1
|
Lamens KD, Lan J, Eddens T, Rogers MC, Tometich JT, Hand TW, Williams JV. Virus-specific CD4+ T cells contribute to clearance of human metapneumovirus despite exhibiting an impaired phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf076. [PMID: 40365919 DOI: 10.1093/jimmun/vkaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/11/2025] [Indexed: 05/15/2025]
Abstract
Human metapneumovirus (HMPV) is a leading cause of respiratory tract infection in pediatric, elderly, and immunocompromised populations. Clearance of HMPV relies primarily on the destruction of infected cells by cytotoxic CD8+ T cells. However, signals provided by CD4+ helper T cells significantly impact the magnitude and effectiveness of CD8+ T cells. The role of CD4+ helper T cells in the immune response to HMPV is largely unknown. Antibody-mediated depletion of CD4+ T cells in a mouse model of acute infection led to delayed viral clearance and enhanced PD-1 expression on virus-specific CD8+ T cells. In accord with CD4 depletion experiments, blocking of CD40L reduced viral control and CD8+ T cell responses while stimulation of this pathway with an agonist antibody decreased the duration of infection. We identified a dominant CD4+ T cell epitope in the viral nucleoprotein and constructed the first MHC-II tetramer for HMPV. Analysis of pulmonary T cells revealed that virus-specific cells peak on day 10 post-infection and were TH1-skewed. Additionally, virus-specific CD4+ T cells displayed phenotypic and functional markers of impairment, including inhibitory receptor co-expression and prolonged PD-1 upregulation. However, genetic ablation of PD-1 signaling did not improve virus-specific CD4+ T cell functionality. Further characterization of virus-specific CD4+ helper T cells, their regulation by PD-1, and their role in CD8+ T cell impairment will provide new insights that aid in the design of effective vaccines for HMPV.
Collapse
Affiliation(s)
- Kristina D Lamens
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Jie Lan
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Taylor Eddens
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Meredith C Rogers
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Justin T Tometich
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Timothy W Hand
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
- Department of Pediatrics, Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, United States
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
2
|
Brown E, Lan J, Parks OB, Hinck CS, Hinck AP, Williams JV, Eddens T. Th1 differentiation and function are inhibited in neonates following human metapneumovirus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf057. [PMID: 40280180 DOI: 10.1093/jimmun/vkaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/11/2025] [Indexed: 04/29/2025]
Abstract
Human metapneumovirus (HMPV) is a leading cause of lower respiratory tract infection in children accounting for 7% of acute care visits and hospitalizations. In particular, neonates and infants have worse outcomes with HMPV infection. The neonatal immune system is regulated to favor anti-inflammatory and tolerogenic responses compared to adults, including prior work demonstrating epigenetic factors in neonatal CD4+ T cells promoting Th2 formation rather than antiviral Th1 differentiation. To interrogate the neonatal immune response to HMPV, 4-to-6 day-old mice or adult 6-to-8 week-old mice were infected with HMPV. Neonates had a decreased Th1 population and increased Th2 and regulatory T-cell (Treg) populations compared to adults. Neonatal Th1 function, but not cell number, was restrained by surface PD-1 expression. To assess if neonatal Th1 formation was intrinsically inhibited after HMPV, neonatal and adult CD4s were transferred into immunocompetent or immunodeficient neonates. Both adult and neonatal CD4s demonstrated reduced Th1 differentiation in the immunocompetent neonates, but robust Th1 differentiation in immunodeficient neonates and immunocompetent adults, suggesting an extrinsic mechanism. Loss of neonatal Tregs led to increased Th1 differentiation after HMPV infection. Neonatal Tregs had increased TGF-β production compared to adult Tregs, and disruption of TGF-β signaling increased Th1 induction. These data demonstrate Tregs provide extrinsic regulation of Th1 formation in the context of respiratory viral infections, rather than an intrinsic limitation of neonatal CD4s. Collectively, these findings identify a nuanced neonatal response to respiratory viruses limiting Th1 formation and function.
Collapse
Affiliation(s)
- Emma Brown
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jie Lan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Olivia B Parks
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, United States
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Taylor Eddens
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, United States
| |
Collapse
|
3
|
Enhanced In Vitro and In Vivo Potency of a T Cell Epitope in the Ebola Virus Glycoprotein Following Amino Acid Replacement at HLA-A*02:01 Binding Positions. J Virol 2022; 96:e0116621. [PMID: 36069549 PMCID: PMC9517714 DOI: 10.1128/jvi.01166-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on Ebola virus disease (EVD) survivors and clinical studies on Ebola virus (EBOV) vaccine candidates have pinpointed the importance of a strong antibody response in protection and survival from EBOV infection. However, little is known about the T cell responses to EBOV or EBOV vaccines. We used HLA-A*02:01 (HLA-A2) transgenic mice to study HLA-A2-specific T cell responses elicited following vaccination with EBOV glycoprotein (EBOV-GP) presented with three different systems: (i) recombinant protein (rEBOV-GP), (ii) vesicular stomatitis replication-competent recombinant virus (VSV-EBOV-GP), and (iii) modified vaccinia Ankara virus recombinant (MVA-EBOV-GP). T cells from immunized animals were analyzed using peptide pools representing the entire GP region and individual peptides. Regardless of the vaccine formulation, we identified a minimal 9mer epitope containing an HLA-A2 motif (FLDPATTS), which was confirmed through HLA-A2 binding affinity and immunization studies. Using binding prediction software, we identified substitutions surrounding position 9 (S9V, P10V, and Q11V) that predicted enhanced binding to the HLA-A2 molecule. This enhanced binding was confirmed through in vitro binding studies and enhanced potency was shown with in vivo immunization studies using the enhanced sequences and the wild-type sequence. Of note, in silico studies predicted the enhanced 9mer epitope carrying the S9V substitution as the best overall HLA-A2 epitope for the full-length EBOV-GP. These results suggest that EBOV-GP-S9V and EBOV-GP-P10V represent more potent in vivo immunogens. Identification and enhancement of EBOV-specific human HLA epitopes could lead to the development of tools and reagents to induce more robust T cell responses in human subjects. IMPORTANCE Vaccine efficacy and immunity to viral infection are often measured by neutralizing antibody titers. T cells are specialized subsets of immune cells with antiviral activity, but this response is variable and difficult to track. We showed that the HLA-A2-specific T cell response to the Ebola virus glycoprotein can be enhanced significantly by a single residue substitution designed to improve an epitope binding affinity to one of the most frequent MHC alleles in the human population. This strategy could be applied to improve T cell responses to Ebola vaccines designed to elicit antibodies and adapted to target MHC alleles of populations in regions where endemic infections, like Ebola virus disease, are still causing outbreaks with concerning pandemic potential.
Collapse
|
4
|
Miranda-Katz M, Erickson JJ, Lan J, Ecker A, Zhang Y, Joyce S, Williams JV. Novel HLA-B7-restricted human metapneumovirus epitopes enhance viral clearance in mice and are recognized by human CD8 + T cells. Sci Rep 2021; 11:20769. [PMID: 34675220 PMCID: PMC8531189 DOI: 10.1038/s41598-021-00023-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Human metapneumovirus (HMPV) is a leading cause of acute lower respiratory tract illness in children and adults. Repeated infections are common and can be severe in young, elderly, and immunocompromised persons due to short-lived protective humoral immunity. In turn, few protective T cell epitopes have been identified in humans. Thus, we infected transgenic mice expressing the common human HLA MHC-I allele B*07:02 (HLA-B7) with HMPV and screened a robust library of overlapping and computationally predicted HLA-B7 binding peptides. Six HLA-B7-restricted CD8+ T cell epitopes were identified using ELISPOT screening in the F, M, and N proteins, with M195-203 (M195) eliciting the strongest responses. MHC-tetramer flow cytometric staining confirmed HLA-B7 epitope-specific CD8+ T cells migrated to lungs and spleen of HMPV-immune mice. Immunization with pooled HLA-B7-restricted peptides reduced viral titer and protected mice from virulent infection. Finally, we confirmed that CD8+ T cells from HLA-B7 positive humans also recognize the identified epitopes. These results enable identification of HMPV-specific CD8+ T cells in humans and help to inform future HMPV vaccine design.
Collapse
Affiliation(s)
- Margot Miranda-Katz
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - John J Erickson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, USA
| | - Jie Lan
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Alwyn Ecker
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, USA
- Vanderbilt Institute for Infection, Immunity, and Inflammation (VI4), Nashville, TN, 37232, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA.
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, 15224, USA.
| |
Collapse
|
5
|
Host Components That Modulate the Disease Caused by hMPV. Viruses 2021; 13:v13030519. [PMID: 33809875 PMCID: PMC8004172 DOI: 10.3390/v13030519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Human metapneumovirus (hMPV) is one of the main pathogens responsible for acute respiratory infections in children up to 5 years of age, contributing substantially to health burden. The worldwide economic and social impact of this virus is significant and must be addressed. The structural components of hMPV (either proteins or genetic material) can be detected by several receptors expressed by host cells through the engagement of pattern recognition receptors. The recognition of the structural components of hMPV can promote the signaling of the immune response to clear the infection, leading to the activation of several pathways, such as those related to the interferon response. Even so, several intrinsic factors are capable of modulating the immune response or directly inhibiting the replication of hMPV. This article will discuss the current knowledge regarding the innate and adaptive immune response during hMPV infections. Accordingly, the host intrinsic components capable of modulating the immune response and the elements capable of restricting viral replication during hMPV infections will be examined.
Collapse
|
6
|
Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus. Pathogens 2020; 9:pathogens9060481. [PMID: 32570728 PMCID: PMC7350342 DOI: 10.3390/pathogens9060481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory illnesses in children, the elderly and immunocompromised patients. Although this pathogen was only discovered in 2001, an enormous amount of research has been conducted in order to develop safe and effective vaccines to prevent people from contracting the disease. In this review, we summarize current knowledge about the most promising experimental B- and T-cell epitopes of human metapneumovirus for the rational design of HMPV vaccines using vector delivery systems, paying special attention to the conservation of these epitopes among different lineages/genotypes of HMPV. The prospects of the successful development of an epitope-based HMPV vaccine are discussed in the context of recent findings regarding HMPV’s ability to modulate host immunity. In particular, we discuss the lack of data on experimental human CD4 T-cell epitopes for HMPV despite the role of CD4 lymphocytes in both the induction of higher neutralizing antibody titers and the establishment of CD8 memory T-cell responses. We conclude that current research should be focused on searching for human CD4 T-cell epitopes of HMPV that can help us to design a safe and cross-protective epitope-based HMPV vaccine.
Collapse
|
7
|
Solís-Rodríguez M, Alpuche-Solís ÁG, Tirado-Mendoza RG. Metapneumovirus humano: epidemiología y posibles tratamientos profilácticos. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.22201/fm.24484865e.2020.63.3.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In 2001 in the Netherlands, Human metapneumovirus (hMPV) was identified as a “new” etiologic agent causing acute respiratory infections in children younger than 5 years old;
however, it has also been isolated in the elderly and immunocompromised people. This virus is considered the second etiological agent in acute diseases of the respiratory tract. Currently, the estimated cost of IRAs in our country is of 9,000USD per inpatient.
hMPV is a member of the genus Metapneumovirus, family Pneumoviridae, and it belongs to the order Mononegavirales that is part of the negative single-stranded ribonucleic acid (RNA) virus, consisting of eight genes ordered: 3’-N-P-M-FM2-SH-G-L-5 ‘, and which encodes for 9 proteins. Of these proteins, the F fusion glycoprotein is highly conserved in the genus Metapneumovirus, and is the major antigenic determinant, and because an approved vaccine doesn’t exist, it has been used as a candidate epitope for the design of a vaccine that confers host immunity or as a therapeutic target in the creation of antiviral peptides that inhibit the fusion of the virus to its target cell and to avoid infection in subjects at high risk of contagion since there is currently none accepted by COFEPRIS as a prophylactic treatment against hMPV.
Key words: hMPV; respiratory infections; epitopes; protein F;vaccines.
Collapse
Affiliation(s)
- Marcela Solís-Rodríguez
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT). Laboratorio de Biología Molecular de Plantas. San Luis Potosí, S.L.P., México
| | - Ángel G. Alpuche-Solís
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT). Laboratorio de Biología Molecular de Plantas. San Luis Potosí, S.L.P., México
| | - Rocío G. Tirado-Mendoza
- Universidad Nacional Autónoma de México (UNAM). Facultad de Medicina. Departamento de Microbiología y Parasitología. Laboratorio de Biología del Citoesqueleto y Virología. Ciudad de México. México
| |
Collapse
|
8
|
Tzannou I, Nicholas SK, Lulla P, Aguayo-Hiraldo PI, Misra A, Martinez CA, Machado AA, Orange JS, Piedra PA, Vera JF, Leen AM. Immunologic Profiling of Human Metapneumovirus for the Development of Targeted Immunotherapy. J Infect Dis 2017; 216:678-687. [PMID: 28934427 PMCID: PMC5853664 DOI: 10.1093/infdis/jix358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Human metapneumovirus (hMPV) is a respiratory virus detected in ≥9% of allogeneic hematopoietic stem cell transplant (HSCT) recipients, in whom it can cause significant morbidity and mortality. Given the lack of effective antivirals, we investigated the potential for immunotherapeutic intervention, using adoptively transferred T cells. Thus, we characterized the cellular immune response to the virus and identified F, N, M2-1, M, and P as immunodominant target antigens. Reactive T cells were polyclonal (ie, they expressed CD4 and CD8), T-helper type 1 polarized, and polyfunctional (ie, they produced interferon γ, tumor necrosis factor α, granulocyte-macrophage colony-stimulating factor, and granzyme B), and they were able to kill autologous antigen-loaded targets. The detection of hMPV-specific T cells in HSCT recipients who endogenously controlled active infections support the clinical importance of T-cell immunity in mediating protective antiviral effects. Our results demonstrate the feasibility of developing an immunotherapy for immunocompromised patients with uncontrolled infections.
Collapse
Affiliation(s)
- Ifigeneia Tzannou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Sarah K Nicholas
- Solid Organ Transplant Immunology, Section of Immunology, Allergy and Rheumatology
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Paibel I Aguayo-Hiraldo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Anisha Misra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Caridad A Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Annette A Machado
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| |
Collapse
|
9
|
Márquez-Escobar VA. Current developments and prospects on human metapneumovirus vaccines. Expert Rev Vaccines 2017; 16:419-431. [PMID: 28116910 DOI: 10.1080/14760584.2017.1283223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Human metapneumovirus (hMPV) has become one of the major pathogens causing acute respiratory infections (ARI) mainly affecting young children, immunocompromised patients, and the elderly. Currently there are no licensed vaccines against this virus. Areas covered: Since the discovery of hMPV in 2001, many groups have focused on developing vaccines against this pathogen. This review presents the outcomes and perspectives derived from preclinical studies performed in cell cultures and animals as well as the only candidate that has reached evaluation in a clinical trial. Limitations of the current vaccine candidates are discussed and perspectives for the development of plant-based vaccines are analyzed. Expert commentary: Several hMPV vaccine candidates are under development with the potential to progress into clinical trials. In parallel, the molecular farming field offers new opportunities to generate innovative vaccines that will offer several advantages in the fight against hMPV.
Collapse
Affiliation(s)
- Verónica Araceli Márquez-Escobar
- a Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , Av. Dr. Manuel Nava 6, San Luis Potosí 78210 , SLP , Mexico
| |
Collapse
|