1
|
Li Z, Xiao F, Hou Y, Jia B, Zhuang J, Cao Y, Ma J, Zhao J, Xu Z, Jia Z, Liu F, Pang L, Liu J. Genomic epidemiology and evolution of Bordetella pertussis under the vaccination pressure of acellular vaccines in Beijing, China, 2020-2023. Emerg Microbes Infect 2025; 14:2447611. [PMID: 39725566 PMCID: PMC11721623 DOI: 10.1080/22221751.2024.2447611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/25/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Pertussis (or whooping cough) has experienced a global resurgence despite widespread vaccine efforts. In China, the incidence of pertussis has rapidly increased, particularly following the COVID-19 pandemic. Whole-genome sequencing analysis was performed on 60 Bordetella pertussis strains isolated in Beijing from 2020-2023, and the sequences were compared with those of 635 strains from China and 943 strains from other countries. In this study, the genetic evolution of B. pertussis was investigated, focusing on key virulence genes (ptxP, ptxA, prn, fim2, fim3, tcfA) and the resistance-related locus A2047 across different periods and regions. The dominant antigen genotype among the 60 isolates was ptxP3/prn2/ptxA1/fim2-1/fim3-1/tcfA2 (88.3%), differing from the prevalent genotype ptxP-1/prn-1/ptxA-1 in Beijing prior to 2019 and the vaccine strain genotype ptxP-1/prn-1/ptxA-2/fim2-1/fim3-1/tcfA2. Evolutionary analysis revealed significant genetic shifts associated with the introduction of vaccines, particularly acellular vaccines. Initially, the prevalent genotypes included ptxP-1, prn-1, ptxA-2, fim2-2, and fim3-2. However, currently, ptxP-3, prn-2 and ptxA-1 have become predominant globally, indicating vaccine-induced selection pressure. Additionally, all 60 isolated strains (100%) presented the A2047G mutation associated with erythromycin resistance, of which ptxP3 accounted for 91.7%. Macrolide-resistant Bordetella pertussis (MRBP) is widespread in China, and the prevalence of ptxP3-MRBP may be increasing. The significant changes of dominance of subtypes in Beijing in recent years underscore the need for continuous surveillance and adaptation of pertussis vaccination strategies.
Collapse
Affiliation(s)
- Zhen Li
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Fei Xiao
- Experimental research center, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Yue Hou
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Bin Jia
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ji Zhuang
- School of Public Health, Bao Tou Medical College, Baotou, People’s Republic of China
| | - Yang Cao
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jianxin Ma
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jianhong Zhao
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zengquan Xu
- School of Public Health, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhe Jia
- School of Public Health, Bao Tou Medical College, Baotou, People’s Republic of China
| | - Fang Liu
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Lin Pang
- Department of Pediatrics, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jie Liu
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Fu P, Yan G, Li Y, Xie L, Ke Y, Qiu S, Wu S, Shi X, Qin J, Zhou J, Lu G, Yang C, Wang C. Pertussis upsurge, age shift and vaccine escape post-COVID-19 caused by ptxP3 macrolide-resistant Bordetella pertussis MT28 clone in China. Clin Microbiol Infect 2024; 30:1439-1446. [PMID: 39209267 DOI: 10.1016/j.cmi.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES China has experienced a notable upsurge in pertussis cases post-COVID-19, alongside an age shift to older children, increased vaccine escape, and a notable rise in the prevalence of macrolide-resistant Bordetella pertussis. Here, we present a genomic epidemiological investigation of these events. METHODS We performed a retrospective observational study using culture-positive B pertussis isolated in Shanghai, China, from 2016 to 2024. We analysed strain and pertussis epidemiology dynamics by integrating whole-genome sequencing of 723 strains with antimicrobial susceptibility, transcriptomic profile, and clinical data. We compared the genome sequences of Shanghai strains with 6450 Chinese and global strains. RESULTS From pre-COVID-19 (before December 2019) to post-COVID-19, patients shifted from predominantly infants (90%, 397/442) to a higher proportion of infections in older children (infant: 16%, 132/844), with the share of vaccinated individuals surging from 31% (107/340) to 88% (664/756). The macrolide-resistant Bordetella pertussis prevalence increased from 60% (267/447) to 98% (830/845). The emergence and expansion of a ptxP3-lineage macrolide-resistant clone, MR-MT28, which is uniquely capable of causing substantial infections among older children and vaccinated individuals, was temporally strongly associated with the pertussis upsurge and epidemiological transition. Although MR-MT28 showed increased expression of genes encoding pertussis toxin, it was associated with significantly milder clinical symptoms and a lower hospitalization rate. MR-MT28 likely originated in China around 2016, after acquiring several key mutations, including a novel prn150 allele, and has been detected across multiple regions in China. In addition, 26% (50/195) of MR-MT28 has evolved into predicted Pertactin (PRN)-deficient strains, with an IS481 insertion being the predominant mechanism. DISCUSSION We report that the post-COVID-19 upsurge of pertussis in China is associated with ptxP3-MR-MT28, and provide evidence that pathogen evolution is likely the primary factor driving + pertussis upsurge, age shift, and vaccine escape. MR-MT28 poses a high risk of global spread and warrants global surveillance.
Collapse
Affiliation(s)
- Pan Fu
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Gangfen Yan
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yijia Li
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Li Xie
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shuxiang Qiu
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuang Wu
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jie Qin
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jinlan Zhou
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoping Lu
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Chao Yang
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Chuanqing Wang
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Lv Z, Yin S, Jiang K, Wang W, Luan Y, Wu S, Shi J, Li Z, Ma X, Wang Z, Yan H. The whole-cell proteome shows the characteristics of macrolides-resistant Bordetella pertussis in China linked to the biofilm formation. Arch Microbiol 2023; 205:219. [PMID: 37148370 PMCID: PMC10164027 DOI: 10.1007/s00203-023-03566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
The macrolides-resistant Bordetella pertussis (MR-Bp) isolates in China evolved from the ptxP1/fhaB3 allele and rapidly became predominant, suggestive of an adaptive transmission ability. This was different from the global prevalent ptxP3 strains, in which MR-Bp was rarely reported. The study aimed to determine the underlying mechanism responsible for fitness and resistance in these two strains. We identify proteomic differences between ptxP1/fhaB3 and ptxP3/fhaB1 strains using tandem mass tag (TMT)-based proteomics. We then performed in-depth bioinformatic analysis to determine differentially expressed genes (DEGs), followed by gene ontology (GO), and protein-protein interaction (PPI) network analysis. Further parallel reaction monitoring (PRM) analysis confirmed the expression of four target proteins. Finally, the crystal violet method was used to determine biofilm-forming ability. The results showed that the main significantly different proteins between the two represent isolates were related to biofilm formation. Furthermore, we have confirmed that ptxP1/fhaB3 showed hyperbiofilm formation in comparison with ptxP3/fhaB1. It is suggested that the resistance and adaptability of ptxP1/fhaB3 strains may be related to the formation of biofilm through proteomics. In a word, we determined the significantly different proteins between the ptxP1/fhaB3 and ptxP3/fhaB1 strains through whole-cell proteome, which were related to biofilm formation.
Collapse
Affiliation(s)
- Zhe Lv
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Sha Yin
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China
| | - Kaichong Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases; Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China
| | - Wei Wang
- Department of Clinical Laboratory, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China
| | - Yang Luan
- Xi'an Center for Disease Control and Prevention, 599 Xiying Road, Xi'an, 710054, China
| | - Shuang Wu
- Department of Clinical Laboratory, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China
| | - Jianfei Shi
- Department of Clinical Laboratory, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China
| | - Zhe Li
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Xiao Ma
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Zengguo Wang
- Department of Clinical Laboratory, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, No. 69, Xijuyuan Lane, Xi'an, 710003, China.
| | - Hong Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
4
|
Fu P, Zhou J, Yang C, Nijiati Y, Zhou L, Yan G, Lu G, Zhai X, Wang C. Molecular Evolution and Increasing Macrolide Resistance of Bordetella pertussis, Shanghai, China, 2016-2022. Emerg Infect Dis 2023; 30:29-38. [PMID: 38146984 PMCID: PMC10756392 DOI: 10.3201/eid3001.221588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
Resurgence and spread of macrolide-resistant Bordetella pertussis (MRBP) threaten global public health. We collected 283 B. pertussis isolates during 2016-2022 in Shanghai, China, and conducted 23S rRNA gene A2047G mutation detection, multilocus variable-number tandem-repeat analysis, and virulence genotyping analysis. We performed whole-genome sequencing on representative strains. We detected pertussis primarily in infants (0-1 years of age) before 2020 and older children (>5-10 years of age) after 2020. The major genotypes were ptxP1/prn1/fhaB3/ptxA1/ptxC1/fim2-1/fim3-1 (48.7%) and ptxP3/prn2/fhaB1/ptxA1/ptxC2/fim2-1/fim3-1 (47.7%). MRBP increased remarkably from 2016 (36.4%) to 2022 (97.2%). All MRBPs before 2020 harbored ptxP1, and 51.4% belonged to multilocus variable-number tandem-repeat analysis type (MT) 195, whereas ptxP3-MRBP increased from 0% before 2020 to 66.7% after 2020, and all belonged to MT28. MT28 ptxP3-MRBP emerged only after 2020 and replaced the resident MT195 ptxP1-MRBP, revealing that 2020 was a watershed in the transformation of MRBP.
Collapse
Affiliation(s)
| | | | - Chao Yang
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Yaxier Nijiati
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Lijun Zhou
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Gangfen Yan
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Guoping Lu
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Xiaowen Zhai
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Chuanqing Wang
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| |
Collapse
|
5
|
Bull JJ, Antia R. Which 'imperfect vaccines' encourage the evolution of higher virulence? Evol Med Public Health 2022; 10:202-213. [PMID: 35539897 PMCID: PMC9081871 DOI: 10.1093/emph/eoac015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/06/2022] [Indexed: 12/27/2022] Open
Abstract
Background and objectives Theory suggests that some types of vaccines against infectious pathogens may lead to the evolution of variants that cause increased harm, particularly when they infect unvaccinated individuals. This theory was supported by the observation that the use of an imperfect vaccine to control Marek's disease virus in chickens resulted in the virus evolving to be more lethal to unvaccinated birds. This raises the concern that the use of some other vaccines may lead to similar pernicious outcomes. We examine that theory with a focus on considering the regimes in which such outcomes are expected. Methodology We evaluate the plausibility of assumptions in the original theory. The previous theory rested heavily on a particular form of transmission-mortality-recovery trade-off and invoked other assumptions about the pathways of evolution. We review alternatives to mortality in limiting transmission and consider evolutionary pathways that were omitted in the original theory. Results The regime where the pernicious evolutionary outcome occurs is narrowed by our analysis but remains possible in various scenarios. We propose a more nuanced consideration of alternative models for the within-host dynamics of infections and for factors that limit virulence. Our analysis suggests imperfect vaccines against many pathogens will not lead to the evolution of pathogens with increased virulence in unvaccinated individuals. Conclusions and implications Evolution of greater pathogen mortality driven by vaccination remains difficult to predict, but the scope for such outcomes appears limited. Incorporation of mechanistic details into the framework, especially regarding immunity, may be requisite for prediction accuracy. Lay Summary A virus of chickens appears to have evolved high mortality in response to a vaccine that merely prevented disease symptoms. Theory has predicted this type of evolution in response to a variety of vaccines and other interventions such as drug treatment. Under what circumstances is this pernicious result likely to occur? Analysis of the theory in light of recent changes in our understanding of viral biology raises doubts that medicine-driven, pernicious evolution is likely to be common. But we are far from a mechanistic understanding of the interaction between pathogen and host that can predict when vaccines and other medical interventions will lead to the unwanted evolution of more virulent pathogens. So, while the regime where a pernicious result obtains may be limited, caution remains warranted in designing many types of interventions.
Collapse
Affiliation(s)
- James J Bull
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Zhang J, Lin C, Chang L, Wang X, Wei X, Li H. Genotypes of Bordetella pertussis isolated from infants in Xi'an and Shanghai. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:47-52. [PMID: 35462464 PMCID: PMC9109763 DOI: 10.3724/zdxbyxb-2021-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To compare the genotypes of Bordetella pertussis isolated from infants in Xi'an and Shanghai. METHODS Samples were collected by nasopharyngeal swab from infants aged <1 year hospitalized with suspected pertussis in Xi'an and Shanghai during 2018 and 2019. Bordetella pertussis was isolated, and multilocus antigen sequence typing (MAST) and multilocus variable-number tandem repeat analysis (MLVA) were used to analyse the genotypes. RESULTS A total of 1200 samples were collected from infants suspected of pertussis and 60 strains of Bordetella pertussis were isolated, including 34 strains in Xi'an and 26 strains in Shanghai. There were significant differences in the MAST types between Xi'an and Shanghai ( χ 2=18.642, P<0.01); the prn1/ ptxP1/ ptxA1/ fim3-1/ fim2-1 strains dominated in Xi'an (32/34, 94.12%), while the dominated MAST types in Shanghai were prn1/ ptxP1/ ptxA1/ fim3-1/ fim2-1 (13/26, 50.00%) and prn2/ ptxP3/ ptxA1/ fim3-1/ fim2-1 (11/26, 42.31%). The composition of MLVA type of pertussis strains was also significantly different between Xi'an and Shanghai ( χ 2=15.866, P<0.01); the MT195 (13/34, 38.24%), MT55 (10/34, 29.41%) and MT104 (9/34, 26.47%) strains dominated in Xi'an, while the MT27 (12/26, 46.15%) strain was most common in Shanghai. CONCLUSION There are differences in molecular types of Bordetella pertussis isolated from infants with suspected persussis in Xi'an and Shanghai, indicating that further monitoring of Bordetella pertussis is necessary for better understanding the pathogen evolution in China.
Collapse
Affiliation(s)
- Juansheng Zhang
- 1. Xi'an Center for Disease Control and Prevention, Xi'an 710054, China
| | - Chen Lin
- 2. Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai 200136, China
| | - Ling Chang
- 1. Xi'an Center for Disease Control and Prevention, Xi'an 710054, China
| | - Xiaoqiang Wang
- 1. Xi'an Center for Disease Control and Prevention, Xi'an 710054, China
| | - Xiaoguang Wei
- 1. Xi'an Center for Disease Control and Prevention, Xi'an 710054, China
| | - Hao Li
- 1. Xi'an Center for Disease Control and Prevention, Xi'an 710054, China
| |
Collapse
|
7
|
Jiang W, Wei C, Mou D, Zuo W, Liang J, Ma X, Wang L, Gao N, Gu Q, Luo P, Ma Y, Li J, Liu S, Shi L, Sun M. Infant rhesus macaques as a non-human primate model of Bordetella pertussis infection. BMC Infect Dis 2021; 21:407. [PMID: 33941094 PMCID: PMC8091708 DOI: 10.1186/s12879-021-06090-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The prevalent resurgence of pertussis has recently become a critical public health problem worldwide. To understand pertussis pathogenesis and the host response to both the pathogen and vaccines, a suitable pertussis animal model, particularly a non-human primate model, is necessary. Recently, a non-human primate pertussis model was successfully established with baboons. Rhesus macaques have been shown to be ideal animal models for several infectious diseases, but a model of infectious pertussis has not been established in these organisms. Studies on rhesus macaque models of pertussis were performed in the 1920s–1930s, but limited experimental details are available. Recent monkey pertussis models have not been successful because the typical clinical symptoms and transmission have not been achieved. Methods In the present study, infant rhesus macaques were challenged with Bordetella pertussis (B.p) using an aerosol method to evaluate the feasibility of this system as an animal model of pertussis. Results Upon aerosol infection, monkeys infected with the recently clinically isolated B.p strain 2016-CY-41 developed the typical whooping cough, leukocytosis, bacteria-positive nasopharyngeal wash (NPW), and interanimal transmission of pertussis. Both systemic and mucosal humoral responses were induced by B.p. Conclusion These results demonstrate that a model of pertussis was successfully established in infant rhesus macaques. This model provides a valuable platform for research on pertussis pathogenesis and evaluation of vaccine candidates. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06090-y.
Collapse
Affiliation(s)
- Wenwen Jiang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Chen Wei
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Dachao Mou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Weilun Zuo
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Xiao Ma
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Lichan Wang
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Na Gao
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Peng Luo
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Yan Ma
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jingyan Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China. .,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China.
| |
Collapse
|
8
|
Li L, Deng J, Ma X, Zhou K, Meng Q, Yuan L, Shi W, Wang Q, Li Y, Yao K. High Prevalence of Macrolide-Resistant Bordetella pertussis and ptxP1 Genotype, Mainland China, 2014-2016. Emerg Infect Dis 2020; 25:2205-2214. [PMID: 31742507 PMCID: PMC6874251 DOI: 10.3201/eid2512.181836] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
According to the government of China, reported cases of pertussis have increased remarkably and are still increasing. To determine the genetic relatedness of Bordetella pertussis strains, we compared multilocus variable-number tandem-repeat analysis (MLVA) results for isolates from China with those from Western countries. Among 335 isolates from China, the most common virulence-associated genotype was ptxA1/ptxC1/ptxP1/prn1/fim2–1/fim3A/tcfA2, which was more frequent among isolates from northern than southern China. Isolates of this genotype were highly resistant to erythromycin. We identified 36 ptxP3 strains mainly harboring ptxA1 and prn2 (35/36); ptxP3 strains were sensitive to erythromycin and were less frequently from northern China. For all isolates, the sulfamethoxazole/trimethoprim MIC was low, indicating that this drug should be recommended for patients infected with erythromycin-resistant B. pertussis. MLVA of 150 clinical isolates identified 13 MLVA types, including 3 predominant types. Our results show that isolates circulating in China differ from those in Western countries.
Collapse
|
9
|
Xu Z, Wang Z, Luan Y, Li Y, Liu X, Peng X, Octavia S, Payne M, Lan R. Genomic epidemiology of erythromycin-resistant Bordetella pertussis in China. Emerg Microbes Infect 2019; 8:461-470. [PMID: 30898080 PMCID: PMC6455148 DOI: 10.1080/22221751.2019.1587315] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Macrolides such as erythromycin are the empirical treatment of Bordetella pertussis infections. China has experienced an increase in erythromycin-resistant B. pertussis isolates since they were first reported in 2013. Here, we undertook a genomic study on Chinese B. pertussis isolates from 2012 to 2015 to elucidate the origins and phylogenetic relationships of erythromycin-resistant B. pertussis isolates in China. A total of 167 Chinese B. pertussis isolates were used for antibiotic sensitivity testing and multiple locus variable-number tandem repeat (VNTR) analysis (MLVA). All except four isolates were erythromycin-resistant and of the four erythromycin-sensitive isolates, three were non-ptxP1. MLVA types (MT), MT55, MT104 and MT195 were the predominant types. Fifty of those isolates were used for whole genome sequencing and phylogenetic analysis. Genome sequencing and phylogenetic analysis revealed three independent erythromycin-resistant lineages and all resistant isolates carried a mutation in the 23S rRNA gene. A novel fhaB3 allele was found uniquely in Chinese ptxP1 isolates and these Chinese ptxP1-ptxA1-fhaB3 had a 5-fold higher mutation rate than the global ptxP1-ptxA1 B. pertussis population. Our results suggest that the evolution of Chinese B. pertussis is likely to be driven by selection pressure from both vaccination and antibiotics. The emergence of the new non-vaccine fhaB3 allele in Chinese B. pertussis population may be a result of selection from vaccination, whereas the expansion of ptxP1-fhaB3 lineages was most likely to be the result of selection pressure from antibiotics. Further monitoring of B. pertussis in China is required to better understand the evolution of the pathogen.
Collapse
Affiliation(s)
- Zheng Xu
- a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia
| | - Zengguo Wang
- b Xi'an Center for Disease Prevention and Control , Xi'an , People's Republic of China.,c Department of Infectious Diseases , Xi'an Children's Hospital , Xi'an , People's Republic of China
| | - Yang Luan
- b Xi'an Center for Disease Prevention and Control , Xi'an , People's Republic of China
| | - Yarong Li
- c Department of Infectious Diseases , Xi'an Children's Hospital , Xi'an , People's Republic of China
| | - Xiaoguai Liu
- c Department of Infectious Diseases , Xi'an Children's Hospital , Xi'an , People's Republic of China
| | - Xiaokang Peng
- c Department of Infectious Diseases , Xi'an Children's Hospital , Xi'an , People's Republic of China
| | - Sophie Octavia
- a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia
| | - Michael Payne
- a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia
| | - Ruiting Lan
- a School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia
| |
Collapse
|
10
|
Molecular Epidemiology of Bordetella pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:19-33. [PMID: 31342459 DOI: 10.1007/5584_2019_402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although vaccination has been effective, Bordetella pertussis is increasingly causing epidemics, especially in industrialized countries using acellular vaccines (aPs). One factor behind the increased circulation is the molecular changes on the pathogen level. After pertussis vaccinations were introduced, changes in the fimbrial (Fim) serotype of the circulating strains was observed. When bacterial typing methods improved, further changes between the vaccine and circulating strains, especially among the common virulence genes including pertussis toxin (PT) and pertactin (PRN) were noticed. Moreover, development of genome based techniques including pulsed-field gel electrophoresis (PFGE), multiple-locus variable number tandem repeat analysis (MLVA) and whole-genome sequencing (WGS) have offered a better resolution to monitor B. pertussis strains. After the introduction of aP vaccines, B. pertussis strains that are deficient to vaccine antigens, especially PRN, have appeared widely. On the other hand, antimicrobial resistance to first line drugs (macrolides) against B. pertussis is still low in many countries and therefore no globally evaluated antimicrobial susceptibility test values have been recommended. In this review, we focus on the molecular changes in the bacteria, which have or may have affected the past and current epidemiology of pertussis.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize and discuss recent findings and selected topics of interest in Bordetella pertussis virulence and pathogenesis and treatment of pertussis. It is not intended to cover issues on immune responses to B. pertussis infection or problems with currently used pertussis vaccines. RECENT FINDINGS Studies on the activities of various B. pertussis virulence factors include the immunomodulatory activities of filamentous hemagglutinin, fimbriae, and adenylate cyclase toxin. Recently emerging B. pertussis strains show evidence of genetic selection for vaccine escape mutants, with changes in vaccine antigen-expressing genes, some of which may have increased the virulence of this pathogen. Severe and fatal pertussis in young infants continues to be a problem, with several studies highlighting predictors of fatality, including the extreme leukocytosis associated with this infection. Treatments for pertussis are extremely limited, though early antibiotic intervention may be beneficial. Neutralizing pertussis toxin activity may be an effective strategy, as well as targeting two host proteins, pendrin and sphingosine-1-phosphate receptors, as novel potential therapeutic interventions. SUMMARY Pertussis is reemerging as a major public health problem and continued basic research is revealing information on bacterial virulence and disease pathogenesis, as well as potential novel strategies for vaccination and targets for therapeutic intervention.
Collapse
|
12
|
Mosiej E, Krysztopa-Grzybowska K, Polak M, Prygiel M, Lutyńska A. Multi-locus variable-number tandem repeat analysis of Bordetella pertussis isolates circulating in Poland in the period 1959-2013. J Med Microbiol 2017; 66:753-761. [PMID: 28598302 DOI: 10.1099/jmm.0.000408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Despite the long history of pertussis vaccination and high vaccination coverage in Poland and many other developed countries, pertussis incidence rates have increased substantially, making whooping cough one of the most prevalent vaccine-preventable diseases. Among the factors potentially involved in pertussis resurgence, the adaptation of the Bordetella pertussis population to country-specific vaccine-induced immunity through selection of non-vaccine-type strains still needs detailed studies. METHODOLOGY Multi-locus variable-number tandem repeat analysis (MLVA), also linked to MLST and PFGE profiling, was applied to trace the genetic changes in the B. pertussis population circulating in Poland in the period 1959-2013 versus country-specific vaccine strains. RESULTS Generally, among 174 B. pertussis isolates, 31 MLVA types were detected, of which 11 were not described previously. The predominant MLVA types of recent isolates in Poland were different from those of the typical isolates circulating in other European countries. The MT27 type, currently predominant in Europe, was rarely seen and detected in only five isolates among all studied. The features of the vaccine strains used for production of the pertussis component of a national whole-cell diphtheria-tetanus-pertussis (DTP) vaccine, as studied by MLVA and MLST tools, were found to not match those observed in the currently circulating B. pertussis isolates in Poland. CONCLUSIONS Differences traced by MLVA in relation to the MLST and PFGE profiling confirmed that the B. pertussis strain types currently observed elsewhere in Europe, even if appearing in Poland, were not able to successfully disseminate within a human population in Poland that has been vaccinated with a whole-cell pertussis vaccine not used in other countries.
Collapse
Affiliation(s)
- Ewa Mosiej
- Department of Sera and Vaccines Evaluation, National Institute of Public Health-National Institute of Hygiene, 24 Chocimska Street, 00-791 Warsaw, Poland
| | - Katarzyna Krysztopa-Grzybowska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health-National Institute of Hygiene, 24 Chocimska Street, 00-791 Warsaw, Poland
| | - Maciej Polak
- Department of Sera and Vaccines Evaluation, National Institute of Public Health-National Institute of Hygiene, 24 Chocimska Street, 00-791 Warsaw, Poland
| | - Marta Prygiel
- Department of Sera and Vaccines Evaluation, National Institute of Public Health-National Institute of Hygiene, 24 Chocimska Street, 00-791 Warsaw, Poland
| | - Anna Lutyńska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health-National Institute of Hygiene, 24 Chocimska Street, 00-791 Warsaw, Poland
| |
Collapse
|
13
|
Kamachi K, Moriuchi T, Hiramatsu Y, Otsuka N, Shibayama K. Evaluation of a commercial loop-mediated isothermal amplification assay for diagnosis of Bordetella pertussis infection. J Microbiol Methods 2016; 133:20-22. [PMID: 27974227 DOI: 10.1016/j.mimet.2016.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
We evaluated a commercial loop-mediated isothermal amplification (LAMP) assay kit for Bordetella pertussis detection. The LAMP primers were designed to target the ptxP1 allele of the pertussis toxin promoter, but the assay could detect B. pertussis ptxP3 and ptxP8 strains in addition to ptxP1 strains, with high analytical sensitivity.
Collapse
Affiliation(s)
- Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| | - Takumi Moriuchi
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan; Department of Pediatrics, St Marianna University School of Medicine, 2-16-1 Miyamae, Kawasaki 216-8511, Japan
| | - Yukihiro Hiramatsu
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| |
Collapse
|
14
|
Guiso N, Wirsing von König CH. Surveillance of pertussis: methods and implementation. Expert Rev Anti Infect Ther 2016; 14:657-67. [PMID: 27224518 DOI: 10.1080/14787210.2016.1190272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Pertussis or whooping cough is a respiratory disease caused by Bordetella pertussis or, to a lesser extent, by B. parapertussis. Vaccines against pertussis have been widely used for more than 50 years and have led to a significant reduction of morbidity and mortality. However, even in countries with a high vaccine coverage, the disease is still not well controlled. Surveillance is urgently needed. AREAS COVERED This review summarizes surveillance methods and gives examples that may be used when setting up a surveillance program or analyzing an outbreak. Expert commentary: Pertussis surveillance is urgently required in order to define the burden of disease, to adapt vaccine strategies according to the type of pertussis vaccine used and to follow the evolution of the bacteria.
Collapse
Affiliation(s)
- Nicole Guiso
- a Institut Pasteur, Molecular Prevention and Therapy of Human Infectious Diseases Unit , Paris , France
| | | |
Collapse
|
15
|
Du Q, Wang X, Liu Y, Luan Y, Zhang J, Li Y, Liu X, Ma C, Li H, Wang Z, He Q. Direct molecular typing of Bordetella pertussis from nasopharyngeal specimens in China in 2012-2013. Eur J Clin Microbiol Infect Dis 2016; 35:1211-4. [PMID: 27146879 DOI: 10.1007/s10096-016-2655-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/18/2016] [Indexed: 11/25/2022]
Abstract
Data on the molecular epidemiology of Bordetella pertussis are limited in developing countries where whole-cell pertussis vaccines (WCVs) have been used. The aim of this study was to determine the genotypes of circulating B. pertussis in China by direct molecular typing of clinical specimens. DNA extracts of 122 nasopharyngeal swabs (NPs) positive for B. pertussis by polymerase chain reaction (PCR) (targeting IS481 and ptx-Pr) from 2012 to 2013 were used for typing using the multiple-locus variable number tandem repeat analysis (MLVA) and also by PCR-based multilocus sequence typing (MLST) of B. pertussis virulence genes (ptxP, prn, and fim3). One hundred and eight DNA extracts (89 %) generated a complete MLVA type (MT). Among the 18 MTs obtained, MT55 (52 %) and MT104 (13 %) were the most common. MT27, which is linked to the ptxP3 allele and is prevalent in many developed countries using acellular pertussis vaccines (ACVs), was only found in 7 (6 %) DNA extracts. Eighty-seven DNA extracts (71 %) produced a complete multiantigen sequence typing (MAST) type. Of them, 77 (89 %) had the ptxP1/prn1/fim3-1 allele profile. Four DNA extracts (5 %) had the ptxP3/prn2/fim3-2 profile and 3 (4 %) had the ptxP3/prn1/fim3-2 allele profile. These seven DNA extracts also harbored MT27. Our result shows that B. pertussis circulating in China was different from those found in countries where ACVs have been in use, supporting the notion that selection pressure induced by WCVs and ACVs on the bacterial population differs.
Collapse
Affiliation(s)
- Q Du
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - X Wang
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - Y Liu
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - Y Luan
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - J Zhang
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - Y Li
- Department of Infectious Diseases, Xi'an Children Hospital, Xi'an, China
| | - X Liu
- Department of Infectious Diseases, Xi'an Children Hospital, Xi'an, China
| | - C Ma
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - H Li
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - Z Wang
- Xi'an Center for Disease Control and Prevention, Xi'an, China.
| | - Q He
- Department of Medical Microbiology, Capital Medical University, Beijing, China.
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.
| |
Collapse
|