1
|
Tripathi A, Chauhan S, Khasa R. A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection. Viruses 2025; 17:74. [PMID: 39861863 PMCID: PMC11769230 DOI: 10.3390/v17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy. Extensive research has been conducted in developing effective antivirals for flavivirus. Various approaches have been extensively utilized in clinical trials for antiviral development, targeting virus entry, replication, polyprotein synthesis and processing, and egress pathways exploiting virus as well as host proteins. However, to date, no licensed antiviral drug exists to treat the diseases caused by these viruses. Understanding the mechanisms of host-pathogen interaction, host immunity, viral immune evasion, and disease pathogenesis is highly warranted to foster the development of antivirals. This review provides an extensively detailed summary of the most recent advances in the development of antiviral drugs to combat diseases.
Collapse
Affiliation(s)
- Aarti Tripathi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Shailendra Chauhan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Renu Khasa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA
| |
Collapse
|
2
|
Macha NO, Komarasamy TV, Harun S, Adnan NAA, Hassan SS, Balasubramaniam VRMT. Cross Talk between MicroRNAs and Dengue Virus. Am J Trop Med Hyg 2024; 110:856-867. [PMID: 38579704 PMCID: PMC11066346 DOI: 10.4269/ajtmh.23-0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 04/07/2024] Open
Abstract
Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.
Collapse
Affiliation(s)
- Nur Omar Macha
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology Malaysia, National University of Malaysia, Selangor, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
3
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
4
|
Avila-Bonilla RG, Salas-Benito JS. Interactions of host miRNAs in the flavivirus 3´UTR genome: From bioinformatics predictions to practical approaches. Front Cell Infect Microbiol 2022; 12:976843. [PMID: 36310869 PMCID: PMC9606609 DOI: 10.3389/fcimb.2022.976843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Flavivirus of the Flaviviridae family includes important viruses, such as Dengue, Zika, West Nile, Japanese encephalitis, Murray Valley encephalitis, tick-borne encephalitis, Yellow fever, Saint Louis encephalitis, and Usutu viruses. They are transmitted by mosquitoes or ticks, and they can infect humans, causing fever, encephalitis, or haemorrhagic fever. The treatment resources for these diseases and the number of vaccines available are limited. It has been discovered that eukaryotic cells synthesize small RNA molecules that can bind specifically to sequences present in messenger RNAs to inhibit the translation process, thus regulating gene expression. These small RNAs have been named microRNAs, and they have an important impact on viral infections. In this review, we compiled the available information on miRNAs that can interact with the 3’ untranslated region (3’UTR) of the flavivirus genome, a conserved region that is important for viral replication and translation.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Rodolfo Gamaliel Avila-Bonilla, ; Juan Santiago Salas-Benito,
| | - Juan Santiago Salas-Benito
- Laboratorio de Biomedicina Moleculart 3, Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Rodolfo Gamaliel Avila-Bonilla, ; Juan Santiago Salas-Benito,
| |
Collapse
|
5
|
Saengchoowong S, Nimsamer P, Khongnomnan K, Poomipak W, Praianantathavorn K, Rattanaburi S, Poovorawan Y, Zhang Q, Payungporn S. Enhancing the yield of seasonal influenza viruses through manipulation of microRNAs in Madin-Darby canine kidney cells. Exp Biol Med (Maywood) 2022; 247:1335-1349. [PMID: 35666095 PMCID: PMC9442458 DOI: 10.1177/15353702221098340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/15/2022] [Indexed: 02/03/2023] Open
Abstract
Annual influenza vaccine is recommended to reduce the occurrence of seasonal influenza and its complications. Thus far, Madin-Darby canine kidney (MDCK) cell line has been used to manufacture cell-based influenza vaccines. Even though host microRNAs may facilitate viral replication, the interaction between MDCK cells-derived microRNAs and seasonal influenza viruses has been less frequently investigated. Therefore, this study highlighted microRNA profiles of MDCK cells to increase the yield of seasonal influenza virus production by manipulating cellular microRNAs. MDCK cells were infected with influenza A or B virus at a multiplicity of infection (MOI) of 0.01, and microRNA collections were then subjected to MiSeq (Illumina) Sequencing. The validated profiles revealed that cfa-miR-340, cfa-miR-146b, cfa-miR-197, and cfa-miR-215 were the most frequently upregulated microRNAs. The effect of candidate microRNA inhibition and overexpression on viral replication was determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). The hybridization pattern between candidate miRNAs and viral genes was performed using miRBase and RNAhybrid web-based programs. Moreover, the predicted microRNA-binding sites were validated by a 3'-UTR reporter assay. The results indicated that cfa-miR-146b could directly target the PB1 gene of A/pH1N1 and the PA gene of B/Yamagata. Furthermore, cfa-miR-215 could silence the PB1 gene of A/pH1N1 and the PB1 gene of B/Victoria. However, the PB2 gene of the A/H3N2 virus was silenced by cfa-miR-197. In addition, the HA and NA sequences of influenza viruses harvested from the cell cultures treated with microRNA inhibitors were analyzed. The sequencing results revealed no difference in the antigenic HA and NA sequences between viruses isolated from the cells treated with microRNA inhibitors and the parental viruses. In conclusion, these findings suggested that MDCK cell-derived microRNAs target viral genes in a strain-specific manner for suppressing viral replication. Conversely, the use of such microRNA inhibitors may facilitate the production of influenza viruses.
Collapse
Affiliation(s)
- Suthat Saengchoowong
- Joint Chulalongkorn
University-University of Liverpool Doctoral Program in Biomedical Sciences and
Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330,
Thailand
- Faculty of Veterinary Medicine and
Applied Zoology, HRH Princess Chulabhorn College of Medical Science, Chulabhorn
Royal Academy, Bangkok 10210, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Kritsada Khongnomnan
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Witthaya Poomipak
- Research Affairs, Faculty of Medicine,
Chulalongkorn University, Bangkok 10330, Thailand
| | - Kesmanee Praianantathavorn
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Somruthai Rattanaburi
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical
Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330,
Thailand
| | - Qibo Zhang
- Department of Clinical Infection,
Microbiology and Immunology, Institute of Infection, Veterinary and Ecological
Sciences, University of Liverpool, Liverpool L69 7BE, UK
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology,
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok
10330, Thailand
| |
Collapse
|
6
|
Rohani N, Ahmadi Moughari F, Eslahchi C. DisCoVering potential candidates of RNAi-based therapy for COVID-19 using computational methods. PeerJ 2021; 9:e10505. [PMID: 33680575 PMCID: PMC7919535 DOI: 10.7717/peerj.10505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/15/2020] [Indexed: 01/04/2023] Open
Abstract
The ongoing pandemic of a novel coronavirus (SARS-CoV-2) leads to international concern; thus, emergency interventions need to be taken. Due to the time-consuming experimental methods for proposing useful treatments, computational approaches facilitate investigating thousands of alternatives simultaneously and narrow down the cases for experimental validation. Herein, we conducted four independent analyses for RNA interference (RNAi)-based therapy with computational and bioinformatic methods. The aim is to target the evolutionarily conserved regions in the SARS-CoV-2 genome in order to down-regulate or silence its RNA. miRNAs are denoted to play an important role in the resistance of some species to viral infections. A comprehensive analysis of the miRNAs available in the body of humans, as well as the miRNAs in bats and many other species, were done to find efficient candidates with low side effects in the human body. Moreover, the evolutionarily conserved regions in the SARS-CoV-2 genome were considered for designing novel significant siRNA that are target-specific. A small set of miRNAs and five siRNAs were suggested as the possible efficient candidates with a high affinity to the SARS-CoV-2 genome and low side effects. The suggested candidates are promising therapeutics for the experimental evaluations and may speed up the procedure of treatment design. Materials and implementations are available at: https://github.com/nrohani/SARS-CoV-2.
Collapse
Affiliation(s)
- Narjes Rohani
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Ahmadi Moughari
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
7
|
McDonald EM, Anderson J, Wilusz J, Ebel GD, Brault AC. Zika Virus Replication in Myeloid Cells during Acute Infection Is Vital to Viral Dissemination and Pathogenesis in a Mouse Model. J Virol 2020; 94:e00838-20. [PMID: 32847848 PMCID: PMC7565634 DOI: 10.1128/jvi.00838-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022] Open
Abstract
Zika virus (ZIKV) can establish infection in immune privileged sites such as the testes, eye, and placenta. Whether ZIKV infection of white blood cells is required for dissemination of the virus to immune privileged sites has not been definitively shown. To assess whether initial ZIKV replication in myeloid cell populations is critical for dissemination during acute infection, recombinant ZIKVs were generated that could not replicate in these specific cells. ZIKV was cell restricted by insertion of a complementary sequence to a myeloid-specific microRNA in the 3' untranslated region. Following inoculation of a highly sensitive immunodeficient mouse model, crucial immune parameters, such as quantification of leukocyte cell subsets, cytokine and chemokine secretion, and viremia, were assessed. Decreased neutrophil numbers in the spleen were observed during acute infection with myeloid-restricted ZIKV that precluded the generation of viremia and viral dissemination to peripheral organs. Mice inoculated with a nontarget microRNA control ZIKV demonstrated increased expression of key cytokines and chemokines critical for neutrophil and monocyte recruitment and increased neutrophil influx in the spleen. In addition, ZIKV-infected Ly6Chi monocytes were identified in vivo in the spleen. Mice inoculated with myeloid-restricted ZIKV had a decrease in Ly6Chi ZIKV RNA-positive monocytes and a lack of inflammatory cytokine production compared to mice inoculated with control ZIKV.IMPORTANCE Myeloid cells, including monocytes, play a crucial role in immune responses to pathogens. Monocytes have also been implicated as "Trojan horses" during viral infections, carrying infectious virus particles to immune privileged sites and/or to sites protected by physical blood-tissue barriers, such as the blood-testis barrier and the blood-brain barrier. In this study, we found that myeloid cells are crucial to Zika virus (ZIKV) pathogenesis. By engineering ZIKV clones to encode myeloid-specific microRNA target sequences, viral replication was inhibited in myeloid cells by harnessing the RNA interference pathway. Severely immunodeficient mice inoculated with myeloid-restricted ZIKV did not demonstrate clinical signs of disease and survived infection. Furthermore, viral dissemination to peripheral organs was not observed in these mice. Lastly, we identified Ly6Cmid/hi murine monocytes as the major myeloid cell population that disseminates ZIKV.
Collapse
Affiliation(s)
- Erin M McDonald
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - John Anderson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jeff Wilusz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
8
|
Zhang X, Wang H, Sun Y, Qi M, Li W, Zhang Z, Zhang XE, Cui Z. Enterovirus A71 Oncolysis of Malignant Gliomas. Mol Ther 2020; 28:1533-1546. [PMID: 32304669 PMCID: PMC7264442 DOI: 10.1016/j.ymthe.2020.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant gliomas, the most lethal type of primary brain tumor, continue to be a major therapeutic challenge. Here, we found that enterovirus A71 (EV-A71) can be developed as a novel oncolytic agent against malignant gliomas. EV-A71 preferentially infected and killed malignant glioma cells relative to normal glial cells. The virus receptor human scavenger receptor class B, member 2 (SCARB2), and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1)-mediated cell death were involved in EV-A71-induced oncolysis. In mice with implanted subcutaneous gliomas, intraneoplastic inoculation of EV-A71 caused significant tumor growth inhibition. Furthermore, in mice bearing intracranial orthotopic gliomas, intraneoplastic inoculation of EV-A71 substantially prolonged survival. By insertion of brain-specific microRNA-124 (miR124) response elements into the viral genome, we improved the tumor specificity of EV-A71 oncolytic therapy by reducing its neurotoxicity while maintaining its replication potential and oncolytic capacity in gliomas. Our study reveals that EV-A71 is a potent oncolytic agent against malignant gliomas and may have a role in treating this tumor in the clinical setting.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuhan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
MiRNA Targeted NP Genome of Live Attenuated Influenza Vaccines Provide Cross-Protection against a Lethal Influenza Virus Infection. Vaccines (Basel) 2020; 8:vaccines8010065. [PMID: 32028575 PMCID: PMC7158662 DOI: 10.3390/vaccines8010065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
The miRNA-based strategy has been used to develop live attenuated influenza vaccines. In this study, the nucleoprotein (NP) genome segment of the influenza virus was inserted by different perfect miRNA-192-5p target sites, and the virus was rescued by standard reverse genetics method, so as to verify the virulence and protective efficacy of live attenuated vaccine in cells and mice. The results showed there was no significant attenuation in 192t virus with one perfect miRNA-192-5p target site, and 192t-3 virus with three perfect miRNA target sites. However, 192t-6 virus with 6 perfect miRNA target sites and 192t-9 virus with 9 perfect miRNA target sites were both significantly attenuated after infection, and their virulence were similar to that of temperature-sensitive (TS) influenza A virus (IAV) which is a temperature-sensitive live attenuated influenza vaccine. Mice were immunized with different doses of 192t-6, 192t-9, and TS IAV. Four weeks after immunization, the IgG in serum and IgA in lung homogenate were increased in the 192t-6, 192t-9, and TS IAV groups, and the numbers of IFN-γ secreting splenocytes were also increased in a dose-dependent manner. Finally, 192t-6, and 192t-9 can protect the mice against the challenge of homologous PR8 H1N1 virus and heterosubtypic H3N2 influenza virus. MiRNA targeted viruses 192t-6 and 192t-9 were significantly attenuated and showed the same virulence as TS IAV and played a role in the cross-protection.
Collapse
|
10
|
Identification and Classification of Hubs in microRNA Target Gene Networks in Human Neural Stem/Progenitor Cells following Japanese Encephalitis Virus Infection. mSphere 2019; 4:4/5/e00588-19. [PMID: 31578247 PMCID: PMC6796970 DOI: 10.1128/msphere.00588-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA viruses are known to modulate host microRNA (miRNA) machinery for their own benefit. Japanese encephalitis virus (JEV), a neurotropic RNA virus, has been reported to manipulate several miRNAs in neurons or microglia. However, no report indicates a complete sketch of the miRNA profile of neural stem/progenitor cells (NSPCs), hence the focus of our current study. We used an miRNA array of 84 miRNAs in uninfected and JEV-infected human neuronal progenitor cells and primary neural precursor cells isolated from aborted fetuses. Severalfold downregulation of hsa-miR-9-5p, hsa-miR-22-3p, hsa-miR-124-3p, and hsa-miR-132-3p was found postinfection in both of the cell types compared to the uninfected cells. Subsequently, we screened for the target genes of these miRNAs and looked for the biological pathways that were significantly regulated by the genes. The target genes involved in two or more pathways were sorted out. Protein-protein interaction (PPI) networks of the miRNA target genes were formed based on their interaction patterns. A binary adjacency matrix for each gene network was prepared. Different modules or communities were identified in those networks by community detection algorithms. Mathematically, we identified the hub genes by analyzing their degree centrality and participation coefficient in the network. The hub genes were classified as either provincial (P < 0.4) or connector (P > 0.4) hubs. We validated the expression of hub genes in both cell line and primary cells through qRT-PCR after JEV infection and respective miR mimic transfection. Taken together, our findings highlight the importance of specific target gene networks of miRNAs affected by JEV infection in NSPCs.IMPORTANCE JEV damages the neural stem/progenitor cell population of the mammalian brain. However, JEV-induced alteration in the miRNA expression pattern of the cell population remains an open question, hence warranting our present study. In this study, we specifically address the downregulation of four miRNAs, and we prepared a protein-protein interaction network of miRNA target genes. We identified two types of hub genes in the PPI network, namely, connector hubs and provincial hubs. These two types of miRNA target hub genes critically influence the participation strength in the networks and thereby significantly impact up- and downregulation in several key biological pathways. Computational analysis of the PPI networks identifies key protein interactions and hubs in those modules, which opens up the possibility of precise identification and classification of host factors for viral infection in NSPCs.
Collapse
|
11
|
|
12
|
The Pseudoknot Region of the 5' Untranslated Region Is a Determinant of Viral Tropism and Virulence of Foot-and-Mouth Disease Virus. J Virol 2019; 93:JVI.02039-18. [PMID: 30728251 PMCID: PMC6450104 DOI: 10.1128/jvi.02039-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/22/2019] [Indexed: 01/04/2023] Open
Abstract
This study demonstrates that the deletion in the PK region occurred naturally in the FMDV genome. The isolated O/ME-SA/PanAsia lineage FMDV with an 86-nt deletion in the PK region showed a pig-adapted characteristic that could cause clinical signs in swine but not bovines. Compared to the wild-type FMDV strain, which possesses full infection capacity in both swine and bovines, the recombinant virus with the 86-nt deletion in the PK region is deficient in causing disease in bovines. Deletion of the previously reported 43 nt in the PK region also led to significantly decreased pathogenicity of FMDV in bovines. This study indicates that the PK region is a novel determinant of the tropism and virulence of FMDV. Foot-and-mouth disease virus (FMDV) is the causative agent of foot-and-mouth disease. It is characterized by genetic instability and different antigenic properties. The nonstructural protein 3A is a primary determinant of the tropism and virulence of Cathay topotype FMDVs. However, several other determinants are also speculated to be involved in viral tropism and virulence. Deletion of 43 nucleotides (nt) in the pseudoknot (PK) region of the 5′ untranslated region (UTR) has been found to coexist with the identified 3A deletion in Cathay topotype FMDV genomes. In this study, we isolated an O/ME-SA/PanAsia lineage FMDV strain, O/GD/CHA/2015, that includes an 86-nt deletion in the PK region and shows a porcinophilic phenotype. To investigate the potential role of the PK region in viral pathogenicity, we generated a recombinant FMDV strain with an incomplete PK region and compared its virulence and pathogenesis to the intact FMDV strain in swine and bovines. Deletion of the 86 nt in the PKs had no major effects on the pathogenicity of the virus in swine but significantly attenuated its ability to infect bovine cells and cattle, indicating that the PK region is a newly discovered determinant of viral tropism and virulence. The role of the 43-nt deletion existing in the Cathay topotype FMDV was also investigated by evaluating the infection properties of genetically engineered viruses. Consistently, the 43-nt deletion in the PK region significantly decreased the pathogenicity of the virus in bovines. Overall, our findings suggest that the PK region deletion occurred naturally in the FMDV genome and that the PK region is highly associated with viral host range and functions as a novel determinant for FMDV pathogenesis. IMPORTANCE This study demonstrates that the deletion in the PK region occurred naturally in the FMDV genome. The isolated O/ME-SA/PanAsia lineage FMDV with an 86-nt deletion in the PK region showed a pig-adapted characteristic that could cause clinical signs in swine but not bovines. Compared to the wild-type FMDV strain, which possesses full infection capacity in both swine and bovines, the recombinant virus with the 86-nt deletion in the PK region is deficient in causing disease in bovines. Deletion of the previously reported 43 nt in the PK region also led to significantly decreased pathogenicity of FMDV in bovines. This study indicates that the PK region is a novel determinant of the tropism and virulence of FMDV.
Collapse
|
13
|
Hussein HAM, Alfhili MA, Pakala P, Simon S, Hussain J, McCubrey JA, Akula SM. miRNAs and their roles in KSHV pathogenesis. Virus Res 2019; 266:15-24. [PMID: 30951791 DOI: 10.1016/j.virusres.2019.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman Disease (MCD). Recent mechanistic advances have discerned the importance of microRNAs in the virus-host relationship. KSHV has two modes of replication: lytic and latent phase. KSHV entry into permissive cells, establishment of infection, and maintenance of latency are contingent upon successful modulation of the host miRNA transcriptome. Apart from host cell miRNAs, KSHV also encodes viral miRNAs. Among various cellular and molecular targets, miRNAs are appearing to be key players in regulating viral pathogenesis. Therefore, the use of miRNAs as novel therapeutics has gained considerable attention as of late. This innovative approach relies on either mimicking miRNA species by identical oligonucleotides, or selective silencing of miRNA with specific oligonucleotide inhibitors. Here, we provide an overview of KSHV pathogenesis at the molecular level with special emphasis on the various roles miRNAs play during virus infection.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Faculty of Science, Al Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Alfhili
- Department of Medicine (Division of Hematology/Oncology), Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Pranaya Pakala
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Sandra Simon
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Jaffer Hussain
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
14
|
Yee PTI, Tan SH, Ong KC, Tan KO, Wong KT, Hassan SS, Poh CL. Development of live attenuated Enterovirus 71 vaccine strains that confer protection against lethal challenge in mice. Sci Rep 2019; 9:4805. [PMID: 30886246 PMCID: PMC6423319 DOI: 10.1038/s41598-019-41285-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5′NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.
Collapse
Affiliation(s)
- Pinn Tsin Isabel Yee
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Jalan University, 50603, Kuala Lumpur, Selangor, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Jalan University, 50603, Kuala Lumpur, Selangor, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor, 47500, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Jalan University, 50603, Kuala Lumpur, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia.
| |
Collapse
|
15
|
Fay EJ, Langlois RA. MicroRNA-Attenuated Virus Vaccines. Noncoding RNA 2018; 4:E25. [PMID: 30279330 PMCID: PMC6316615 DOI: 10.3390/ncrna4040025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
Live-attenuated vaccines are the most effective way to establish robust, long-lasting immunity against viruses. However, the possibility of reversion to wild type replication and pathogenicity raises concerns over the safety of these vaccines. The use of host-derived microRNAs (miRNAs) to attenuate viruses has been accomplished in an array of biological contexts. The broad assortment of effective tissue- and species-specific miRNAs, and the ability to target a virus with multiple miRNAs, allow for targeting to be tailored to the virus of interest. While escape is always a concern, effective strategies have been developed to improve the safety and stability of miRNA-attenuated viruses. In this review, we discuss the various approaches that have been used to engineer miRNA-attenuated viruses, the steps that have been taken to improve their safety, and the potential use of these viruses as vaccines.
Collapse
Affiliation(s)
- Elizabeth J Fay
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ryan A Langlois
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
Giri BR, Mahato RI, Cheng G. Roles of microRNAs in T cell immunity: Implications for strategy development against infectious diseases. Med Res Rev 2018; 39:706-732. [PMID: 30272819 DOI: 10.1002/med.21539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
T cell immunity plays a vital role in pathogen infections. MicroRNA (miRNAs) are small, single-stranded noncoding RNAs that regulate T cell immunity by targeting key transcriptional factors, signaling proteins, and cytokines associated with T cell activation, differentiation, and function. The dysregulation of miRNA expression in T cells may lead to specific immune responses and can provide new therapeutic opportunities against various infectious diseases. Here, we summarize recent studies that focus on the roles of miRNAs in T cell immunity and highlight miRNA functions in prevalent infectious diseases. Additionally, we also provide insights into the functions of extracellular vesicle miRNAs and attempt to delineate the mechanism of miRNA sorting into extracellular vesicles and their immunomodulatory functions. Moreover, methodologies and strategies for miRNA delivery against infectious diseases are summarized. Finally, potential strategies for miRNA-based therapies are proposed.
Collapse
Affiliation(s)
- Bikash R Giri
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Guofeng Cheng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
17
|
Analysis of the microRNA expression profiles in DEF cells infected with duck Tembusu virus. INFECTION GENETICS AND EVOLUTION 2018; 63:126-134. [PMID: 29803008 DOI: 10.1016/j.meegid.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/13/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Duck Tembusu virus (DTMUV), belonging to the Flaviviridae family, is a single-stranded positive-sense RNA virus. Since April 2010, the outbreak of DTMUV in southeast provinces of China has caused great economic losses. MicroRNAs (miRNAs) play important regulatory roles in viral infection through binding to the host target genes or the viral genomes. To better understanding the molecular mechanisms of virus-host interaction, here we identified the miRNA expression profiles in DTMUV-infected and uninfected DEF cells by high-throughput sequencing. A total of 287 known and 63 novel miRNAs were identified. 48 miRNAs, including 26 known miRNAs and 22 novel miRNAs, were differentially expressed in response to DTMUV infection. Among these miRNAs, 37 miRNAs were up-regulated and 11 miRNAs were down-regulated. 9 miRNAs were randomly selected for validation by qRT-PCR experiment. The results of qRT-PCR experiment were consistent with the sequencing data. GO enrichment showed that the predicted targets of these differentially expressed miRNAs were mainly involved in the regulation of immune system, cellular process and metabolic process. KEGG pathways analysis showed that predicted target genes were involved in several signaling pathways such as Wnt signaling pathway, TGF-beta signaling pathway, mTOR signaling pathway and FoxO signaling pathway. This is the first study to evaluate changes of miRNA expression in DEF cells upon DTMUV infection. Our findings provide important clues for better understanding the DTMUV-host interaction.
Collapse
|
18
|
MicroRNA-134 regulates poliovirus replication by IRES targeting. Sci Rep 2017; 7:12664. [PMID: 28978937 PMCID: PMC5627394 DOI: 10.1038/s41598-017-12860-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Global poliovirus eradication efforts include high vaccination coverage with live oral polio vaccine (OPV), surveillance for acute flaccid paralysis, and OPV “mop-up” campaigns. An important objective involves host-directed strategies to reduce PV replication to diminish viral shedding in OPV recipients. In this study, we show that microRNA-134-5p (miR-134) can regulate Sabin-1 replication but not Sabin-2 or Sabin-3 via direct interaction with the PV 5′UTR. Hypochromicity data showed miR-134 binding to Sabin-1 and 3 but not Sabin-2 IRES. Transfection of a miR-134 mimic repressed translation of Sabin-1 5′UTR driven luciferase validating the mechanism of miR-134-mediated repression of Sabin-1. Further, site directed mutagenesis of the miR-134 binding site in Sabin-1 IRES relieved miR-134-mediated repression indicating that these regulatory molecules have an important role in regulating the host gene response to PV. Binding of miR-134 to Sabin-1 IRES caused degradation of the IRES transcript in a miR-134 and sequence specific manner. The miR-134 binding site was found to be highly conserved in wild type PV-1 as well as EV71 strains indicating that miR-134 may regulate function of these IRES sequences in circulation.
Collapse
|
19
|
Drury RE, O'Connor D, Pollard AJ. The Clinical Application of MicroRNAs in Infectious Disease. Front Immunol 2017; 8:1182. [PMID: 28993774 PMCID: PMC5622146 DOI: 10.3389/fimmu.2017.01182] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.
Collapse
Affiliation(s)
- Ruth E Drury
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Department of Paediatrics, University of Oxford, The Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|