CRC population are microsatellite stable (MSS), insensitive to classical immunotherapies such as anti-PD-1; on the other hand, responders can become resistant and relapse. Recently, the use of cancer vaccines enhanced the immune response against tumor cells. In this context, we developed a therapeutic vaccine based on Stimulated Tumor Cells (STC) platform technology. This vaccine is composed of selected tumor cell lines stressed and haptenated in vitro to generate a factory of immunogenic cancer-related antigens validated by a proteomic cross analysis with patient's biopsies. This technology allows a multi-specific education of the immune system to target tumor cells harboring resistant clones. Here, we report safety and antitumor efficacy of the murine version of the STC vaccine on CT26 BALB/c CRC syngeneic murine models. We showed that one cell line (1CL)-based STC vaccine suppressed tumor growth and extended survival. In addition, three cell lines (3CL)-based STC vaccine significantly improves these parameters by presenting additional tumor-related antigens inducing a multi-specific anti-tumor immune response. Furthermore, proteomic analyses validated that the 3CL-based STC vaccine represents a wider quality range of tumor-related proteins than the 1CL-based STC vaccine covering key categories of tumor antigens related to tumor plasticity and treatment resistance. We also evaluated the efficacy of STC vaccine in an MC38 anti-PD-1 resistant syngeneic murine model. Vaccination with the 3CL-based STC vaccine significantly improved survival and showed a confirmed complete response with an antitumor activity carried by the increase of CD8+ lymphocyte T cells and M1 macrophage infiltration. These results demonstrate the potential of this technology to produce human vaccines for the treatment of patients with CRC.
Collapse
Affiliation(s)
| | | | - Jaqueline Taleb
- Imthernat, Université Claude Bernard Lyon 1, Therapies and Immune REsponse in Cancers (TIRECs), Lyon, France
| | | | | | | | - Emeric Limagne
- Transfer Platform for Cancer Biology, Centre Georges François Leclerc, Dijon, France
| | | | | | | | | | - Céline Gongora
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Francois Ghiringhelli
- Transfer Platform for Cancer Biology, Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
3
|
Squalli Houssaini A, Lamrabet S, Nshizirungu JP, Senhaji N, Sekal M, Karkouri M, Bennis S. Glioblastoma Vaccines as Promising Immune-Therapeutics: Challenges and Current Status. Vaccines (Basel) 2024; 12:655. [PMID: 38932383 PMCID: PMC11209492 DOI: 10.3390/vaccines12060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor. Standard treatments including surgical resection, radiotherapy, and chemotherapy, have failed to significantly improve the prognosis of glioblastoma patients. Currently, immunotherapeutic approaches based on vaccines, chimeric antigen-receptor T-cells, checkpoint inhibitors, and oncolytic virotherapy are showing promising results in clinical trials. The combination of different immunotherapeutic approaches is proving satisfactory and promising. In view of the challenges of immunotherapy and the resistance of glioblastomas, the treatment of these tumors requires further efforts. In this review, we explore the obstacles that potentially influence the efficacy of the response to immunotherapy and that should be taken into account in clinical trials. This article provides a comprehensive review of vaccine therapy for glioblastoma. In addition, we identify the main biomarkers, including isocitrate dehydrogenase, epidermal growth factor receptor, and telomerase reverse transcriptase, known as potential immunotherapeutic targets in glioblastoma, as well as the current status of clinical trials. This paper also lists proposed solutions to overcome the obstacles facing immunotherapy in glioblastomas.
Collapse
Affiliation(s)
- Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Jean Paul Nshizirungu
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, Kigali P.O. Box 3900, Rwanda;
| | - Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco;
| | - Mohammed Sekal
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Mehdi Karkouri
- Department of Pathological Anatomy, Ibn Rochd University Hospital of Casablanca, Casablanca 20250, Morocco;
- Laboratory of Cellular and molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20360, Morocco
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| |
Collapse
|
4
|
Amanzadeh Jajin E, Oraee Yazdani S, Zali A, Esmaeili A. Efficacy and Safety of Vaccines After Conventional Treatments for Survival of Gliomas: A Systematic Review and Meta-Analysis. Oncol Rev 2024; 18:1374513. [PMID: 38707486 PMCID: PMC11066223 DOI: 10.3389/or.2024.1374513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Background Malignant gliomas are known with poor prognosis and low rate of survival among brain tumors. Resection surgery is followed by chemotherapy and radiotherapy in treatment of gliomas which is known as the conventional treatment. However, this treatment method results in low survival rate. Vaccination has been suggested as a type of immunotherapy to increase survival rate of glioma patients. Different types of vaccines have been developed that are mainly classified in two groups including peptide vaccines and cell-based vaccines. However, there are still conflicts about which type of vaccines is more efficient for malignant glioma treatment. Methods Phase Ⅰ/Ⅱ clinical trials which compared the efficacy and safety of various vaccines with conventional treatments were searched in databases through November 2022. Overall survival (OS) rate, progression free survival (PFS), and OS duration were used for calculation of pooled risk ratio (RR). In addition, fatigue, headache, nausea, diarrhea, and flu-like syndrome were used for evaluating the safety of vaccines therapy in glioma patients. Results A total of twelve articles were included in the present meta-analysis. Comparison of OS rate between vaccinated groups and control groups who underwent only conventional treatments showed a significant increase in OS rate in vaccinated patients (I2 = 0%, RR = 11.17, 95% CI: 2.460-50.225). PFS rate was better in vaccinated glioma patients (I2 = 83%, RR = 2.87, 95% CI: 1.63-5.03). Assessment of safety demonstrated that skin reaction (I2 = 0.0%, RR = 3.654; 95% CI: 1.711-7.801, p-value = 0.0058) and flu-like syndrome were significantly more frequent adverse effects win vaccinated groups compared to the control group. Subgroup analysis also showed that vaccination leads to better OS duration in recurrent gliomas than primary gliomas, and in LGG than HGG (p-value = 0). On the other hand, personalized vaccines showed better OS duration than non-personalized vaccines (p-value = 0). Conclusion Vaccination is a type of immunotherapy which shows promising efficacy in treatment of malignant glioma patients in terms of OS, PFS and duration of survival. In addition, AFTV, peptide, and dendritic cell-based vaccines are among the most efficient vaccines for gliomas. Personalized vaccines also showed considerable efficacy for glioma treatments.
Collapse
Affiliation(s)
| | - Saeed Oraee Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolghasem Esmaeili
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
5
|
Agosti E, Zeppieri M, De Maria L, Tedeschi C, Fontanella MM, Panciani PP, Ius T. Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements. Int J Mol Sci 2023; 24:15037. [PMID: 37894718 PMCID: PMC10606063 DOI: 10.3390/ijms242015037] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastoma (GBM) is characterized by aggressive growth and high rates of recurrence. Despite the advancements in conventional therapies, the prognosis for GBM patients remains poor. Immunotherapy has recently emerged as a potential treatment option. The aim of this systematic review is to assess the current strategies and future perspectives of the GBM immunotherapy strategies. A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to 3 September 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "glioblastomas," "immunotherapies," and "treatment." The studies included in this review consist of randomized controlled trials, non-randomized controlled trials, and cohort studies reporting on the use of immunotherapies for the treatment of gliomas in human subjects. A total of 1588 papers are initially identified. Eligibility is confirmed for 752 articles, while 655 are excluded for various reasons, including irrelevance to the research topic (627), insufficient method and results details (12), and being case-series or cohort studies (22), systematic literature reviews, or meta-analyses (3). All the studies within the systematic review were clinical trials spanning from 1995 to 2023, involving 6383 patients. Neuro-oncology published the most glioma immunotherapy-related clinical trials (15/97, 16%). Most studies were released between 2018 and 2022, averaging nine publications annually during this period. Adoptive cellular transfer chimeric antigen receptor (CAR) T cells were the primary focus in 11% of the studies, with immune checkpoint inhibitors (ICIs), oncolytic viruses (OVs), and cancer vaccines (CVs) comprising 26%, 12%, and 51%, respectively. Phase-I trials constituted the majority at 51%, while phase-III trials were only 7% of the total. Among these trials, 60% were single arm, 39% double arm, and one multi-arm. Immunotherapies were predominantly employed for recurrent GBM (55%). The review also revealed ongoing clinical trials, including 9 on ICIs, 7 on CVs, 10 on OVs, and 8 on CAR T cells, totaling 34 trials, with phase-I trials representing the majority at 53%, and only one in phase III. Overcoming immunotolerance, stimulating robust tumor antigen responses, and countering immunosuppressive microenvironment mechanisms are critical for curative GBM immunotherapy. Immune checkpoint inhibitors, such as PD-1 and CTLA-4 inhibitors, show promise, with the ongoing research aiming to enhance their effectiveness. Personalized cancer vaccines, especially targeting neoantigens, offer substantial potential. Oncolytic viruses exhibited dual mechanisms and a breakthrough status in the clinical trials. CAR T-cell therapy, engineered for specific antigen targeting, yields encouraging results, particularly against IL13 Rα2 and EGFRvIII. The development of second-generation CAR T cells with improved specificity exemplifies their adaptability.
Collapse
Affiliation(s)
- Edoardo Agosti
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Lucio De Maria
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Camilla Tedeschi
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Maria Fontanella
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Pier Paolo Panciani
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
6
|
Zhang J, Du J, Jin Z, Qian J, Xu J. A novel immunogenic cell death signature for the prediction of prognosis and therapies in glioma. PeerJ 2023; 11:e15615. [PMID: 37456890 PMCID: PMC10348309 DOI: 10.7717/peerj.15615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Glioma is a primary cranial malignancy with high recurrence rate, poor prognosis and high mortality. However, the roles of immunogenic cell death (ICD) in glioma remain unclear. Twenty ICD genes were analyzed to be differentially expressed between glioma tissues and non-tumor tissues in 371 glioma patients from The Cancer Genome Atlas (TCGA). Patients were classified into three subgroups via unsupervised clustering. Interestingly, the features of cell-infiltrating from three clusters were matched with three immune phenotypes. An applied scoring system was built depending on the expression of hub ICD-related genes. Notably, the ICD-related score was linked with immune checkpoints and the prognosis of glioma patients. In addition, the applied risk model could be used for the prediction of the effect of chemotherapy and immunotherapy for glioma patients. Furthermore, MYD88 was identified to play key roles in the risk model for glioma patients. MYD88 was specifically expressed in malignant cells and validated to correlate with cell proliferation and invasion. Ligand-receptor pairs are determined as novel communications indicating between immunocytes and malignant cells. Therefore, our research established an ICD-related score to investigate the potential effect to chemotherapy and immunotherapy for glioma patients and indicated that MYD88 was a key role in this risk model.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Oncology, People’s Hospital of Chizhou, Chizhou, China
| | - Jin Du
- Department of Neurosurgery, People’s Hospital of Chizhou, Chizhou, China
| | - Zhihai Jin
- Department of Orthopedics, Handan First Hospital, Handan, China
| | - Jiang Qian
- Department of Oncology, People’s Hospital of Chizhou, Chizhou, China
| | - Jinfa Xu
- Department of Oncology, People’s Hospital of Chizhou, Chizhou, China
| |
Collapse
|
7
|
Bota DA, Taylor TH, Lomeli N, Kong XT, Fu BD, Schönthal AH, Singer S, Blumenthal DT, Senecal FM, Linardou H, Rokas E, Antoniou DG, Schijns VEJC, Chen TC, Elliot J, Stathopoulos A. A Prospective, Cohort Study of SITOIGANAP to Treat Glioblastoma When Given in Combination With Granulocyte-Macrophage Colony-Stimulating Factor/Cyclophosphamide/Bevacizumab/Nivolumab or Granulocyte-Macrophage Colony-Stimulating Factor/Cyclophosphamide/Bevacizumab/Pembrolizumab in Patients Who Failed Prior Treatment With Surgical Resection, Radiation, and Temozolomide. Front Oncol 2022; 12:934638. [PMID: 35837107 PMCID: PMC9273968 DOI: 10.3389/fonc.2022.934638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioblastoma (GBM) is the most common primary, malignant brain tumor in adults and has a poor prognosis. The median progression-free survival (mPFS) of newly diagnosed GBM is approximately 6 months. The recurrence rate approaches 100%, and the case-fatality ratio approaches one. Half the patients die within 8 months of recurrence, and 5-year survival is less than 10%. Advances in treatment options are urgently needed. We report on the efficacy and safety of a therapeutic vaccine (SITOIGANAP: Epitopoietic Research Corporation) administered to 21 patients with recurrent GBM (rGBM) under a Right-to-Try/Expanded Access program. SITOIGANAP is composed of both autologous and allogeneic tumor cells and lysates.MethodsTwenty-one patients with rGBM received SITOIGANAP on 28-day cycles in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), cyclophosphamide, bevacizumab, and an anti-programmed cell death protein-1 (anti-PD-1) monoclonal antibody (either nivolumab or pembrolizumab).ResultsThe mPFS was 9.14 months, and the median overall survival (mOS) was 19.63 months from protocol entry. Currently, 14 patients (67%) are at least 6 months past their first SITOIGANAP cycle; 10 patients (48%) have received at least six cycles and have a mOS of 30.64 months and 1-year survival of 90%. The enrollment and end-of-study CD3+/CD4+ T-lymphocyte counts strongly correlate with OS.ConclusionsThe addition of SITOIGANAP/GM-CSF/cyclophosphamide to bevacizumab and an anti-PD-1 monoclonal antibody resulted in a significant survival benefit compared to historic control values in rGBM with minimal toxicity compared to current therapy.
Collapse
Affiliation(s)
- Daniela A. Bota
- Department of Neurology, University of California Irvine, Irvine, CA, United States
- Department of Neurological Surgery, University of California Irvine, Irvine, CA, United States
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, United States
- *Correspondence: Daniela A. Bota,
| | - Thomas H. Taylor
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, United States
- Department of Epidemiology and Biostatistics, University of California Irvine, Irvine, CA, United States
| | - Naomi Lomeli
- Department of Neurology, University of California Irvine, Irvine, CA, United States
| | - Xiao-Tang Kong
- Department of Neurology, University of California Irvine, Irvine, CA, United States
- Department of Neurological Surgery, University of California Irvine, Irvine, CA, United States
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, United States
| | - Beverly D. Fu
- Department of Neurology, University of California Irvine, Irvine, CA, United States
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, United States
| | - Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Samuel Singer
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Deborah T. Blumenthal
- Neuro-oncology Division, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Frank M. Senecal
- Department of Hematology and Oncology, Northwest Medical Specialties, Tacoma, WA, United States
| | - Helena Linardou
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, Athens, Greece
| | - Evangelos Rokas
- Department of Neurosurgery, Henry Dunant Hospital Center, Athens, Greece
| | | | | | - Thomas C. Chen
- Epitopoietic Research Corporation (ERC), Pasadena, CA, United States
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Joseph Elliot
- Epitopoietic Research Corporation (ERC), Pasadena, CA, United States
| | - Apostolos Stathopoulos
- Department of Neurosurgery, Henry Dunant Hospital Center, Athens, Greece
- Epitopoietic Research Corporation (ERC), Gembloux, Belgium
- Epitopoietic Research Corporation (ERC), Pasadena, CA, United States
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Winograd E, Germano I, Wen P, Olson JJ, Ormond DR. Congress of Neurological Surgeons systematic review and evidence-based guidelines update on the role of targeted therapies and immunotherapies in the management of progressive glioblastoma. J Neurooncol 2022; 158:265-321. [PMID: 34694567 PMCID: PMC8543777 DOI: 10.1007/s11060-021-03876-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
The following questions and recommendations are pertinent to the following: TARGET POPULATION: These recommendations apply to adults with progressive GBM who have undergone standard primary treatment with surgery and/or chemoradiation. QUESTION 1: In adults with progressive glioblastoma is the use of bevacizumab as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: Treatment with bevacizumab is suggested in the treatment of progressive GBM, as it provides improved disease control compared to historical controls as measured by best imaging response and progression free survival at 6 months, while not providing evidence for improvement in overall survival. QUESTION 2: In adults with progressive glioblastoma is the use of bevacizumab as combination therapy with cytotoxic agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION Level III: There is insufficient evidence to show benefit or harm of bevacizumab in combination with cytotoxic therapies in progressive glioblastoma due to a lack of evidence supporting a clearly defined benefit without significant toxicity. QUESTION 3: In adults with progressive glioblastoma is the use of bevacizumab as a combination therapy with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 4: In adults with progressive glioblastoma is the use of targeted agents as monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 5: In adults with progressive glioblastoma is the use of targeted agents in combination with cytotoxic therapies superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 6: In adults with progressive glioblastoma is the use of immunotherapy monotherapy superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 7: In adults with progressive glioblastoma is the use of immunotherapy in combination with targeted agents superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question. QUESTION 8: In adults with progressive glioblastoma is the use of immunotherapy in combination with bevacizumab superior to standard salvage cytotoxic chemotherapy as measured by progression free survival and overall survival? RECOMMENDATION There is insufficient evidence to support a recommendation regarding this question.
Collapse
Affiliation(s)
- Evan Winograd
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabelle Germano
- Department of Neurosurgery, The Mount Sinai Hospital, New York, NY, USA
| | - Patrick Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12631 E. 17th Ave., Mail Stop C307, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Zhang Y, Brekken RA. Direct and indirect regulation of the tumor immune microenvironment by VEGF. J Leukoc Biol 2022; 111:1269-1286. [DOI: 10.1002/jlb.5ru0222-082r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yuqing Zhang
- Hamon Center for Therapeutic Oncology Research UT Southwestern Medical Center Dallas Texas USA
- Department of Surgery UT Southwestern Medical Center Dallas Texas USA
- Cancer Biology Graduate Program UT Southwestern Medical Center Dallas Texas USA
- Current affiliation: Department of Medical Oncology Dana‐Farber Cancer Institute Boston Massachusetts USA
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research UT Southwestern Medical Center Dallas Texas USA
- Department of Surgery UT Southwestern Medical Center Dallas Texas USA
- Cancer Biology Graduate Program UT Southwestern Medical Center Dallas Texas USA
| |
Collapse
|
10
|
Lokhov PG, Lichtenberg S, Balashova EE. Changing Landscape of Cancer Vaccines-Novel Proteomics Platform for New Antigen Compositions. Int J Mol Sci 2022; 23:4401. [PMID: 35457221 PMCID: PMC9029553 DOI: 10.3390/ijms23084401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
The creation of cancer vaccines is a constant priority for research and biotechnology. Therefore, the emergence of any new technology in this field is a significant event, especially because previous technologies have not yielded results. Recently, the development of a cancer vaccine has been complemented by a new proteomics technology platform that allows the creation of antigen compositions known as antigenic essences. Antigenic essence comprises a target fraction of cellular antigens, the composition of which is precisely controlled by peptide mass spectrometry and compared to the proteomic footprint of the target cells to ensure similarity. This proteomics platform offers potential for a massive upgrade of conventional cellular cancer vaccines. Antigenic essences have the same mechanism of action, but without the disadvantages, and with notable advantages such as precise targeting of the immune response, safety, controlled composition, improved immunogenicity, addressed MHC restriction, and extended range of vaccination doses. The present paper calls attention to this novel platform, stimulates discussion of the role of antigenic essence in vaccine development, and consolidates academic science with biotech capabilities. A brief description of the platform, list of cellular cancer vaccines suitable for the upgrade, main recommendations, limitations, and legal and ethical aspects of vaccine upgrade are reported here.
Collapse
Affiliation(s)
- Petr G. Lokhov
- Biobohemia, Inc., 1 Broadway, 14th Floor, Cambridge, MA 02142, USA; (S.L.); (E.E.B.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Steven Lichtenberg
- Biobohemia, Inc., 1 Broadway, 14th Floor, Cambridge, MA 02142, USA; (S.L.); (E.E.B.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Elena E. Balashova
- Biobohemia, Inc., 1 Broadway, 14th Floor, Cambridge, MA 02142, USA; (S.L.); (E.E.B.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| |
Collapse
|
11
|
Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14020443. [PMID: 35053605 PMCID: PMC8773542 DOI: 10.3390/cancers14020443] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
Collapse
|
12
|
Zhang M, Choi J, Lim M. Advances in Immunotherapies for Gliomas. Curr Neurol Neurosci Rep 2022; 22:1-10. [PMID: 35107784 PMCID: PMC9186001 DOI: 10.1007/s11910-022-01176-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Immunotherapy-based treatment of glioblastoma has been challenging because of the tumor's limited neoantigen profile and weakly immunogenic composition. This article summarizes the current clinical trials underway by evaluating the leading immunotherapy paradigms, the encountered barriers, and the future directions needed to overcome such tumor evasion. RECENT FINDINGS A limited number of phase III trials have been completed for checkpoint inhibitor, vaccine, as well as gene therapies, and have been unable to show improvement in survival outcomes. Nevertheless, these trials have also shown these strategies to be safe and promising with further adaptations. Further large-scale studies for chimeric antigen receptors T cell therapies and viral therapies are anticipated. Many current trials are broadening the number of antigens targeted and modulating the microtumor environment to abrogate early mechanisms of resistance. Future GBM treatment will also likely require synergistic effects by combination regimens.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - John Choi
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA,Department of Neurosurgery, Departments of Oncology, Otolaryngology, and Radiation Oncology, 453 Quarry Road, Neurosurgery 5327, Palo Alto, CA 94304, USA
| |
Collapse
|
13
|
Sevastre AS, Costachi A, Tataranu LG, Brandusa C, Artene SA, Stovicek O, Alexandru O, Danoiu S, Sfredel V, Dricu A. Glioblastoma pharmacotherapy: A multifaceted perspective of conventional and emerging treatments (Review). Exp Ther Med 2021; 22:1408. [PMID: 34676001 PMCID: PMC8524703 DOI: 10.3892/etm.2021.10844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Due to its localisation, rapid onset, high relapse rate and resistance to most currently available treatment methods, glioblastoma multiforme (GBM) is considered to be the deadliest type of all gliomas. Although surgical resection, chemotherapy and radiotherapy are among the therapeutic strategies used for the treatment of GBM, the survival rates achieved are not satisfactory, and there is an urgent need for novel effective therapeutic options. In addition to single-target therapy, multi-target therapies are currently under development. Furthermore, drugs are being optimised to improve their ability to cross the blood-brain barrier. In the present review, the main strategies applied for GBM treatment in terms of the most recent therapeutic agents and approaches that are currently under pre-clinical and clinical testing were discussed. In addition, the most recently reported experimental data following the testing of novel therapies, including stem cell therapy, immunotherapy, gene therapy, genomic correction and precision medicine, were reviewed, and their advantages and drawbacks were also summarised.
Collapse
Affiliation(s)
- Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandra Costachi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, ‘Bagdasar-Arseni’ Emergency Clinical Hospital, 041915 Bucharest, Romania
| | - Corina Brandusa
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Stefan Alexandru Artene
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Olivian Stovicek
- Department of Pharmacology, Faculty of Nursing Targu Jiu, Titu Maiorescu University of Bucharest, 210106 Targu Jiu, Romania
| | - Oana Alexandru
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
14
|
Khan M, Li X, Yan M, Li Z, Yang H, Liao G. Efficacy and Safety of Actively Personalized Neoantigen Vaccination in the Management of Newly Diagnosed Glioblastoma: A Systematic Review. Int J Gen Med 2021; 14:5209-5220. [PMID: 34512004 PMCID: PMC8427683 DOI: 10.2147/ijgm.s323576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose Glioblastoma (GBM) shows frequent relapse and is highly resistant to treatment; therefore, it is considered fatal. Various vaccination protocols that have been tested in patients with GBM, which is the most common and aggressive primary brain tumor, have indicated safety and efficacy, to some extent, when used alone or in combination with standard of care. Recently, neoantigen-based personalized vaccines have shown tremendous immunogenicity and safety in GBM. We aimed to systematically review the medical literature for clinical trials to evaluate the efficacy and safety of neoantigen-based personalized vaccines for newly diagnosed GBM. Methods We conducted a literature search for clinical trials on PubMed, Cochrane Library, China National Knowledge Infrastructure, and ClinicalTrials.gov until March 20, 2021. The primary outcomes of interest were immunogenicity and safety of the therapy. Efficacy outcomes, such as progression-free survival and overall survival, were secondary outcomes of interest. Results Two clinical trials involving 24 patients were included in this review. High immunogenicity was observed in both studies. The GAPVAC-101 trial reported 50% APVAC1-induced and 84.7% APVAC2-induced immunogenicity with CD8+ and CD4+ T cell responses in 92% (12/13) and 80% (8/10) immune responders, respectively. Two out of five patients showed CD4+ and CD8+ T cell responses in the study by Keskin et al. Dexamethasone use had limited immunogenicity in a trial by Keskin et al (6/8). No serious treatment-related adverse events were reported. Conclusion Actively personalized vaccines aimed at unmutated peptides and neoantigens for patients with GBM are safe and highly immunogenic, particularly when administered in combination. Larger studies are warranted to investigate the role.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China.,Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Xianming Li
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Maosheng Yan
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Zihuang Li
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Hongli Yang
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China
| | - Guixiang Liao
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China
| |
Collapse
|
15
|
Advances in Lipid-Based Nanoparticles for Cancer Chemoimmunotherapy. Pharmaceutics 2021; 13:pharmaceutics13040520. [PMID: 33918635 PMCID: PMC8069739 DOI: 10.3390/pharmaceutics13040520] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomedicines have shown great potential in cancer therapy; in particular, the combination of chemotherapy and immunotherapy (namely chemoimmunotherapy) that is revolutionizing cancer treatment. Currently, most nanomedicines for chemoimmunotherapy are still in preclinical and clinical trials. Lipid-based nanoparticles, the most widely used nanomedicine platform in cancer therapy, is a promising delivery platform for chemoimmunotherapy. In this review, we introduce the commonly used immunotherapy agents and discuss the opportunities for chemoimmunotherapy mediated by lipid-based nanoparticles. We summarize the clinical trials involving lipid-based nanoparticles for chemoimmunotherapy. We also highlight different chemoimmunotherapy strategies based on lipid-based nanoparticles such as liposomes, nanodiscs, and lipid-based hybrid nanoparticles in preclinical research. Finally, we discuss the challenges that have hindered the clinical translation of lipid-based nanoparticles for chemoimmunotherapy, and their future perspectives.
Collapse
|
16
|
Targeting Glioblastoma: Advances in Drug Delivery and Novel Therapeutic Approaches. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Schijns V, Fernández-Tejada A, Barjaktarović Ž, Bouzalas I, Brimnes J, Chernysh S, Gizurarson S, Gursel I, Jakopin Ž, Lawrenz M, Nativi C, Paul S, Pedersen GK, Rosano C, Ruiz-de-Angulo A, Slütter B, Thakur A, Christensen D, Lavelle EC. Modulation of immune responses using adjuvants to facilitate therapeutic vaccination. Immunol Rev 2020; 296:169-190. [PMID: 32594569 PMCID: PMC7497245 DOI: 10.1111/imr.12889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Therapeutic vaccination offers great promise as an intervention for a diversity of infectious and non-infectious conditions. Given that most chronic health conditions are thought to have an immune component, vaccination can at least in principle be proposed as a therapeutic strategy. Understanding the nature of protective immunity is of vital importance, and the progress made in recent years in defining the nature of pathological and protective immunity for a range of diseases has provided an impetus to devise strategies to promote such responses in a targeted manner. However, in many cases, limited progress has been made in clinical adoption of such approaches. This in part results from a lack of safe and effective vaccine adjuvants that can be used to promote protective immunity and/or reduce deleterious immune responses. Although somewhat simplistic, it is possible to divide therapeutic vaccine approaches into those targeting conditions where antibody responses can mediate protection and those where the principal focus is the promotion of effector and memory cellular immunity or the reduction of damaging cellular immune responses as in the case of autoimmune diseases. Clearly, in all cases of antigen-specific immunotherapy, the identification of protective antigens is a vital first step. There are many challenges to developing therapeutic vaccines beyond those associated with prophylactic diseases including the ongoing immune responses in patients, patient heterogeneity, and diversity in the type and stage of disease. If reproducible biomarkers can be defined, these could allow earlier diagnosis and intervention and likely increase therapeutic vaccine efficacy. Current immunomodulatory approaches related to adoptive cell transfers or passive antibody therapy are showing great promise, but these are outside the scope of this review which will focus on the potential for adjuvanted therapeutic active vaccination strategies.
Collapse
Affiliation(s)
- Virgil Schijns
- Wageningen University, Cell Biology & Immunology and, ERC-The Netherlands, Schaijk, Landerd campus, The Netherlands
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Žarko Barjaktarović
- Agency for Medicines and Medical Devices of Montenegro, Podgorica, Montenegro
| | - Ilias Bouzalas
- Hellenic Agricultural Organization-DEMETER, Veterinary Research Institute, Thessaloniki, Greece
| | | | - Sergey Chernysh
- Laboratory of Insect Biopharmacology and Immunology, Department of Entomology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | | | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maria Lawrenz
- Vaccine Formulation Institute (CH), Geneva, Switzerland
| | - Cristina Nativi
- Department of Chemistry, University of Florence, Florence, Italy
| | | | | | | | - Ane Ruiz-de-Angulo
- Chemical Immunology Lab, Center for Cooperative Research in Biosciences, CIC bioGUNE, Biscay, Spain
| | - Bram Slütter
- Div. BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Zanders ED, Svensson F, Bailey DS. Therapy for glioblastoma: is it working? Drug Discov Today 2019; 24:1193-1201. [PMID: 30878561 DOI: 10.1016/j.drudis.2019.03.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/06/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022]
Abstract
Glioblastoma (GBM) remains one of the most intransigent of cancers, with a median overall survival of only 15 months after diagnosis. Drug treatments have largely proven ineffective; it is thought that this is related to the heterogeneous nature and plasticity of GBM-initiating stem cell lineages. Although many combination drug therapies are being positioned to address tumour heterogeneity, the most promising therapeutic approaches for GBM to date appear to be those targeting GBM by vaccination or antibody- and cell-based immunotherapy. We review the most recent clinical trials for GBM and discuss the role of adaptive clinical trials in developing personalised treatment strategies to address intra- and inter-tumoral heterogeneity.
Collapse
Affiliation(s)
- Edward D Zanders
- IOTA Pharmaceuticals Ltd, St John's Innovation Centre, Cowley Road, Cambridge CB4 0WS, UK
| | - Fredrik Svensson
- IOTA Pharmaceuticals Ltd, St John's Innovation Centre, Cowley Road, Cambridge CB4 0WS, UK
| | - David S Bailey
- IOTA Pharmaceuticals Ltd, St John's Innovation Centre, Cowley Road, Cambridge CB4 0WS, UK.
| |
Collapse
|
19
|
Chen TC, da Fonseca CO, Schönthal AH. Intranasal Perillyl Alcohol for Glioma Therapy: Molecular Mechanisms and Clinical Development. Int J Mol Sci 2018; 19:E3905. [PMID: 30563210 PMCID: PMC6321279 DOI: 10.3390/ijms19123905] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Intracranial malignancies, such as primary brain cancers and brain-localized metastases derived from peripheral cancers, are particularly difficult to treat with therapeutic agents, because the blood-brain barrier (BBB) effectively minimizes brain entry of the vast majority of agents arriving from the systemic circulation. Intranasal administration of cancer drugs has the potential to reach the brain via direct nose-to-brain transport, thereby circumventing the obstacle posed by the BBB. However, in the field of cancer therapy, there is a paucity of studies reporting positive results with this type of approach. A remarkable exception is the natural compound perillyl alcohol (POH). Its potent anticancer activity was convincingly established in preclinical studies, but it nonetheless failed in subsequent clinical trials, where it was given orally and displayed hard-to-tolerate gastrointestinal side effects. Intriguingly, when switched to intranasal delivery, POH yielded highly promising activity in recurrent glioma patients and was well tolerated. As of 2018, POH is the only intranasally delivered compound in the field of cancer therapy (outside of cancer pain) that has advanced to active clinical trials. In the following, we will introduce this compound, summarize its molecular mechanisms of action, and present the latest data on its clinical evaluation as an intranasally administered agent for glioma.
Collapse
Affiliation(s)
- Thomas C Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Clovis O da Fonseca
- Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University, Niterói, RJ 24220, Brazil.
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
20
|
Alphandéry E. Glioblastoma Treatments: An Account of Recent Industrial Developments. Front Pharmacol 2018; 9:879. [PMID: 30271342 PMCID: PMC6147115 DOI: 10.3389/fphar.2018.00879] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/20/2018] [Indexed: 12/28/2022] Open
Abstract
The different drugs and medical devices, which are commercialized or under industrial development for glioblastoma treatment, are reviewed. Their different modes of action are analyzed with a distinction being made between the effects of radiation, the targeting of specific parts of glioma cells, and immunotherapy. Most of them are still at a too early stage of development to firmly conclude about their efficacy. Optune, which triggers antitumor activity by blocking the mitosis of glioma cells under the application of an alternating electric field, seems to be the only recently developed therapy with some efficacy reported on a large number of GBM patients. The need for early GBM diagnosis is emphasized since it could enable the treatment of GBM tumors of small sizes, possibly easier to eradicate than larger tumors. Ways to improve clinical protocols by strengthening preclinical studies using of a broader range of different animal and tumor models are also underlined. Issues related with efficient drug delivery and crossing of blood brain barrier are discussed. Finally societal and economic aspects are described with a presentation of the orphan drug status that can accelerate the development of GBM therapies, patents protecting various GBM treatments, the different actors tackling GBM disease, the cost of GBM treatments, GBM market figures, and a financial analysis of the different companies involved in the development of GBM therapies.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Paris, France.,Nanobacterie SARL, Paris, France
| |
Collapse
|
21
|
Wang Q, Ju X, Wang J, Fan Y, Ren M, Zhang H. Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies. Cancer Lett 2018; 438:17-23. [PMID: 30217563 DOI: 10.1016/j.canlet.2018.08.028] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023]
Abstract
The traditional view holds that apoptosis is non-immunogenic and does not induce an inflammatory response. However, recent studies have suggested that certain chemotherapeutic drugs that induce tumor cell apoptosis can induce immunogenic cell death (ICD) in cancer cells. This process is characterized by not only up-regulation of a series of signaling molecules in cancer cells, including expose of calreticulin (CRT), secretion of adenosine triphosphate (ATP) and release of high mobility group box 1 (HMGB1). In this review, we summarize recent progress in identifying and classifying ICD inducers; concepts and molecular mechanisms of ICD; and the impact and potential applications of ICD in clinical studies. We also discuss the contributions of ICD inducers in combination with other anticancer drugs in clinical applications.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiayou Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Yu Fan
- Department of Molecular Biology and Translational Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Meijia Ren
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| |
Collapse
|
22
|
Bota DA, Chung J, Dandekar M, Carrillo JA, Kong XT, Fu BD, Hsu FP, Schönthal AH, Hofman FM, Chen TC, Zidovetzki R, Pretto C, Strik A, Schijns VE, Stathopoulos A. Phase II study of ERC1671 plus bevacizumab versus bevacizumab plus placebo in recurrent glioblastoma: interim results and correlations with CD4 + T-lymphocyte counts. CNS Oncol 2018; 7:CNS22. [PMID: 30157683 PMCID: PMC6200061 DOI: 10.2217/cns-2018-0009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: ERC1671 is an allogeneic/autologous therapeutic glioblastoma (GBM) vaccine – composed of whole, inactivated tumor cells mixed with tumor cell lysates derived from the patient and three GBM donors. Methods: In this double-blinded, randomized, Phase II study bevacizumab-naive patients with recurrent GBM were randomized to receive either ERC1671 in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF) (Leukine® or sargramostim) and cyclophosphamide plus bevacizumab, or placebo plus bevacizumab. Interim results: Median overall survival (OS) of patients treated with ERC1671 plus bevacizumab was 12 months. In the placebo plus bevacizumab group, median OS was 7.5 months. The maximal CD4+ T-lymphocyte count correlated with OS in the ERC1671 but not in the placebo group. Conclusion: The addition of ERC1671/GM-CSF/cyclophosphamide to bevacizumab resulted in a clinically meaningful survival benefit with minimal additional toxicity.
Collapse
Affiliation(s)
- Daniela A Bota
- Department of Neurology, University of California Irvine, Irvine, CA 92868, USA.,Department of Neurological Surgery, University of California Irvine, Irvine, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Jinah Chung
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Manisha Dandekar
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Jose A Carrillo
- Department of Neurology, University of California Irvine, Irvine, CA 92868, USA.,Department of Neurological Surgery, University of California Irvine, Irvine, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Xiao-Tang Kong
- Department of Neurology, University of California Irvine, Irvine, CA 92868, USA.,Department of Neurological Surgery, University of California Irvine, Irvine, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Beverly D Fu
- Department of Neurology, University of California Irvine, Irvine, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Frank Pk Hsu
- Department of Neurological Surgery, University of California Irvine, Irvine, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92868, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Florence M Hofman
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Thomas C Chen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Raphael Zidovetzki
- Cell Biology & Neuroscience, University of California, Riverside, CA 92507, USA
| | - Chrystel Pretto
- Epitopoietic Research Corporation, Gembloux, 5032 Isnes, Belgium
| | - Ankie Strik
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Epitopoietic Research Corporation, Gembloux, 5032 Isnes, Belgium
| | - Virgil Ejc Schijns
- Epitopoietic Research Corporation, Gembloux, 5032 Isnes, Belgium.,Cell Biology & Immunology Group, Wageningen University, 6708 Wageningen, The Netherlands
| | - Apostolos Stathopoulos
- Epitopoietic Research Corporation, Gembloux, 5032 Isnes, Belgium.,Cell Biology & Immunology Group, Wageningen University, 6708 Wageningen, The Netherlands.,Department of Neurosurgery, Euroclinics Hospital, 151 21 Athens, Greece
| |
Collapse
|
23
|
Therapeutic Immunization against Glioblastoma. Int J Mol Sci 2018; 19:ijms19092540. [PMID: 30150597 PMCID: PMC6163986 DOI: 10.3390/ijms19092540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is the most common form of brain cancer in adults that produces severe damage to the brain leading to a very poor survival prognosis. The standard of care for glioblastoma is usually surgery, as well as radiotherapy followed by systemic temozolomide chemotherapy, resulting in a median survival time of about 12 to 15 months. Despite these therapeutic efforts, the tumor returns in the vast majority of patients. When relapsing, statistics suggest an imminent death dependent on the size of the tumor, the Karnofsky Performance Status, and the tumor localization. Following the standard of care, the administration of Bevacizumab, inhibiting the growth of the tumor vasculature, is an approved medicinal treatment option approved in the United States, but not in the European Union, as well as the recently approved alternating electric fields (AEFs) generator NovoTTF/Optune. However, it is clear that regardless of the current treatment regimens, glioma patients continue to have dismal prognosis and novel treatments are urgently needed. Here, we describe different approaches of recently developed therapeutic glioma brain cancer vaccines, which stimulate the patient’s immune system to recognize tumor-associated antigens (TAA) on cancer cells, aiming to instruct the immune system to eventually attack and destroy the brain tumor cells, with minimal bystander damage to normal brain cells. These distinct immunotherapies may target particular glioma TAAs which are molecularly defined, but they may also target broad patient-derived tumor antigen preparations intentionally evoking a very broad polyclonal antitumor immune stimulation.
Collapse
|
24
|
An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 2018; 37:1561-1575. [PMID: 29321659 PMCID: PMC5860944 DOI: 10.1038/s41388-017-0045-7] [Citation(s) in RCA: 429] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.
Collapse
Affiliation(s)
- Zhenyi An
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ozlem Aksoy
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Tina Zheng
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Qi-Wen Fan
- Department of Neurology, University of California, San Francisco, CA, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
25
|
García-Martínez E, Smith M, Buqué A, Aranda F, de la Peña FA, Ivars A, Cánovas MS, Conesa MAV, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 2018; 7:e1433982. [PMID: 29872569 PMCID: PMC5980390 DOI: 10.1080/2162402x.2018.1433982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.
Collapse
Affiliation(s)
- Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System, IDIBAPS, Barcelona, Spain
| | | | - Alejandra Ivars
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Manuel Sanchez Cánovas
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, France
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
26
|
Madsen SJ, Christie C, Huynh K, Peng Q, Uzal FA, Krasieva TB, Hirschberg H. Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 29417766 PMCID: PMC5802332 DOI: 10.1117/1.jbo.23.2.028001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage (MaF98) vaccines can be increased by: (1) photodynamic therapy (PDT) of the priming tumor cells and (2) intracranial injection of allogeneic glioma cells directly into the tumor site. Experiments were conducted in an in vivo brain tumor development model using Fischer rats and F98 (syngeneic) and BT4C (allogeneic) glioma cells. The results showed that immunization with Ma (acting as antigen-presenting cells), primed with PDT-treated tumor cells (MaF98), significantly slowed but did not prevent the growth of F98-induced tumors in the brain. Complete suppression of tumor development was obtained via MaF98 inoculation combined with direct intracranial injection of allogeneic glioma cells. No deleterious effects were noted in any of the animals during the 14-day observation period.
Collapse
Affiliation(s)
- Steen J. Madsen
- University of Nevada, Department of Health Physics and Diagnostic Sciences, Las Vegas, Nevada, United States
| | - Catherine Christie
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Khoi Huynh
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Qian Peng
- University of Oslo, Pathology Clinic, Rikshospitalet-Radiumhospitalet HF Medical Center, Montebello, Oslo, Norway
| | - Francisco A. Uzal
- University of California, School of Veterinary Medicine, Davis, San Bernardino, California, United States
| | - Tatiana B. Krasieva
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Henry Hirschberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| |
Collapse
|
27
|
Advances in immunotherapeutic research for glioma therapy. J Neurol 2017; 265:741-756. [PMID: 29209782 DOI: 10.1007/s00415-017-8695-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 01/29/2023]
Abstract
Gliomas are primary malignancies of the brain. Tumors are staged based on malignancy, nuclear atypia, and infiltration of the surrounding brain parenchyma. Tumors are often diagnosed once patients become symptomatic, at which time the lesion is sizable. Glioblastoma (grade IV glioma) is highly aggressive and difficult to treat. Most tumors are diagnosed de novo. The gold standard of therapy, implemented over a decade ago, consists of fractionated radiotherapy and temozolomide, but unfortunately, chemotherapeutic resistance arises. Recurrence is common after initial therapy. The tumor microenvironment plays a large role in cancer progression and its manipulation can repress progression. The advent and implementation of immunotherapy, via manipulation and activation of cytotoxic T cells, have had an outstanding impact on reducing morbidity and mortality associated with peripheral cancers under certain clinical circumstances. An arsenal of immunotherapeutics is currently under clinical investigation for safety and efficacy in the treatment of newly diagnosed and recurrent high grade gliomas. These immunotherapeutics encompass antibody-drug conjugates, autologous infusions of modified chimeric antigen receptor expressing T cells, peptide vaccines, autologous dendritic cell vaccines, immunostimulatory viruses, oncolytic viruses, checkpoint blockade inhibitors, and drugs which alter the behavior of innate immune cells. Effort is focusing on determining which patient populations will benefit the most from these treatments and why. Research addressing synergism between treatment options is gaining attention. While advances in the treatment of glioma stagnated in the past, we may see a considerable evolution in the management of the disease in the upcoming years.
Collapse
|
28
|
Felthun J, Reddy R, McDonald KL. How immunotherapies are targeting the glioblastoma immune environment. J Clin Neurosci 2017; 47:20-27. [PMID: 29042147 DOI: 10.1016/j.jocn.2017.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
The diagnosis of glioblastoma remains one of the most dismal in medical practice, with current standard care only providing a median survival of 14.6 months. The need for new therapies is desperately clear. Components of the tumour microenvironment are demonstrating growing importance in the field, given they allow the tumour to utilise pathways involved in autoimmune prevention, something that enables the tumour's establishment and growth. As with many different cancers, the search for a new standard has progressed to the design of immunotherapies, which aim to counteract the immune changes within this microenvironment. Serotherapy, adoptive lymphocyte transfer, peptide and dendritic cell vaccines and a range of other methods are currently under investigation, while intracranial infection has also been researched for its capacity to reverse glioblastoma mediated immunosuppression. Some of these new therapies have shown promise, but it is a long road ahead before their incorporation into glioblastoma standard therapy.
Collapse
Affiliation(s)
- Jonathan Felthun
- Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | - Rajesh Reddy
- Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Neurosurgery, Prince of Wales Hospital, Sydney, Australia
| | - Kerrie Leanne McDonald
- Cure Brain Cancer Foundation Biomarkers & Translational Research Group, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 2017; 6:e1386829. [PMID: 29209573 DOI: 10.1080/2162402x.2017.1386829] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Sanket More
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Nicole Rufo
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Mece
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
30
|
Bianco J, Bastiancich C, Jankovski A, des Rieux A, Préat V, Danhier F. On glioblastoma and the search for a cure: where do we stand? Cell Mol Life Sci 2017; 74:2451-2466. [PMID: 28210785 PMCID: PMC11107640 DOI: 10.1007/s00018-017-2483-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 01/25/2023]
Abstract
Although brain tumours have been documented and recorded since the nineteenth century, 2016 marked 90 years since Percival Bailey and Harvey Cushing coined the term "glioblastoma multiforme". Since that time, although extensive developments in diagnosis and treatment have been made, relatively little improvement on prognosis has been achieved. The resilience of GBM thus makes treating this tumour one of the biggest challenges currently faced by neuro-oncology. Aggressive and robust development, coupled with difficulties of complete resection, drug delivery and therapeutic resistance to treatment are some of the main issues that this nemesis presents today. Current treatments are far from satisfactory with poor prognosis, and focus on palliative management rather than curative intervention. However, therapeutic research leading to developments in novel treatment stratagems show promise in combating this disease. Here we present a review on GBM, looking at the history and advances which have shaped neurosurgery over the last century that cumulate to the present day management of GBM, while also exploring future perspectives in treatment options that could lead to new treatments on the road to a cure.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium.
| | - Chiara Bastiancich
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium
| | - Aleksander Jankovski
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
- Department of Neurosurgery, CHU UCL Namur, Avenue G. Thérasse 1, 5530, Yvoir, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium.
| | - Fabienne Danhier
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier 73, bte B1 73.12, 1200, Brussels, Belgium
| |
Collapse
|
31
|
McGranahan T, Li G, Nagpal S. History and current state of immunotherapy in glioma and brain metastasis. Ther Adv Med Oncol 2017; 9:347-368. [PMID: 28529551 PMCID: PMC5424864 DOI: 10.1177/1758834017693750] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/20/2017] [Indexed: 11/29/2022] Open
Abstract
Malignant brain tumors such as glioblastoma (GBM) and brain metastasis have poor prognosis despite conventional therapies. Successful use of vaccines and checkpoint inhibitors in systemic malignancy has increased the hope that immune therapies could improve survival in patients with brain tumors. Manipulating the immune system to fight malignancy has a long history of both modest breakthroughs and pitfalls that should be considered when applying the current immunotherapy approaches to patients with brain tumors. Therapeutic vaccine trials for GBM date back to the mid 1900s and have taken many forms; from irradiated tumor lysate to cell transfer therapies and peptide vaccines. These therapies were generally well tolerated without significant autoimmune toxicity, however also did not demonstrate significant clinical benefit. In contrast, the newer checkpoint inhibitors have demonstrated durable benefit in some metastatic malignancies, accompanied by significant autoimmune toxicity. While this toxicity was not unexpected, it exceeded what was predicted from pre-clinical studies and in many ways was similar to the prior trials of immunostimulants. This review will discuss the history of these studies and demonstrate that the future use of immune therapy for brain tumors will likely need a personalized approach that balances autoimmune toxicity with the opportunity for significant survival benefit.
Collapse
Affiliation(s)
- Tresa McGranahan
- Stanford Hospital and Clinics, Neurology, 300 Pasteur Drive, Stanford, CA 94305-2200, USA
| | - Gordon Li
- Stanford Hospital and Clinics, Neurosurgery, Stanford, CA, USA
| | - Seema Nagpal
- Stanford Hospital and Clinics, Neurology, Stanford, CA, USA
| |
Collapse
|
32
|
Srinivasan VM, Ferguson SD, Lee S, Weathers SP, Kerrigan BCP, Heimberger AB. Tumor Vaccines for Malignant Gliomas. Neurotherapeutics 2017; 14:345-357. [PMID: 28389997 PMCID: PMC5398993 DOI: 10.1007/s13311-017-0522-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite continued research efforts, glioblastoma multiforme (GBM) remains the deadliest brain tumor. Immunotherapy offers a novel way to treat this disease, the genetic signature of which is not completely elucidated. Additionally, these tumors are known to induce immunosuppression in the surrounding tumor microenvironment via an array of mechanisms, making effective treatment all the more difficult. The immunotherapeutic strategy of using tumor vaccines offers a way to harness the activity of the host immune system to potentially control tumor progression. GBM vaccines can react to a variety of tumor-specific antigens, which can be harvested from the patient's unique pathological condition using selected immunotherapy techniques. This article reviews the rationale behind and development of GBM vaccines, the relevant clinical trials, and the challenges involved in this treatment strategy.
Collapse
Affiliation(s)
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sungho Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Shiao-Pei Weathers
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
De Carli E, Delion M, Rousseau A. [Immunotherapy in brain tumors]. Ann Pathol 2017; 37:117-126. [PMID: 28111040 DOI: 10.1016/j.annpat.2016.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022]
Abstract
Diffuse gliomas represent the most common primary central nervous system (CNS) tumors in adults and children alike. Glioblastoma is the most frequent and malignant form of diffuse glioma with a median overall survival of 15 months despite aggressive treatments. New therapeutic approaches are needed to prolong survival in this always fatal disease. The CNS has been considered for a long time as an immune privileged organ, in part because of the existence of the blood-brain barrier. Nonetheless, immunotherapy is a novel approach in the therapeutic management of glioma patients, which has shown promising results in several clinical trials, especially in the adult population. Vaccination, with or without dendritic cells, blockade of the immune checkpoints, and adoptive T cell transfer are the most studied modalities of diffuse glioma immunotherapy. The future most likely resides in combinatorial approaches, with administration of conventional treatments (surgery, radiochemotherapy) and immunotherapy following yet to determine schedules.
Collapse
Affiliation(s)
- Emilie De Carli
- Unité hémato-onco-immunologie pédiatrique, fédération de pédiatrie, CHU d'Angers, 4, rue Larrey, 49000 Angers, France
| | - Matthieu Delion
- Département de neurochirurgie, CHU d'Angers, 4, rue Larrey, 49000 Angers, France
| | - Audrey Rousseau
- Département de pathologie cellulaire et tissulaire, CHU d'Angers, 4, rue Larrey, 49000 Angers, France.
| |
Collapse
|
34
|
Duma CM, Kim BS, Chen PV, Plunkett ME, Mackintosh R, Mathews MS, Casserly RM, Mendez GA, Furman DJ, Smith G, Oh N, Caraway CA, Sanathara AR, Dillman RO, Riley AS, Weiland D, Stemler L, Cannell R, Abrams DA, Smith A, Owen CM, Eisenberg B, Brant-Zawadzki M. Upfront boost Gamma Knife “leading-edge” radiosurgery to FLAIR MRI–defined tumor migration pathways in 174 patients with glioblastoma multiforme: a 15-year assessment of a novel therapy. J Neurosurg 2016; 125:40-49. [DOI: 10.3171/2016.7.gks161460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEGlioblastoma multiforme (GBM) is composed of cells that migrate through the brain along predictable white matter pathways. Targeting white matter pathways adjacent to, and leading away from, the original contrast-enhancing tumor site (termed leading-edge radiosurgery [LERS]) with single-fraction stereotactic radiosurgery as a boost to standard therapy could limit the spread of glioma cells and improve clinical outcomes.METHODSBetween December 2000 and May 2016, after an initial diagnosis of GBM and prior to or during standard radiation therapy and carmustine or temozolomide chemotherapy, 174 patients treated with radiosurgery to the leading edge (LE) of tumor cell migration were reviewed. The LE was defined as a region outside the contrast-enhancing tumor nidus, defined by FLAIR MRI. The median age of patients was 59 years (range 22–87 years). Patients underwent LERS a median of 18 days from original diagnosis. The median target volume of 48.5 cm3 (range 2.5–220.0 cm3) of LE tissue was targeted using a median dose of 8 Gy (range 6–14 Gy) at the 50% isodose line.RESULTSThe median overall survival was 23 months (mean 43 months) from diagnosis. The 2-, 3-, 5-, 7-, and 10-year actual overall survival rates after LERS were 39%, 26%, 16%, 10%, and 4%, respectively. Nine percent of patients developed treatment-related imaging-documented changes due to LERS. Nineteen percent of patients were hospitalized for management of edema, 22% for resection of a tumor cyst or new tumor bulk, and 2% for shunting to treat hydrocephalus throughout the course of their disease. Of the patients still alive, Karnofsky Performance Scale scores remained stable in 90% of patients and decreased by 1–3 grades in 10% due to symptomatic treatment-related imaging changes.CONCLUSIONSLERS is a safe and effective upfront adjunctive therapy for patients with newly diagnosed GBM. Limitations of this study include a single-center experience and single-institution determination of the LE tumor target. Use of a leading-edge calculation algorithm will be described to achieve a consistent approach to defining the LE target for general use. A multicenter trial will further elucidate its value in the treatment of GBM.
Collapse
Affiliation(s)
| | - Brian S. Kim
- 2Cancer Center, and
- 3Department of Radiation Oncology, Hoag Memorial Hospital Presbyterian, Newport Beach
| | - Peter V. Chen
- 2Cancer Center, and
- 3Department of Radiation Oncology, Hoag Memorial Hospital Presbyterian, Newport Beach
| | - Marianne E. Plunkett
- 2Cancer Center, and
- 3Department of Radiation Oncology, Hoag Memorial Hospital Presbyterian, Newport Beach
| | - Ralph Mackintosh
- 2Cancer Center, and
- 3Department of Radiation Oncology, Hoag Memorial Hospital Presbyterian, Newport Beach
| | - Marlon S. Mathews
- 4Department of Neurosurgery, University of California, Irvine, Orange; and
| | | | | | | | | | - Nathan Oh
- 1Neurosciences Institute,
- 5Department of Neurosurgery, Loma Linda University Health, Loma Linda, California
| | | | | | | | | | | | | | | | | | - Alexa Smith
- 4Department of Neurosurgery, University of California, Irvine, Orange; and
| | | | | | | |
Collapse
|
35
|
Abstract
Cancer is one of the major leading death causes of diseases. Prevention and treatment of cancer is an important way to decrease the incidence of tumorigenesis and prolong patients' lives. Subversive achievements on cancer immunotherapy have recently been paid much attention after many failures in basic and clinical researches. Based on deep analysis of genomics and proteomics of tumor antigens, a variety of cancer vaccines targeting tumor antigens have been tested in preclinical and human clinical trials. Many therapeutic cancer vaccines alone or combination with other conventional treatments for cancer obtained spectacular efficacy, indicating the tremendously potential application in clinic. With the illustration of underlying mechanisms of cancer immune regulation, valid, controllable, and persistent cancer vaccines will play important roles in cancer treatment, survival extension and relapse and cancer prevention. This chapter mainly summarizes the recent progresses and developments on cancer vaccine research and clinical application, thus exploring the existing obstacles in cancer vaccine research and promoting the efficacy of cancer vaccine.
Collapse
|
36
|
Neagu MR, Reardon DA. An Update on the Role of Immunotherapy and Vaccine Strategies for Primary Brain Tumors. Curr Treat Options Oncol 2016; 16:54. [PMID: 26454859 DOI: 10.1007/s11864-015-0371-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Existing therapies for glioblastoma (GBM), the most common malignant primary brain tumor in adults, have fallen short of improving the dismal patient outcomes, with an average 14-16-month median overall survival. The biological complexity and adaptability of GBM, redundancy of dysregulated signaling pathways, and poor penetration of therapies through the blood-brain barrier contribute to poor therapeutic progress. The current standard of care for newly diagnosed GBM consists of maximal safe resection, followed by fractionated radiotherapy combined with concurrent temozolomide (TMZ) and 6-12 cycles of adjuvant TMZ. At progression, bevacizumab with or without additional chemotherapy is an option for salvage therapy. The recent FDA approval of sipuleucel-T for prostate cancer and ipilumimab, nivolumab, and pembrolizumab for select solid tumors and the ongoing trials showing clinical efficacy and response durability herald a new era of cancer treatment with the potential to change standard-of-care treatment across multiple cancers. The evaluation of various immunotherapeutics is advancing for GBM, putting into question the dogma of the CNS as an immuno-privileged site. While the field is yet young, both active immunotherapy involving vaccine strategies and cellular therapy as well as reversal of GBM-induced global immune-suppression through immune checkpoint blockade are showing promising results and revealing essential immunological insights regarding kinetics of the immune response, immune evasion, and correlative biomarkers. The future holds exciting promise in establishing new treatment options for GBM that harness the patients' own immune system by activating it with immune checkpoint inhibitors, providing specificity using vaccine therapy, and allowing for modulation and enhancement by combinatorial approaches.
Collapse
Affiliation(s)
- Martha R Neagu
- Dana-Farber Cancer Institute, G4200, 44 Binney St, Boston, MA, 02115, USA
- Pappas Center for Neuro-Oncology, Massachusetts General Hospital, WACC 8-835m 55 Fruit St, Boston, MA, 02114, USA
| | - David A Reardon
- Dana-Farber Cancer Institute, G4200, 44 Binney St, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Schernberg A, Marabelle A, Massard C, Armand JP, Dumont S, Deutsch E, Dhermain F. [What's next in glioblastoma treatment: Tumor-targeted or immune-targeted therapies?]. Bull Cancer 2016; 103:484-98. [PMID: 27032303 DOI: 10.1016/j.bulcan.2016.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) is associated with a poor prognosis. This review will discuss different directions of treatment, mostly regarding immunotherapies and combinatorial approaches. DEVELOPMENT Standard treatment for newly diagnosed GBM is maximal and safe surgical resection followed by concurrent radiochemotherapy (RCT) based on temozolomide, allowing 14.6 months median survival. Nowadays, no combination with molecular-targeted therapy had significantly improved prognosis. Phases I and II data are emerging, highlighting the potential efficacy of associations with other therapies. Studies have suggested the potential of targeting tumor stem cells, at less partially responsible for resistance to RCT. There is now some evidence that immunotherapy is also relevant for brain tumors. Treatment strategies have mainly explored vaccines strategies, such as the dendritic cell, heat shock protein or EGFRvIII vaccines. Of the work initiated in melanoma, immune checkpoints inhibitors have exhibited stimulating results. Others trials have demonstrated potential of autologous stimulated lymphocytes. Moreover, strong data indicates that radiation therapy has the potential to promote immunogenicity and create a sort of in situ personalized vaccine. CONCLUSION These data provide strong evidence to support the potential of associating combinatorial targeted and/or immunotherapeutic regimens in patients with GBM that may change patient outcome.
Collapse
Affiliation(s)
- Antoine Schernberg
- Institut Gustave-Roussy, département de radiothérapie, 114, rue Édouard-Vaillant, 94805 Villejuif, France.
| | - Aurélien Marabelle
- Institut Gustave-Roussy, département d'oncologie médicale, 94800 Villejuif, France
| | - Christophe Massard
- Institut Gustave-Roussy, département d'oncologie médicale, 94800 Villejuif, France
| | - Jean-Pierre Armand
- Institut Gustave-Roussy, département d'oncologie médicale, 94800 Villejuif, France
| | - Sarah Dumont
- Institut Gustave-Roussy, département d'oncologie médicale, 94800 Villejuif, France
| | - Eric Deutsch
- Institut Gustave-Roussy, département de radiothérapie, 114, rue Édouard-Vaillant, 94805 Villejuif, France
| | - Frédéric Dhermain
- Institut Gustave-Roussy, département de radiothérapie, 114, rue Édouard-Vaillant, 94805 Villejuif, France
| |
Collapse
|
38
|
Binder DC, Davis AA, Wainwright DA. Immunotherapy for cancer in the central nervous system: Current and future directions. Oncoimmunology 2016; 5:e1082027. [PMID: 27057463 PMCID: PMC4801467 DOI: 10.1080/2162402x.2015.1082027] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and still remains incurable. Although immunotherapeutic vaccination against GBM has demonstrated immune-stimulating activity with some promising survival benefits, tumor relapse is common, highlighting the need for additional and/or combinatorial approaches. Recently, antibodies targeting immune checkpoints were demonstrated to generate impressive clinical responses against advanced melanoma and other malignancies, in addition to showing potential for enhancing vaccination and radiotherapy (RT). Here, we summarize the current knowledge of central nervous system (CNS) immunosuppression, evaluate past and current immunotherapeutic trials and discuss promising future immunotherapeutic directions to treat CNS-localized malignancies.
Collapse
Affiliation(s)
- David C. Binder
- Commitee on Cancer Biology
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Andrew A. Davis
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
39
|
Therapeutic options in recurrent glioblastoma--An update. Crit Rev Oncol Hematol 2016; 99:389-408. [PMID: 26830009 DOI: 10.1016/j.critrevonc.2016.01.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/01/2016] [Accepted: 01/19/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Standards of care are not yet defined in recurrent glioblastoma. METHODS We reviewed the literature on clinical trials for recurrent glioblastoma available in PubMed and American Society of Clinical Oncology (ASCO) abstracts until June 2015. RESULTS Evidence is limited due to the paucity of randomized controlled studies. Second surgery or re-irradiation are options for selected patients. Alkylating chemotherapy such as nitrosoureas or temozolomide and the vascular endothelial growth factor (VEGF) antibody, bevacizumab, exhibit comparable single agent activity. Phase III data exploring the benefit of combining bevacizumab and lomustine are emerging. Novel approaches in the fields of targeted therapy, immunotherapy, and tumor metabolism are coming forward. Several biomarkers are being explored, but, except for O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation, none has assumed a role in clinical practice. CONCLUSION Proper patient selection, development of predictive biomarkers and randomized controlled studies are required to develop evidence-based concepts for recurrent glioblastoma.
Collapse
|