1
|
von Mollendorf C, Mungun T, Ulziibayar M, Skoko P, Boelsen L, Nguyen C, Batsaikhan P, Suuri B, Luvsantseren D, Narangerel D, Tsolmon B, Demberelsuren S, Ortika BD, Pell CL, Wee-Hee A, Nation ML, Hinds J, Dunne EM, Mulholland EK, Satzke C. Effect of pneumococcal conjugate vaccine six years post-introduction on pneumococcal carriage in Ulaanbaatar, Mongolia. Nat Commun 2024; 15:6577. [PMID: 39097620 PMCID: PMC11297977 DOI: 10.1038/s41467-024-50944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Limited data from Asia are available on long-term effects of pneumococcal conjugate vaccine introduction on pneumococcal carriage. Here we assess the impact of 13-valent pneumococcal conjugate vaccine (PCV13) introduction on nasopharyngeal pneumococcal carriage prevalence, density and antimicrobial resistance. Cross-sectional carriage surveys were conducted pre-PCV13 (2015) and post-PCV13 introduction (2017 and 2022). Pneumococci were detected and quantified by real-time PCR from nasopharyngeal swabs. DNA microarray was used for molecular serotyping and to infer genetic lineage (Global Pneumococcal Sequence Cluster). The study included 1461 infants (5-8 weeks old) and 1489 toddlers (12-23 months old) enrolled from family health clinics. We show a reduction in PCV13 serotype carriage (with non-PCV13 serotype replacement) and a reduction in the proportion of samples containing resistance genes in toddlers six years post-PCV13 introduction. We observed an increase in pneumococcal nasopharyngeal density. Serotype 15 A, the most prevalent non-vaccine-serotype in 2022, was comprised predominantly of GPSC904;9. Reductions in PCV13 serotype carriage will likely result in pneumococcal disease reduction. It is important for ongoing surveillance to monitor serotype changes to potentially inform new vaccine development.
Collapse
Affiliation(s)
- Claire von Mollendorf
- Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Tuya Mungun
- National Center of Communicable Diseases, Ulaanbaatar, Mongolia
| | | | - Paige Skoko
- Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Laura Boelsen
- Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Cattram Nguyen
- Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | | | | | | | | | - Bilegtsaikhan Tsolmon
- National Center of Communicable Diseases, Ulaanbaatar, Mongolia
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | | | - Belinda D Ortika
- Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Casey L Pell
- Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Ashleigh Wee-Hee
- Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Monica L Nation
- Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jason Hinds
- Institute for Infection and Immunity, St George's, University of London, London, UK
- BUGS Bioscience, London Bioscience Innovation Centre, London, UK
| | - Eileen M Dunne
- Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - E Kim Mulholland
- Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Catherine Satzke
- Infection, Immunity, and Global Health, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
2
|
Mueller Brown K, Eutsey R, Gazioglu O, Wang D, Vallon A, Rosch JW, Yesilkaya H, Hiller NL. Peptide maturation molecules act as molecular gatekeepers to coordinate cell-cell communication in Streptococcus pneumoniae. Cell Rep 2024; 43:114432. [PMID: 38963762 PMCID: PMC11323143 DOI: 10.1016/j.celrep.2024.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/14/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The human pathogen Streptococcus pneumoniae (Spn) encodes several cell-cell communication systems, notably multiple members of the Rgg/SHP and the Tpr/Phr families. Until now, members of these diverse communication systems were thought to work independently. Our study reveals that the ABC transporter PptAB and the transmembrane enzyme Eep act as a molecular link between Rgg/SHP and TprA/PhrA systems. We demonstrate that PptAB/Eep activates the Rgg/SHP systems and represses the TprA/PhrA system. Specifically, they regulate the respective precursor peptides (SHP and PhrA) before these leave the cell. This dual mode of action leads to temporal coordination of these systems, producing an overlap between their respective regulons during host cell infection. Thus, we have identified a single molecular mechanism that targets diverse cell-cell communication systems in Spn. Moreover, these molecular components are encoded by many gram-positive bacteria, suggesting that this mechanism may be broadly conserved.
Collapse
Affiliation(s)
- Karina Mueller Brown
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Derek Wang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Amanda Vallon
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason W Rosch
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Howard LM, Grijalva CG. Impact of respiratory viral infections on nasopharyngeal pneumococcal colonization dynamics in children. Curr Opin Infect Dis 2024; 37:170-175. [PMID: 38437245 DOI: 10.1097/qco.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
PURPOSE OF REVIEW Prevention of acute respiratory illnesses (ARI) in children is a global health priority, as these remain a leading cause of pediatric morbidity and mortality throughout the world. As new products and strategies to prevent respiratory infections caused by important pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, respiratory syncytial virus and pneumococcus are advancing, increasing evidence suggests that these and other respiratory viruses and pneumococci may exhibit interactions that are associated with altered colonization and disease dynamics. We aim to review recent data evaluating interactions between respiratory viruses and pneumococci in the upper respiratory tract and their potential impact on pneumococcal colonization patterns and disease outcomes. RECENT FINDINGS While interactions between influenza infection and subsequent increased susceptibility and transmissibility of colonizing pneumococci have been widely reported in the literature, emerging evidence suggests that human rhinovirus, SARS-CoV-2, and other viruses may also exhibit interactions with pneumococci and alter pneumococcal colonization patterns. Additionally, colonizing pneumococci may play a role in modifying outcomes associated with respiratory viral infections. Recent evidence suggests that vaccination with pneumococcal conjugate vaccines, and prevention of colonization with pneumococcal serotypes included in these vaccines, may be associated with reducing the risk of subsequent viral infection and the severity of the associated illnesses. SUMMARY Understanding the direction and dynamics of viral-pneumococcal interactions may elucidate the potential effects of existing and emerging viral and bacterial vaccines and other preventive strategies on the health impact of these important respiratory pathogens.
Collapse
Affiliation(s)
- Leigh M Howard
- Department of Pediatrics, Division of Infectious Diseases
| | - Carlos G Grijalva
- Departments of Health Policy and Biomedical Informatics, Division of Pharmacoepidemiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Lin L, Chi H, Chiu NC, Huang CY, Wang JY, Huang DTN. Assessing the utilization of antimicrobial agents in pediatric pneumonia during the era of the 13-valent pneumococcal conjugate vaccine: A retrospective, single-center study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1226-1235. [PMID: 37758541 DOI: 10.1016/j.jmii.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND AND PURPOSE Pneumonia and bronchopneumonia are the most common infectious diseases in children. This study aimed to analyze changes in causative pathogens and antibiotic use for bronchopneumonia or pneumonia after the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) in children. METHODS This retrospective study was conducted from 2009 to 2019. Hospitalized children aged 6 months-3 years with a discharge diagnosis of bronchopneumonia or pneumonia were included to analyze changes in the potential mismatch between the diagnosed pathogen and antibiotic use. RESULTS The cohort comprised 1100 patients, including 648 (59%) and 452 (41%) with a discharge diagnosis of bronchopneumonia and pneumonia, respectively. The trend of viral pneumonia increased every year (rs = 0.101, p < 0.05) Antibiotics were administered in 97% patients, with an increasing annual trend in macrolide use (rs = 0.031, p = 0.009). Regarding antibiotic utilization, no significant variations were observed in the days of therapy (DOT) (rs = 0.076, p = 0.208) or length of therapy (LOT) (rs = -0.027, p = 0.534) per patient-year throughout the study duration. Interestingly, the LOT for combined therapy with macrolides and first-line beta-lactams was high (rs = 0.333, p = 0.028). In viral pneumonia treatment, neither the DOT nor LOT exhibited significant variations (rs = -0.006, p = 0.787 and rs = -0.156, p = 0.398). CONCLUSION After the introduction of PCV13 in Taiwan, no decrease in antibiotic use has been observed among children aged 6 months-3 years with a discharge diagnosis of bronchopneumonia and pneumonia.
Collapse
Affiliation(s)
- Leng Lin
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan; Department of Pediatrics, Taiwan Adventist Hospital, Taipei, Taiwan
| | - Hsin Chi
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medicine College, New Taipei, Taiwan
| | - Nan-Chang Chiu
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medicine College, New Taipei, Taiwan
| | - Ching-Ying Huang
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan
| | - Jin-Yuan Wang
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan
| | - Daniel Tsung-Ning Huang
- Department of Pediatric Infectious Diseases, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medicine College, New Taipei, Taiwan.
| |
Collapse
|
5
|
Wyllie AL, Rots NY, Wijmenga-Monsuur AJ, van Houten MA, Sanders EAM, Trzciński K. Saliva as an alternative sample type for detection of pneumococcal carriage in young children. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001394. [PMID: 37819029 PMCID: PMC10634364 DOI: 10.1099/mic.0.001394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
For children, the gold standard for the detection of pneumococcal carriage is conventional culture of a nasopharyngeal swab. Saliva, however, has a history as one of the most sensitive methods for surveillance of pneumococcal colonization and has recently been shown to improve carriage detection in older age groups. Here, we compared the sensitivity of paired nasopharyngeal and saliva samples from PCV7-vaccinated 24-month-old children for pneumococcal carriage detection using conventional and molecular detection methods. Nasopharyngeal and saliva samples were collected from 288 24-month-old children during the autumn/winter, 2012/2013. All samples were first processed by conventional diagnostic culture. Next, DNA extracted from all plate growth was tested by qPCR for the presence of the pneumococcal genes piaB and lytA and a subset of serotypes. By culture, 161/288 (60 %) nasopharyngeal swabs tested positive for pneumococcus, but detection was not possible from saliva due to abundant polymicrobial growth on culture plates. By qPCR, 155/288 (54 %) culture-enriched saliva samples and 187/288 (65 %) nasopharyngeal swabs tested positive. Altogether, 219/288 (76 %) infants tested positive for pneumococcus, with qPCR-based carriage detection of culture-enriched nasopharyngeal swabs detecting significantly more carriers compared to either conventional culture (P<0.001) or qPCR detection of saliva (P=0.002). However, 32/219 (15 %) carriers were only positive in saliva, contributing significantly to the overall number of carriers detected (P=0.002). While testing nasopharyngeal swabs by qPCR proved most sensitive for pneumococcal detection in infants, saliva sampling could be considered as complementary to provide additional information on carriage and serotypes that may not be detected in the nasopharynx and may be particularly useful in longitudinal studies, requiring repeated sampling of study participants.
Collapse
Affiliation(s)
- Anne L. Wyllie
- Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nynke Y. Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Alienke J. Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Elisabeth A. M. Sanders
- Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Krzysztof Trzciński
- Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Howard LM, Huang X, Chen W, Liu Y, Edwards KM, Griffin MR, Zhu Y, Vidal JE, Klugman KP, Gil AI, Soper NR, Thomsen IP, Gould K, Hinds J, Lanata CF, Grijalva CG. Association between nasopharyngeal colonization with multiple pneumococcal serotypes and total pneumococcal colonization density in young Peruvian children. Int J Infect Dis 2023; 134:248-255. [PMID: 37451394 PMCID: PMC10804940 DOI: 10.1016/j.ijid.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVES We examined the association of nasopharyngeal (NP) pneumococcal co-colonization (>1 pneumococcal serotype) and pneumococcal density in young Peruvian children enrolled in a prospective cohort study. METHODS NP swabs collected monthly from children aged <3 years during both asymptomatic and acute respiratory illness (ARI) periods underwent culture-enriched microarray for pneumococcal detection and serotyping and lytA polymerase chain reaction for density assessment. We examined the serotypes commonly associated with co-colonization and the distribution of densities by co-colonization, age, current ARI, and other covariates. The association of co-colonization and pneumococcal density was assessed using a multivariable mixed-effects linear regression model, accounting for repeated measures and relevant covariates. RESULTS A total of 27 children contributed 575 monthly NP samples. Pneumococcus was detected in 302 of 575 (53%) samples, and co-colonization was detected in 61 of these 302 (20%). The total densities were higher during ARI than non-ARI periods and lowest among the youngest children, increasing with age. In the multivariable analysis, there was no significant association between pneumococcal density and co-colonization (coefficient estimate 0.22, 95% confidence interval 0.11-0.55; reference: single-serotype detections). Serotypes 23B and 19F were detected significantly more frequently as single isolates. CONCLUSION Pneumococcal co-colonization was common and not associated with increased pneumococcal density. Differential propensity for co-colonization was observed among individual serotypes.
Collapse
Affiliation(s)
- Leigh M Howard
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA.
| | - Xiang Huang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Wencong Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, USA
| | - Yuhan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, USA
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
| | - Marie R Griffin
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, USA
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, USA
| | - Jorge E Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, USA
| | - Keith P Klugman
- Rollins School of Public Health, Emory University; Atlanta, USA
| | - Ana I Gil
- Instituto de Investigacion Nutricional; Lima, Peru
| | - Nicole R Soper
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
| | - Isaac P Thomsen
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
| | - Katherine Gould
- Institute for Infection and Immunity, St. George's, University of London, London, UK; BUGS Bioscience, London Bioscience Innovation Centre, London, UK
| | - Jason Hinds
- Institute for Infection and Immunity, St. George's, University of London, London, UK; BUGS Bioscience, London Bioscience Innovation Centre, London, UK
| | - Claudio F Lanata
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA; Instituto de Investigacion Nutricional; Lima, Peru
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
7
|
Miellet WR, Almeida ST, Trzciński K, Sá-Leão R. Streptococcus pneumoniae carriage studies in adults: Importance, challenges, and key issues to consider when using quantitative PCR-based approaches. Front Microbiol 2023; 14:1122276. [PMID: 36910231 PMCID: PMC9994646 DOI: 10.3389/fmicb.2023.1122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Streptococcus pneumoniae causes significant morbidity and mortality among older adults. Detection of pneumococcal carriage is an accepted endpoint in pneumococcal conjugate vaccine studies. However, low sensitivity of culture-based approaches and nasopharyngeal samples have hampered adult S. pneumoniae carriage studies in the past. In contrast, detection of adult S. pneumoniae carriers with qPCR-based approaches can achieve high sensitivity and specificity and qPCR-based testing of oral samples improves accuracy of adult carriage detection. In this Viewpoint we outline a strategy for accurate qPCR-based testing. We recommend a dual-target approach for S. pneumoniae qPCR detection as no genetic target is universally present among or solely unique to it. Furthermore, we advise the evaluation of concordance among quantified qPCR targets to improve the accuracy of S. pneumoniae testing and qPCR-based serotyping. We do not recommend omission of qPCR-based oral sample testing as it will likely result in an underestimation of true adult carrier rates.
Collapse
Affiliation(s)
- Willem R Miellet
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sónia T Almeida
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
8
|
Dhoubhadel BG, Morimoto K. Prevention of pneumococcal diseases: the challenge remains. Lancet Glob Health 2022; 10:e1375-e1376. [DOI: 10.1016/s2214-109x(22)00374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
|
9
|
Oyewole ORA, Latzin P, Brugger SD, Hilty M. Strain-level resolution and pneumococcal carriage dynamics by single-molecule real-time (SMRT) sequencing of the plyNCR marker: a longitudinal study in Swiss infants. MICROBIOME 2022; 10:152. [PMID: 36138483 PMCID: PMC9502908 DOI: 10.1186/s40168-022-01344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pneumococcal carriage has often been studied from a serotype perspective; however, little is known about the strain-specific carriage and inter-strain interactions. Here, we examined the strain-level carriage and co-colonization dynamics of Streptococcus pneumoniae in a Swiss birth cohort by PacBio single-molecule real-time (SMRT) sequencing of the plyNCR marker. METHODS A total of 872 nasal swab (NS) samples were included from 47 healthy infants during the first year of life. Pneumococcal carriage was determined based on the quantitative real-time polymerase chain reaction (qPCR) targeting the lytA gene. The plyNCR marker was amplified from 214 samples having lytA-based carriage for pneumococcal strain resolution. Amplicons were sequenced using SMRT technology, and sequences were analyzed with the DADA2 pipeline. In addition, pneumococcal serotypes were determined using conventional, multiplex PCR (cPCR). RESULTS PCR-based plyNCR amplification demonstrated a 94.2% sensitivity and 100% specificity for Streptococcus pneumoniae if compared to lytA qPCR. The overall carriage prevalence was 63.8%, and pneumococcal co-colonization (≥ 2 plyNCR amplicon sequence variants (ASVs)) was detected in 38/213 (17.8%) sequenced samples with the relative proportion of the least abundant strain(s) ranging from 1.1 to 48.8% (median, 17.2%; IQR, 5.8-33.4%). The median age to first acquisition was 147 days, and having ≥ 2 siblings increased the risk of acquisition. CONCLUSION The plyNCR amplicon sequencing is species-specific and enables pneumococcal strain resolution. We therefore recommend its application for longitudinal strain-level carriage studies of Streptococcus pneumoniae. Video Abstract.
Collapse
Affiliation(s)
- Oluwaseun Rume-Abiola Oyewole
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland.
| |
Collapse
|
10
|
Evidence for the intermediate disturbance hypothesis and exponential decay in replacement in Streptococcus pneumoniae following use of conjugate vaccines. Sci Rep 2022; 12:7510. [PMID: 35525872 PMCID: PMC9079081 DOI: 10.1038/s41598-022-11279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
Understanding how pneumococci respond to pneumococcal conjugate vaccines (PCVs) is crucial to predict the impact of upcoming higher-valency vaccines. However, stages in pneumococcal community succession following disturbance are poorly understood as long-time series on carriage are scarce and mostly evaluated at end-point measurements. We used a 20-year cross-sectional dataset of pneumococci carried by Portuguese children, and methods from community ecology, to study community assembly and diversity following use of PCV7 and PCV13. Two successional stages were detected upon introduction of each PCV: one in which non-vaccine serotypes increased in abundance, fitted by a broken-stick model, and a second in which the community returned to the original structure, fitted by a geometric series, but with different serotype profile and a drop in richness as great as 24%. A peak in diversity was observed for levels of intermediate vaccine uptake (30–40%) in agreement with the intermediate disturbance hypothesis. Serotype replacement was fitted by an exponential decay model (R2 = 80%, P < 0.001). The half-life for replacement was 8 years for PCV7 and 10 years for PCV13. The structure of the pneumococcal community is resilient to vaccine pressure. The increasing loss of diversity, however, suggests it could eventually reach a threshold beyond which it may no longer recover.
Collapse
|
11
|
Abruzzo AR, Aggarwal SD, Sharp ME, Bee GCW, Weiser JN. Serotype-Dependent Effects on the Dynamics of Pneumococcal Colonization and Implications for Transmission. mBio 2022; 13:e0015822. [PMID: 35289642 PMCID: PMC9040870 DOI: 10.1128/mbio.00158-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
Capsule-switch mutants were compared to analyze how serotype affects the success of Streptococcus pneumoniae (Spn) during colonization and transmission. Strains of multiple serotypes were tested in highly susceptible infant mice, both singly and in competitive assays. Our findings demonstrated a role of serotype, apart from genetic background, in competitive success of strains, but this depended on timing postinoculation. As is the case for natural carriage, there was a hierarchy of success among serotypes using capsule-switch strains. The long-term dominance of a serotype was established within the first 4 h after acquisition, suggesting an effect independent of Spn-induced host responses. The hierarchy of serotype dominance correlated with decreased clearance rather than increased growth in vivo. Competitive assays staggering the timing of challenge showed that the first strain to dominate the niche sustained its competitive advantage, potentially explaining how increased density from delayed early clearance could result in serotype-dependent success. Effector molecules of intrastrain competition (fratricide), regulated by the competence operon in a quorum-sensing mechanism, were required for early niche dominance. This suggested a winner-takes-all scenario in which serotype is a major factor in achieving early niche dominance, such that once a strain reaches a threshold density it is able to exclude competitors through fratricide. Serotype was also an important determinant of transmission dynamics, although transit to a recipient host depended on effects of serotype different from its contribution to the dominance of colonization in the donor host. IMPORTANCE Capsule is the major virulence factor and surface antigen of the opportunistic respiratory pathogen Streptococcus pneumoniae (Spn). Strains of Spn express at least 100 structurally and immunologically distinct types (serotypes) of capsule, but for unknown reasons only a few are common. The effect of serotypes during the commensal interactions of Spn and its host, colonization and transmission, was tested. This was carried out by comparing genetically modified strains differing only in serotype in infant mouse models. Results show that serotype is an important factor in a strain's success during colonization. This was attributed to the effect of serotype on early clearance of the organism in the host. Competitive factors expressed by Spn (in a mechanism referred to as fratricide) allow the strain gaining this initial advantage to then dominate the upper respiratory tract niche. Serotype also plays an important role in a strain's success during transmission from one host to another.
Collapse
Affiliation(s)
- Annie R. Abruzzo
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Surya D. Aggarwal
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Molly E. Sharp
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Gavyn Chern Wei Bee
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
Valente C, Cruz AR, Henriques AO, Sá-Leão R. Intra-Species Interactions in Streptococcus pneumoniae Biofilms. Front Cell Infect Microbiol 2022; 11:803286. [PMID: 35071049 PMCID: PMC8767070 DOI: 10.3389/fcimb.2021.803286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a human pathogen responsible for high morbidity and mortality worldwide. Disease is incidental and is preceded by asymptomatic nasopharyngeal colonization in the form of biofilms. Simultaneous colonization by multiple pneumococcal strains is frequent but remains poorly characterized. Previous studies, using mostly laboratory strains, showed that pneumococcal strains can reciprocally affect each other's colonization ability. Here, we aimed at developing a strategy to investigate pneumococcal intra-species interactions occurring in biofilms. A 72h abiotic biofilm model mimicking long-term colonization was applied to study eight pneumococcal strains encompassing 6 capsular types and 7 multilocus sequence types. Strains were labeled with GFP or RFP, generating two fluorescent variants for each. Intra-species interactions were evaluated in dual-strain biofilms (1:1 ratio) using flow cytometry. Confocal microscopy was used to image representative biofilms. Twenty-eight dual-strain combinations were tested. Interactions of commensalism, competition, amensalism and neutralism were identified. The outcome of an interaction was independent of the capsular and sequence type of the strains involved. Confocal imaging of biofilms confirmed the positive, negative and neutral effects that pneumococci can exert on each other. In conclusion, we developed an experimental approach that successfully discriminates pneumococcal strains growing in mixed biofilms, which enables the identification of intra-species interactions. Several types of interactions occur among pneumococci. These observations are a starting point to study the mechanisms underlying those interactions.
Collapse
Affiliation(s)
- Carina Valente
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana R Cruz
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
13
|
Félix S, Henares D, Muñoz-Almagro C, Sá-Leão R. Carriage of multiple Streptococcus pneumoniae capsular types is frequent among children with invasive pneumococcal disease. Eur J Clin Microbiol Infect Dis 2021; 40:2397-2401. [PMID: 33797644 PMCID: PMC8017099 DOI: 10.1007/s10096-021-04231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/17/2021] [Indexed: 12/01/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a human pathogen that colonizes the nasopharynx. We investigated serotype distribution in paired invasive and nasopharyngeal samples obtained from 57 children during invasive pneumococcal disease. Of 39 nasopharyngeal samples positive for pneumococci, 46.2% contained a serotype different from the one causing disease. This study reports a high frequency of pneumococcal multiple serotype carriage in children with invasive pneumococcal disease. Whether multiple serotype carriage is important for the onset and progress to pneumococcal infection warrants further investigation.
Collapse
Affiliation(s)
- Sofia Félix
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa (ITQB/NOVA), Oeiras, Portugal
| | - Desirée Henares
- Molecular Microbiology Department, Instituto de Recerca Pediatrica/University Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carmen Muñoz-Almagro
- Molecular Microbiology Department, Instituto de Recerca Pediatrica/University Hospital Sant Joan de Déu, Barcelona, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa (ITQB/NOVA), Oeiras, Portugal.
| |
Collapse
|
14
|
Turner P, Leab P, Ly S, Sao S, Miliya T, Heffelfinger JD, Batmunkh N, Lessa FC, Walldorf JA, Hyde TB, Ork V, Hossain MS, Gould KA, Hinds J, Cooper BS, Ngoun C, Turner C, Day NPJ. Impact of 13-Valent Pneumococcal Conjugate Vaccine on Colonization and Invasive Disease in Cambodian Children. Clin Infect Dis 2020; 70:1580-1588. [PMID: 31175819 PMCID: PMC7145996 DOI: 10.1093/cid/ciz481] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cambodia introduced the 13-valent pneumococcal conjugate vaccine (PCV13) in January 2015 using a 3 + 0 dosing schedule and no catch-up campaign. We investigated the effects of this introduction on pneumococcal colonization and invasive disease in children aged <5 years. METHODS There were 6 colonization surveys done between January 2014 and January 2018 in children attending the outpatient department of a nongovernmental pediatric hospital in Siem Reap. Nasopharyngeal swabs were analyzed by phenotypic and genotypic methods to detect pneumococcal serotypes and antimicrobial resistance. Invasive pneumococcal disease (IPD) data for January 2012-December 2018 were retrieved from hospital databases. Pre-PCV IPD data and pre-/post-PCV colonization data were modelled to estimate vaccine effectiveness (VE). RESULTS Comparing 2014 with 2016-2018, and using adjusted prevalence ratios, VE estimates for colonization were 16.6% (95% confidence interval [CI] 10.6-21.8) for all pneumococci and 39.2% (95% CI 26.7-46.1) for vaccine serotype (VT) pneumococci. There was a 26.0% (95% CI 17.7-33.0) decrease in multidrug-resistant pneumococcal colonization. The IPD incidence was estimated to have declined by 26.4% (95% CI 14.4-35.8) by 2018, with a decrease of 36.3% (95% CI 23.8-46.9) for VT IPD and an increase of 101.4% (95% CI 62.0-145.4) for non-VT IPD. CONCLUSIONS Following PCV13 introduction into the Cambodian immunization schedule, there have been declines in VT pneumococcal colonization and disease in children aged <5 years. Modelling of dominant serotype colonization data produced plausible VE estimates.
Collapse
Affiliation(s)
- Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Phana Leab
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap
| | - Sokeng Ly
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap
| | - Sena Sao
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap
| | - Thyl Miliya
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap
| | - James D Heffelfinger
- Regional Office for the Western Pacific, World Health Organization, Manila, Philippines
| | - Nyambat Batmunkh
- Regional Office for the Western Pacific, World Health Organization, Manila, Philippines
| | | | | | - Terri B Hyde
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Vichit Ork
- National Immunisation Program, Ministry of Health, Cambodia
| | | | - Katherine A Gould
- Institute for Infection and Immunity, St George’s, University of London, United Kingdom
- Bacterial Microarray Group at St George’s Bioscience, London Bioscience Innovation Centre, United Kingdom
| | - Jason Hinds
- Institute for Infection and Immunity, St George’s, University of London, United Kingdom
- Bacterial Microarray Group at St George’s Bioscience, London Bioscience Innovation Centre, United Kingdom
| | - Ben S Cooper
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chanpheaktra Ngoun
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap
| | - Claudia Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Nicholas P J Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Sidorenko S, Rennert W, Lobzin Y, Briko N, Kozlov R, Namazova-Baranova L, Tsvetkova I, Ageevets V, Nikitina E, Ardysheva A, Bikmieva A, Bolgarova E, Volkova M, Verentsova I, Girina A, Gordeeva N, Demko I, Dushchenko A, Evseeva G, Zharkova L, Yelistratova T, Zakharova J, Ivakhnishina N, Zubova E, Kalinogorskaya O, Klimashina A, Kozeeva T, Kraposhina A, Krechikova O, Mamaeva M, Nagovitsyna E, Protasova I, Semerikov V, Sokolova N, Soloveva I, Strelnikova N, Telepneva R, Feldblium I, Kholodok G, Chagaryan A, Sheglinkova N. Multicenter study of serotype distribution of Streptococcus pneumoniae nasopharyngeal isolates from healthy children in the Russian Federation after introduction of PCV13 into the National Vaccination Calendar. Diagn Microbiol Infect Dis 2019; 96:114914. [PMID: 31704066 DOI: 10.1016/j.diagmicrobio.2019.114914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/13/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022]
Abstract
Russia introduced PCV13 in 2014. We studied the serotype composition of S. pneumoniae isolated from the nasopharynx of healthy children younger than 6 years in St. Petersburg, Smolensk, Perm, Krasnoyarsk, Khanty-Mansiysk and Khabarovsk, between 2016 and 2018. 2.4% of children had completed a 3-dose course of PCV13, while 25.6% had received 1 or 2 doses. Pneumococcal DNA detection by PCR demonstrated S. pneumoniae in 37.2% of samples with regional variation between sites (27.3 to 56.9%). There was little difference between vaccinated, partially vaccinated and un-vaccinated children. Children who had received at least 1 dose of PCV13 had lower carriage rates of vaccine serotypes than their unvaccinated peers (49.9 vs. 61.4%; p < 0.001). Children who had received at least 1 dose of PCV13 showed increased carriage rates of non-vaccine serotypes (50 vs 38.6%; P < 0.001). Especially serogroup 15AF was more prevalent among fully immunized children than among their peers (12.5 vs 2.7%; P < 0.05).
Collapse
Affiliation(s)
- Sergey Sidorenko
- Pediatric Research and Clinical Center for Infectious Diseases, Popov Str.9, Saint Petersburg, Russia, 197022 and North Western State Medical University named after I.I. Mechnikov, Kirochnaya Str. 41, St Petersburg, Russia, 191015.
| | - Wolfgang Rennert
- Rostropovich Vishnevskaya Foundation and Georgetown University Hospital Department of Pediatrics, 4200 Wisconsin Ave. # 200, Washington, DC, 20016, USA.
| | - Yuri Lobzin
- Pediatric Research and Clinical Center for Infectious Diseases, Popov Str.9, Saint Petersburg, Russia, 197022 and North Western State Medical University named after I.I. Mechnikov, Kirochnaya Str. 41, St Petersburg, Russia, 191015.
| | - Nikolay Briko
- I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow, Russia, 119991.
| | - Roman Kozlov
- Smolensk State Medical University, Krupskoy Str. 28, Smolensk, Russia 214019.
| | - Leila Namazova-Baranova
- Pirogov Russian National Research Medical University, Ostrovityanova Str. 1, Moskva, Russia, 11799.
| | - Irina Tsvetkova
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str.9, Saint Petersburg, Russia, 197022.
| | - Vladimir Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str.9, Saint Petersburg, Russia, 197022.
| | - Ekaterina Nikitina
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str.9, Saint Petersburg, Russia, 198022.
| | - Anastasia Ardysheva
- Perm Clinical Center of the Federal Medical and Biological Agency, Tselinnaya Str., 27, Perm, Russia, 614056.
| | - Alina Bikmieva
- E.A.Vagner Perm State Medical University, 26 Petropavlovskaya Str, Perm, Russia 614990.
| | - Ekaterina Bolgarova
- Yekaterinburg Research Institute of Viral Infections, Letnyaya Str 23, Yekaterinburg, Russia 620030.
| | - Marina Volkova
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str.9, Saint Petersburg, Russia, 197022.
| | - Irina Verentsova
- Regional Clinical Hospital, Kalinina Str. 40, Khanty-Mansiysk, Russia 628012.
| | - Asiya Girina
- Khanty-Mansiysk State Medical Academy, Mira Str. 40. Khanty-Mansyisk, Russia 628011.
| | - Natalia Gordeeva
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka Str. 1, Krasnoyarsk, Russia 660022.
| | - Irina Demko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka Str. 1, Krasnoyarsk, Russia 660022.
| | - Anna Dushchenko
- Far Eastern State Medical University, Karl Marx Str. 35, Khabarovsk, Russia 680000.
| | - Galina Evseeva
- Khabarovsk Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, - Research Institute of Maternity and Childhood Protection, Voronezhskaya Str. 49, Khabarovsk, Russia 680022.
| | - Ludmila Zharkova
- Smolensk State Medical University, Krupskoy Str. 28, Smolensk, Russia 214019.
| | - Tatyana Yelistratova
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka Str. 1, Krasnoyarsk, Russia 660022.
| | - Julia Zakharova
- Yekaterinburg Research Institute of Viral Infections, Letnyaya Str 23, Yekaterinburg, Russia 620030.
| | - Natalia Ivakhnishina
- Khabarovsk Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, - Research Institute of Maternity and Childhood Protection, Voronezhskaya Str. 49, Khabarovsk, Russia 680022.
| | - Elena Zubova
- Regional Pediatric Hospital, Baumana Str 22, Perm, Russia 614066.
| | - Olga Kalinogorskaya
- Pediatric Research and Clinical Center for Infectious Diseases, Professor Popov Str. 9, Saint Petersburg, Russia, 194100.
| | - Alla Klimashina
- Perm Clinical Center of the Federal Medical and Biological Agency, Tselinnaya Str., 27, Perm, Russia, 614056.
| | - Tatiana Kozeeva
- Perm Clinical Center of the Federal Medical and Biological Agency, Tselinnaya Str., 27, Perm, Russia, 614056.
| | - Angelina Kraposhina
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka Str. 1, Krasnoyarsk, Russia 660022.
| | - Olga Krechikova
- Smolensk State Medical University, Krupskoy Str. 28, Smolensk, Russia 214019.
| | - Marina Mamaeva
- Krasnoyarsk State Medical University named after Professor V. F. Voino-Yasenetsky, Partizana Zheleznyaka Str. 1, Krasnoyarsk, Russia 660022.
| | - Elena Nagovitsyna
- Khabarovsk Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, - Research Institute of Maternity and Childhood Protection, Voronezhskaya Str. 49, Khabarovsk, Russia 680022.
| | - Irina Protasova
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka Str. 1, Krasnoyarsk, Russia 660022.
| | | | - Natalia Sokolova
- Perm Clinical Center of the Federal Medical and Biological Agency, Tselinnaya Str., 27, Perm, Russia, 614056.
| | - Irina Soloveva
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka Str. 1, Krasnoyarsk, Russia 660022.
| | - Natalia Strelnikova
- Far Eastern State Medical University, Karl Marx Str. 35, Khabarovsk, Russia 680000.
| | - Regina Telepneva
- Khabarovsk Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, - Research Institute of Maternity and Childhood Protection, Voronezhskaya Str. 49, Khabarovsk, Russia 680022.
| | - Irina Feldblium
- E.A.Vagner Perm State Medical University, Petropavlovskaya Str. 26, Perm, Russia 614990.
| | - Galina Kholodok
- Khabarovsk Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, - Research Institute of Maternity and Childhood Protection, Voronezhskaya Str. 49, Khabarovsk, Russia 680022.
| | - Aida Chagaryan
- Smolensk State Medical University, Krupskoy Str. 28, Smolensk, Russia 214019.
| | | |
Collapse
|
16
|
Identification of Streptococcus pneumoniae by a real-time PCR assay targeting SP2020. Sci Rep 2019; 9:3285. [PMID: 30824850 PMCID: PMC6397248 DOI: 10.1038/s41598-019-39791-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/21/2019] [Indexed: 11/15/2022] Open
Abstract
Real-time PCR targeting lytA (the major autolysin gene) and piaB (permease gene of the pia ABC transporter) are currently used as the gold-standard culture-independent assays for Streptococcus pneumoniae identification. We evaluated the performance of a new real-time PCR assay – targeting SP2020 (putative transcriptional regulator gene) – and compared its performance with the assays previously described. A collection of 150 pneumococci, 433 non-pneumococci and 240 polymicrobial samples (obtained from nasopharynx, oropharynx, and saliva; 80 from each site) was tested. SP2020 and lytA-CDC assays had the best performance (sensitivity of 100% for each compared to 95.3% for piaB). The specificity for lytA and piaB was 99.5% and for SP2020 was 99.8%. Misidentifications occurred for the three genes: lytA, piaB and SP2020 were found in non-pneumococcal strains; piaB was absent in some pneumococci including a serotype 6B strain. Combining lytA and SP2020 assays resulted in no misidentifications. Most polymicrobial samples (88.8%) yielded concordant results for the three molecular targets. The remaining samples seemed to contain non-typeable pneumococci (0.8%), and non-pneumococci positive for lytA (1.7%) or SP2020 (8.7%). We propose that combined detection of both lytA-CDC and SP2020 is a powerful strategy for the identification of pneumococcus either in pure cultures or in polymicrobial samples.
Collapse
|
17
|
Dominance of vaccine serotypes in pediatric invasive pneumococcal infections in Portugal (2012-2015). Sci Rep 2019; 9:6. [PMID: 30626918 PMCID: PMC6327022 DOI: 10.1038/s41598-018-36799-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/27/2018] [Indexed: 01/15/2023] Open
Abstract
We evaluated the impact of continued 13-valent pneumococcal conjugate vaccine (PCV13) use in the private market (uptake of 61%) in pediatric invasive pneumococcal disease (pIPD) in Portugal (2012–2015). The most frequently detected serotypes were: 3 (n = 32, 13.8%), 14 (n = 23, 9.9%), 1 (n = 23, 9.9%), 7F (n = 15, 6.4%), 19A (n = 13, 5.6%), 6B and 15B/C (both n = 12, 5.2%), and 24F, 10A and 12B (all with n = 10, 4.3%). Taken together, non-PCV13 serotypes were responsible for 42.2% of pIPD with a known serotype. The use of PCR to detect and serotype pneumococci in both pleural and cerebrospinal fluid samples contributed to 18.1% (n = 47) of all pIPD. Serotype 3 was mostly detected by PCR (n = 21/32, 65.6%) and resulted from a relevant number of vaccine failures. The incidence of pIPD varied in the different age groups but without a clear trend. There were no obvious declines of the incidence of pIPD due to serotypes included in any of the PCVs, and PCV13 serotypes still accounted for the majority of pIPD (57.8%). Our study indicates that a higher vaccination uptake may be necessary to realize the full benefits of PCVs, even after 15 years of moderate use, and highlights the importance of using molecular methods in pIPD surveillance, since these can lead to substantially increased case ascertainment and identification of particular serotypes as causes of pIPD.
Collapse
|
18
|
Satzke C, Dunne EM, Choummanivong M, Ortika BD, Neal EFG, Pell CL, Nation ML, Fox KK, Nguyen CD, Gould KA, Hinds J, Chanthongthip A, Xeuatvongsa A, Mulholland EK, Sychareun V, Russell FM. Pneumococcal carriage in vaccine-eligible children and unvaccinated infants in Lao PDR two years following the introduction of the 13-valent pneumococcal conjugate vaccine. Vaccine 2018; 37:296-305. [PMID: 30502068 DOI: 10.1016/j.vaccine.2018.10.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/27/2023]
Abstract
Pneumococcal carriage is a prerequisite for disease, and underpins herd protection provided by pneumococcal conjugate vaccines (PCVs). There are few data on the impact of PCVs in lower income settings, particularly in Asia. In 2013, the Lao People's Democratic Republic (Lao PDR) introduced 13-valent PCV (PCV13) as a 3 + 0 schedule (doses at 6, 10 and 14 weeks of age) with limited catch-up vaccination. We conducted two cross-sectional carriage surveys (pre- and two years post-PCV) to assess the impact of PCV13 on nasopharyngeal pneumococcal carriage in 5-8 week old infants (n = 1000) and 12-23 month old children (n = 1010). Pneumococci were detected by quantitative real-time PCR, and molecular serotyping was performed using DNA microarray. Post PCV13, there was a 23% relative reduction in PCV13-type carriage in children aged 12-23 months (adjusted prevalence ratio [aPR] 0.77 [0.61-0.96]), and no significant change in non-PCV13 serotype carriage (aPR 1.11 [0.89-1.38]). In infants too young to be vaccinated, there was no significant change in carriage of PCV13 serotypes (aPR 0.74 [0.43-1.27]) or non-PCV13 serotypes (aPR 1.29 [0.85-1.96]), although trends were suggestive of indirect effects. Over 70% of pneumococcal-positive samples contained at least one antimicrobial resistance gene, which were more common in PCV13 serotypes (p < 0.001). In 12-23 month old children, pneumococcal density of both PCV13 serotypes and non-PCV13 serotypes was higher in PCV13-vaccinated compared with undervaccinated children (p = 0.004 and p < 0.001, respectively). This study provides evidence of PCV13 impact on carriage in a population without prior PCV7 utilisation, and provides important data from a lower-middle income setting in Asia. The reductions in PCV13 serotype carriage in vaccine-eligible children are likely to result in reductions in pneumococcal transmission and disease in Lao PDR.
Collapse
Affiliation(s)
- Catherine Satzke
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.
| | - Eileen M Dunne
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | | | - Belinda D Ortika
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia
| | - Eleanor F G Neal
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Casey L Pell
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia
| | - Monica L Nation
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia
| | - Kimberley K Fox
- Expanded Programme on Immunization, World Health Organization Regional Office for the Western Pacific, Manila, Philippines
| | - Cattram D Nguyen
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Katherine A Gould
- Institute for Infection and Immunity, St. George's, University of London, London, UK; BUGS Bioscience, London Bioscience Innovation Centre, London, UK
| | - Jason Hinds
- Institute for Infection and Immunity, St. George's, University of London, London, UK; BUGS Bioscience, London Bioscience Innovation Centre, London, UK
| | - Anisone Chanthongthip
- Laos-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
| | | | - E Kim Mulholland
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Fiona M Russell
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
19
|
Horácio AN, Silva-Costa C, Lopes E, Ramirez M, Melo-Cristino J. Conjugate vaccine serotypes persist as major causes of non-invasive pneumococcal pneumonia in Portugal despite declines in serotypes 3 and 19A (2012-2015). PLoS One 2018; 13:e0206912. [PMID: 30388168 PMCID: PMC6214563 DOI: 10.1371/journal.pone.0206912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022] Open
Abstract
Non-invasive pneumococcal pneumonia (NIPP) is a frequent cause of morbidity and mortality worldwide. The 13-valent pneumococcal conjugate vaccine (PCV13) was included in the national immunization program of children living in Portugal in 2015. Until then, PCV7 (since late 2001) and PCV13 (since early 2010) were given through the private market. We determined the serotype distribution and antimicrobial susceptibility of isolates causing adult NIPP in 2012–2015 and compared the results with previously published data (2007–2011). There were 50 serotypes among the 1435 isolates. The most common were serotypes: 3 (14%), 11A (8%), 19F (6%), 23A (5%), 6C (5%), 19A (4%), 23B (4%), 9N (4%) and non-typable isolates (4%). When considering data since the availability of PCV13 for children in the private market, the proportion of PCV13 serotypes declined from 44.0% in 2010 to 29.7% in 2015 (p < 0.001), mainly due to early decreases in the proportions of serotypes 3 and 19A. In contrast, during the same period, PCV7 serotypes (11.9% in 2012–2015) and the serotypes exclusive of the 23-valent polysaccharide vaccine (26.0% in 2012–2015), remained relatively stable, while non-vaccine types increased from 27.0% in 2010 to 41.9% in 2015 (p<0.001). According to the Clinical and Laboratory Standards Institute (CLSI) breakpoints, penicillin non-susceptible and erythromycin resistant isolates accounted for 1% and 21.7%, respectively, of the isolates recovered in 2012–2015, with no significant changes seen since 2007. Comparison of NIPP serotypes with contemporary invasive disease serotypes identified associations of 19 serotypes with either disease presentation. The introduction of PCV13 in the national immunization program for children from 2015 onwards may lead to reductions in the proportion of NIPP due to vaccine serotypes but continued NIPP surveillance is essential due to a different serotype distribution from invasive disease.
Collapse
Affiliation(s)
- Andreia N. Horácio
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Silva-Costa
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Elísia Lopes
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mário Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - José Melo-Cristino
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | |
Collapse
|
20
|
Howard LM, Grijalva CG. The central role of pneumococcal colonization in the pathogenesis and control of pneumococcal diseases. Future Microbiol 2018; 13:1453-1456. [PMID: 30311793 DOI: 10.2217/fmb-2018-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Leigh M Howard
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
21
|
Chemotherapy with Phage Lysins Reduces Pneumococcal Colonization of the Respiratory Tract. Antimicrob Agents Chemother 2018; 62:AAC.02212-17. [PMID: 29581113 DOI: 10.1128/aac.02212-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/17/2018] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage-borne lytic enzymes, also named lysins or enzybiotics, are efficient agents for the killing of bacterial pathogens. The colonization of the respiratory tract by Streptococcus pneumoniae is a prerequisite for the establishment of the infection process. Hence, we have evaluated the antibacterial activities of three different lysins against pneumococcal colonization using human nasopharyngeal and lung epithelial cells as well as a mouse model of nasopharyngeal colonization. The lysins tested were the wild-type Cpl-1, the engineered Cpl-7S, and the chimera Cpl-711. Moreover, we included amoxicillin as a comparator antibiotic. Human epithelial cells were infected with three different multidrug-resistant clinical isolates of S. pneumoniae followed by a single dose of the corresponding lysin. The antimicrobial activities of these lysins were also evaluated using a mouse nasopharyngeal carriage model. The exposure of the infected epithelial cells to Cpl-7S did not result in the killing of any of the pneumococcal strains investigated. However, the treatment with Cpl-1 or Cpl-711 increased the killing of S. pneumoniae organisms adhered to both types of human epithelial cells, with Cpl-711 being more effective than Cpl-1, at subinhibitory concentrations. In addition, a treatment with amoxicillin had no effect on reducing the carrier state, whereas mice treated by the intranasal route with Cpl-711 showed significantly reduced nasopharyngeal colonization, with no detection of bacterial load in 20 to 40% of the mice. This study indicates that Cpl-1 and Cpl-711 lysins might be promising antimicrobial candidates for therapy against pneumococcal colonization.
Collapse
|
22
|
A Mechanism of Unidirectional Transformation, Leading to Antibiotic Resistance, Occurs within Nasopharyngeal Pneumococcal Biofilm Consortia. mBio 2018; 9:mBio.00561-18. [PMID: 29764945 PMCID: PMC5954218 DOI: 10.1128/mbio.00561-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus pneumoniae acquires genes for resistance to antibiotics such as streptomycin (Str) or trimethoprim (Tmp) by recombination via transformation of DNA released by other pneumococci and closely related species. Using naturally transformable pneumococci, including strain D39 serotype 2 (S2) and TIGR4 (S4), we studied whether pneumococcal nasopharyngeal transformation was symmetrical, asymmetrical, or unidirectional. Incubation of S2Tet and S4Str in a bioreactor simulating the human nasopharynx led to the generation of SpnTet/Str recombinants. Double-resistant pneumococci emerged soon after 4 h postinoculation at a recombination frequency (rF) of 2.5 × 10−4 while peaking after 8 h at a rF of 1.1 × 10−3. Acquisition of antibiotic resistance genes by transformation was confirmed by treatment with DNase I. A high-throughput serotyping method demonstrated that all double-resistant pneumococci belonged to one serotype lineage (S2Tet/Str) and therefore that unidirectional transformation had occurred. Neither heterolysis nor availability of DNA for transformation was a factor for unidirectional transformation given that the density of each strain and extracellular DNA (eDNA) released from both strains were similar. Unidirectional transformation occurred regardless of the antibiotic-resistant gene carried by donors or acquired by recipients and regardless of whether competence-stimulating peptide-receptor cross talk was allowed. Moreover, unidirectional transformation occurred when two donor strains (e.g., S4Str and S19FTmp) were incubated together, leading to S19FStr/Tmp but at a rF 3 orders of magnitude lower (4.9 × 10−6). We finally demonstrated that the mechanism leading to unidirectional transformation was due to inhibition of transformation of the donor by the recipient. Pneumococcal transformation in the human nasopharynx may lead to the acquisition of antibiotic resistance genes or genes encoding new capsular variants. Antibiotics and vaccines are currently putting pressure on a number of strains, leading to an increase in antibiotic resistance and serotype replacement. These pneumococcal strains are also acquiring virulence traits from vaccine types via transformation. In this study, we recapitulated multiple-strain colonization with strains carrying a resistance marker and selected for those acquiring resistance to two or three antibiotics, such as would occur in the human nasopharynx. Strains acquiring dual and triple resistance originated from one progenitor, demonstrating that transformation was unidirectional. Unidirectional transformation was the result of inhibition of transformation of donor strains. Unidirectional transformation has implications for the understanding of acquisition patterns of resistance determinants or capsule-switching events.
Collapse
|
23
|
Jang AY, Seo HS, Lin S, Chung GH, Kim HW, Lim S, Zhao L, Park IH, Lim JH, Kim KH. Molecular characterization of pneumococcal surface protein K, a potential pneumococcal vaccine antigen. Virulence 2017; 8:875-890. [PMID: 28059611 PMCID: PMC5626202 DOI: 10.1080/21505594.2016.1278334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022] Open
Abstract
The pneumococcal capsule is indispensable for pathogenesis in systemic infections; however, many pneumococcal diseases, including conjunctivitis, otitis media, and some systemic infections in immunocompromised patients, are caused by nonencapsulated Streptococcus pneumoniae (NESp). Null capsule clade 1 (NCC1), found in group 2 NESp, expresses pneumococcal surface protein K (PspK) and is becoming prevalent among pneumococcal organisms owing to the widespread use of pneumococcal conjugate vaccines. Despite its clinical importance, the molecular mechanisms underlying the prevalence of NCC1 have not been fully elucidated. Here, we investigated the role of the R3 domain of PspK in the epithelial cell adherence of NCC1. We found that the R3 domain of PspK mediated NCC1 adherence via its direct interaction with the epithelial surface protein annexin A2. Additionally, neutralization with purified recombinant PspK-R3 or rabbit anti-UD:R3 IgG inhibited binding of NESp to lung epithelial cells in vitro. Immunization with the 'repeat' domain of PspK-R3 or PspK-UD:R3 effectively elicited mucosal and systemic immune responses against PspK-R3 and provided protection against nasopharyngeal, lung, and middle ear colonization of NESp in mice. Additionally, we found that rabbit anti-UD:R3 IgG bound to PspC-R1 of the encapsulated TIGR4 strain and that UD:R3 immunization provided protection against nasopharyngeal and lung colonization of TIGR4 and deaths by TIGR4 and D39 in mice. Further studies using 68 pneumococcal clinical isolates showed that 79% of clinical isolates showed cross-reactivity to rabbit anti-UD:R3 IgG. About 87% of serotypes in the 13-valent pneumococcal conjugate vaccine (PCV) and 68% of non-vaccine serotypes were positive for cross-reactivity with rabbit anti-UD:R3 IgG. Thus, the R3 domain of PspK may be an effective vaccine candidate for both NESp and encapsulated Sp.
Collapse
Affiliation(s)
- A-Yeung Jang
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Biological Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Ho Seong Seo
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Shunmei Lin
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Gook-Hyun Chung
- Department of Biological Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Han Wool Kim
- Center for Vaccine Evaluation and Study, Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sangyong Lim
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Lei Zhao
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - In Ho Park
- Center for Vaccine Evaluation and Study, Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jae Hyang Lim
- Department of Microbiology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung-Hyo Kim
- Center for Vaccine Evaluation and Study, Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Department of Pediatrics, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Competitive Dominance within Biofilm Consortia Regulates the Relative Distribution of Pneumococcal Nasopharyngeal Density. Appl Environ Microbiol 2017; 83:AEM.00953-17. [PMID: 28576759 DOI: 10.1128/aem.00953-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae is a main cause of child mortality worldwide, but strains also asymptomatically colonize the upper airways of most children and form biofilms. Recent studies have demonstrated that ∼50% of colonized children carry at least two different serotypes (i.e., strains) in the nasopharynx; however, studies of how strains coexist are limited. In this work, we investigated the physiological, genetic, and ecological requirements for the relative distribution of densities, and spatial localization, of pneumococcal strains within biofilm consortia. Biofilm consortia were prepared with vaccine type strains (i.e., serotype 6B [S6B], S19F, or S23F) and strain TIGR4 (S4). Experiments first revealed that the relative densities of S6B and S23F were similar in biofilm consortia. The density of S19F strains, however, was reduced to ∼10% in biofilm consortia, including either S6B, S23F, or TIGR4, in comparison to S19F monostrain biofilms. Reduction of S19F density within biofilm consortia was also observed in a simulated nasopharyngeal environment. Reduction of relative density was not related to growth rates, since the Malthusian parameter demonstrated similar rates of change of density for most strains. To investigate whether quorum sensing (QS) regulates relative densities in biofilm consortia, two different mutants were prepared: a TIGR4ΔluxS mutant and a TIGR4ΔcomC mutant. The density of S19F strains, however, was similarly reduced when consortia included TIGR4, TIGR4ΔluxS, or TIGR4ΔcomC Moreover, production of a different competence-stimulating peptide (CSP), CSP1 or CSP2, was not a factor that affected dominance. Finally, a mathematical model, confocal experiments, and experiments using Transwell devices demonstrated physical contact-mediated control of pneumococcal density within biofilm consortia.IMPORTANCEStreptococcus pneumoniae kills nearly half a million children every year, but it also produces nasopharyngeal biofilm consortia in a proportion of asymptomatic children, and these biofilms often contain two strains (i.e., serotypes). In our study, we investigated how strains coexist within pneumococcal consortia produced by vaccine serotypes S4, S6B, S19F, and S23F. Whereas S6B and S23F shared the biofilm consortium, our studies demonstrated reduction of the relative density of S19F strains, to ∼10% of what it would otherwise be if alone, in consortial biofilms formed with S4, S6B, or S23F. This dominance was not related to increased fitness when competing for nutrients, nor was it regulated by quorum-sensing LuxS/AI-2 or Com systems. It was demonstrated, however, to be enhanced by physical contact rather than by a product(s) secreted into the supernatant, as would naturally occur in the semidry nasopharyngeal environment. Competitive interactions within pneumococcal biofilm consortia regulate nasopharyngeal density, a risk factor for pneumococcal disease.
Collapse
|
25
|
Allemann A, Frey PM, Brugger SD, Hilty M. Pneumococcal carriage and serotype variation before and after introduction of pneumococcal conjugate vaccines in patients with acute otitis media in Switzerland. Vaccine 2017; 35:1946-1953. [PMID: 28279564 DOI: 10.1016/j.vaccine.2017.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Acute otitis media (AOM) is an important cause for antibiotic prescription within the paediatric population and Streptococcus pneumoniae is a major pathogen associated with AOM episodes. This study aimed at analysing the influence of the heptavalent and 13-valent pneumococcal conjugate vaccines (PCV7 and PCV13) on pneumococcal carriage and serotype distribution in AOM. METHODS Nasopharyngeal swabs (NPS) and middle ear fluid (MEF) were collected within a Swiss surveillance study of outpatients from all ages with AOM between 2004 and 2015, covering three vaccination eras (pre-PCV7, PCV7 and PCV13). Samples were cultured for pneumococcal identification, and the association of vaccine era with pneumococcal carriage was investigated by logistic regression analysis adjusting for sociodemographic factors. FINDINGS In total, 3300 NPS and 620 MEF were included in this study. The number of samples from patients with AOM dropped over vaccination eras and S. pneumoniae was less frequently isolated in the PCV13 era as compared to the other two eras. The latest (PCV13) vaccination era was independently associated with a reduced pneumococcal carriage within NPS (adjusted odds ratio 0.65, 95%-CI 0.45-0.94). Investigating serotype epidemiology, vaccine serotypes decreased significantly after the conjugate vaccine introductions with the exception of serotype 3. Within the non-PCV13 serotypes, a particular increase of serogroups 11, 15 and 23 was observed in both NPS and MEF. CONCLUSION A substantial change in pneumococcal carriage and serotype epidemiology suggests an impact of the conjugate vaccines on pneumococcal AOM in Switzerland.
Collapse
Affiliation(s)
- Aurélie Allemann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Pascal M Frey
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA; Department of General Internal Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Silvio D Brugger
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland; Department of Infectious Diseases, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| |
Collapse
|