1
|
Heindel DW, Figueroa Acosta DM, Goff M, Yengo CK, Jan M, Liu X, Wang XH, Petrova MI, Zhang M, Sagar M, Barnette P, Pandey S, Hessell AJ, Chan KW, Kong XP, Chen BK, Mahal LK, Bensing BA, Hioe CE. HIV-1 interaction with an O-glycan-specific bacterial lectin enhances virus infectivity and resistance to neutralizing antibodies. iScience 2024; 27:110390. [PMID: 39108723 PMCID: PMC11301080 DOI: 10.1016/j.isci.2024.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/21/2023] [Accepted: 06/25/2024] [Indexed: 10/13/2024] Open
Abstract
Bacteria dysbiosis and its accompanying inflammation or compromised mucosal integrity is associated with an increased risk of HIV-1 transmission. However, HIV-1 may also bind bacteria or bacterial products to impact infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, a part of the fimbriae shrouding the bacteria surface that recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to neutralizing antibodies targeting different regions of Env. This study highlights the potential contribution of O-glycan-binding lectins from commensal bacteria at the mucosa in promoting HIV-1 infection.
Collapse
Affiliation(s)
- Daniel W. Heindel
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dania M. Figueroa Acosta
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marisa Goff
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clauvis Kunkeng Yengo
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muzafar Jan
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaomei Liu
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao-Hong Wang
- VA New York Harbor Healthcare System-Manhattan, New York, NY, USA
| | - Mariya I. Petrova
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Mo Zhang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Manish Sagar
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Phillip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin K. Chen
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Barbara A. Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Catarina E. Hioe
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
2
|
Heindel DW, Figueroa Acosta DM, Goff M, Yengo CK, Jan M, Liu X, Wang XH, Petrova MI, Zhang M, Sagar M, Barnette P, Pandey S, Hessell AJ, Chan KW, Kong XP, Chen BK, Mahal LK, Bensing BA, Hioe CE. HIV-1 interaction with an O-glycan-specific bacterial lectin enhances virus infectivity and resistance to neutralization by antibodies. RESEARCH SQUARE 2024:rs.3.rs-2596269. [PMID: 36824869 PMCID: PMC9949255 DOI: 10.21203/rs.3.rs-2596269/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bacteria dysbiosis has been associated with an increased risk of HIV-1 transmission and acquisition. The prevalent idea is that bacteria dysbiosis compromises mucosal integrity and promotes inflammatory conditions to cause recruitment and activation of immune cells that harbor or are targeted by HIV-1. However, it is also possible that HIV-1 directly binds bacteria or bacterial products to impact virus infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, which is part of the fimbriae shrouding the bacteria surface and recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. Conversely, N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to broadly neutralizing antibodies targeting different regions of Env. Hence, this study highlights the potential contribution of O-glycans in promoting HIV-1 infection through the exploitation of O-glycan-binding lectins from commensal bacteria at the mucosa.
Collapse
Affiliation(s)
- Daniel W Heindel
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dania M Figueroa Acosta
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marisa Goff
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clauvis Kunkeng Yengo
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muzafar Jan
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Present address: Department of Biochemistry, Government Degree College Handwara, University of Kashmir, Jammu & Kashmir, India
| | - Xiaomei Liu
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao-Hong Wang
- VA New York Harbor Healthcare System-Manhattan, New York, New York, United States of America
| | - Mariya I Petrova
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Present address: Microbiome Insights and Probiotics Consultancy, Karlovo, Bulgaria
| | - Mo Zhang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Manish Sagar
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Phillip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin K Chen
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Barbara A Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Catarina E Hioe
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, USA
| |
Collapse
|
3
|
Heindel DW, Figueroa Acosta DM, Goff M, Yengo CK, Jan M, Liu X, Wang XH, Petrova MI, Zhang M, Sagar M, Barnette P, Pandey S, Hessell AJ, Chan KW, Kong XP, Chen BK, Mahal LK, Bensing BA, Hioe CE. HIV-1 interaction with an O-glycan-specific bacterial lectin enhances virus infectivity and resistance to neutralization by antibodies. RESEARCH SQUARE 2024:rs.3.rs-2596269. [PMID: 36824869 PMCID: PMC9949255 DOI: 10.21203/rs.3.rs-2596269/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
Bacteria dysbiosis has been associated with an increased risk of HIV-1 transmission and acquisition. The prevalent idea is that bacteria dysbiosis compromises mucosal integrity and promotes inflammatory conditions to cause recruitment and activation of immune cells that harbor or are targeted by HIV-1. However, it is also possible that HIV-1 directly binds bacteria or bacterial products to impact virus infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, which is part of the fimbriae shrouding the bacteria surface and recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. Conversely, N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to broadly neutralizing antibodies targeting different regions of Env. Hence, this study highlights the potential contribution of O-glycans in promoting HIV-1 infection through the exploitation of O-glycan-binding lectins from commensal bacteria at the mucosa.
Collapse
Affiliation(s)
- Daniel W Heindel
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dania M Figueroa Acosta
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marisa Goff
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clauvis Kunkeng Yengo
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muzafar Jan
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Present address: Department of Biochemistry, Government Degree College Handwara, University of Kashmir, Jammu & Kashmir, India
| | - Xiaomei Liu
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao-Hong Wang
- VA New York Harbor Healthcare System-Manhattan, New York, New York, United States of America
| | - Mariya I Petrova
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Present address: Microbiome Insights and Probiotics Consultancy, Karlovo, Bulgaria
| | - Mo Zhang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Manish Sagar
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Phillip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin K Chen
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Barbara A Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Catarina E Hioe
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, USA
| |
Collapse
|
4
|
Hioe CE, Li G, Liu X, Tsahouridis O, He X, Funaki M, Klingler J, Tang AF, Feyznezhad R, Heindel DW, Wang XH, Spencer DA, Hu G, Satija N, Prévost J, Finzi A, Hessell AJ, Wang S, Lu S, Chen BK, Zolla-Pazner S, Upadhyay C, Alvarez R, Su L. Non-neutralizing antibodies targeting the immunogenic regions of HIV-1 envelope reduce mucosal infection and virus burden in humanized mice. PLoS Pathog 2022; 18:e1010183. [PMID: 34986207 PMCID: PMC8765624 DOI: 10.1371/journal.ppat.1010183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/18/2022] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
Antibodies are principal immune components elicited by vaccines to induce protection from microbial pathogens. In the Thai RV144 HIV-1 vaccine trial, vaccine efficacy was 31% and the sole primary correlate of reduced risk was shown to be vigorous antibody response targeting the V1V2 region of HIV-1 envelope. Antibodies against V3 also were inversely correlated with infection risk in subsets of vaccinees. Antibodies recognizing these regions, however, do not exhibit potent neutralizing activity. Therefore, we examined the antiviral potential of poorly neutralizing monoclonal antibodies (mAbs) against immunodominant V1V2 and V3 sites by passive administration of human mAbs to humanized mice engrafted with CD34+ hematopoietic stem cells, followed by mucosal challenge with an HIV-1 infectious molecular clone expressing the envelope of a tier 2 resistant HIV-1 strain. Treatment with anti-V1V2 mAb 2158 or anti-V3 mAb 2219 did not prevent infection, but V3 mAb 2219 displayed a superior potency compared to V1V2 mAb 2158 in reducing virus burden. While these mAbs had no or weak neutralizing activity and elicited undetectable levels of antibody-dependent cellular cytotoxicity (ADCC), V3 mAb 2219 displayed a greater capacity to bind virus- and cell-associated HIV-1 envelope and to mediate antibody-dependent cellular phagocytosis (ADCP) and C1q complement binding as compared to V1V2 mAb 2158. Mutations in the Fc region of 2219 diminished these effector activities in vitro and lessened virus control in humanized mice. These results demonstrate the importance of Fc functions other than ADCC for antibodies without potent neutralizing activity.
Collapse
Affiliation(s)
- Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, New York, United States of America
| | - Guangming Li
- Laboratory of Viral Pathogenesis and Immunotherapy, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Xiaomei Liu
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ourania Tsahouridis
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Xiuting He
- Laboratory of Viral Pathogenesis and Immunotherapy, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Masaya Funaki
- Laboratory of Viral Pathogenesis and Immunotherapy, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jéromine Klingler
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, New York, United States of America
| | - Alex F. Tang
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- School of Medicine, University of California, San Francisco, California, United States of America
| | - Roya Feyznezhad
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Daniel W. Heindel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Xiao-Hong Wang
- VA New York Harbor Healthcare System–Manhattan, New York, New York, United States of America
| | - David A. Spencer
- Division of Pathobiology & Immunology, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Guangnan Hu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Namita Satija
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jérémie Prévost
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Andrés Finzi
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Ann J. Hessell
- Division of Pathobiology & Immunology, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Susan Zolla-Pazner
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Raymond Alvarez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lishan Su
- Laboratory of Viral Pathogenesis and Immunotherapy, Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Laboratory of Viral Pathogenesis and Immunotherapy, Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Departments of Pharmacology and Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Friedrich N, Stiegeler E, Glögl M, Lemmin T, Hansen S, Kadelka C, Wu Y, Ernst P, Maliqi L, Foulkes C, Morin M, Eroglu M, Liechti T, Ivan B, Reinberg T, Schaefer JV, Karakus U, Ursprung S, Mann A, Rusert P, Kouyos RD, Robinson JA, Günthard HF, Plückthun A, Trkola A. Distinct conformations of the HIV-1 V3 loop crown are targetable for broad neutralization. Nat Commun 2021; 12:6705. [PMID: 34795280 PMCID: PMC8602657 DOI: 10.1038/s41467-021-27075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
The V3 loop of the HIV-1 envelope (Env) protein elicits a vigorous, but largely non-neutralizing antibody response directed to the V3-crown, whereas rare broadly neutralizing antibodies (bnAbs) target the V3-base. Challenging this view, we present V3-crown directed broadly neutralizing Designed Ankyrin Repeat Proteins (bnDs) matching the breadth of V3-base bnAbs. While most bnAbs target prefusion Env, V3-crown bnDs bind open Env conformations triggered by CD4 engagement. BnDs achieve breadth by focusing on highly conserved residues that are accessible in two distinct V3 conformations, one of which resembles CCR5-bound V3. We further show that these V3-crown conformations can, in principle, be attacked by antibodies. Supporting this conclusion, analysis of antibody binding activity in the Swiss 4.5 K HIV-1 cohort (n = 4,281) revealed a co-evolution of V3-crown reactivities and neutralization breadth. Our results indicate a role of V3-crown responses and its conformational preferences in bnAb development to be considered in preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Nikolas Friedrich
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Emanuel Stiegeler
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.424277.0Present Address: Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Deutschland
| | - Matthias Glögl
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Thomas Lemmin
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.5801.c0000 0001 2156 2780Department of Computer Science, ETH Zurich, Zurich, Switzerland ,grid.29078.340000 0001 2203 2861Present Address: Euler Institute, Faculty of Biomedicine, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Simon Hansen
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: NGM Bio, 333 Oysterpoint Blvd, South San Francisco, CA 94080 USA
| | - Claus Kadelka
- grid.34421.300000 0004 1936 7312Department of Mathematics, Iowa State University, Ames, IA USA
| | - Yufan Wu
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Innovent Biologics Inc, 168 Dongping Street, Suzhou Industrial Park, 215123 China
| | - Patrick Ernst
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Present Address: Office Research and Teaching, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Liridona Maliqi
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Caio Foulkes
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Mylène Morin
- grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich (UZH), Zurich, Switzerland ,Present Address: BeiGene Switzerland GmbH, Aeschengraben 27, 4051 Basel, Switzerland
| | - Mustafa Eroglu
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Janssen Vaccines AG, Rehhagstrasse 79, 3018 Bern, Switzerland
| | - Thomas Liechti
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.419681.30000 0001 2164 9667Present Address: ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD USA
| | - Branislav Ivan
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.410567.1Present Address: Laboratory Medicine, Division of Clinical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Thomas Reinberg
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Jonas V. Schaefer
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland ,grid.419481.10000 0001 1515 9979Present Address: Novartis Institutes for BioMedical Research, Chemical Biology & Therapeutics (CBT), Novartis Pharma AG, Virchow 16, 4056 Basel, Switzerland
| | - Umut Karakus
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Stephan Ursprung
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.5335.00000000121885934Present Address: University of Cambridge School of Clinical Medicine, Department of Radiology, Cambridge, CB2 0QQ UK
| | - Axel Mann
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,Present Address: Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Peter Rusert
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Roger D. Kouyos
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - John A. Robinson
- grid.7400.30000 0004 1937 0650Department of Chemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Huldrych F. Günthard
- grid.7400.30000 0004 1937 0650Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Andreas Plückthun
- grid.7400.30000 0004 1937 0650Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
6
|
Sarkar S, Spencer DA, Barnette P, Pandey S, Sutton WF, Basu M, Burch RE, Cleveland JD, Rosenberg AF, Rangel-Moreno J, Keefer MC, Hessell AJ, Haigwood NL, Kobie JJ. CD4+ T Cells Are Dispensable for Induction of Broad Heterologous HIV Neutralizing Antibodies in Rhesus Macaques. Front Immunol 2021; 12:757811. [PMID: 34745131 PMCID: PMC8564110 DOI: 10.3389/fimmu.2021.757811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Induction of broadly neutralizing antibodies (bNAbs) is a major goal for HIV vaccine development. HIV envelope glycoprotein (Env)-specific bNAbs isolated from HIV-infected individuals exhibit substantial somatic hypermutation and correlate with T follicular helper (Tfh) responses. Using the VC10014 DNA-protein co-immunization vaccine platform consisting of gp160 plasmids and gp140 trimeric proteins derived from an HIV-1 infected subject that developed bNAbs, we determined the characteristics of the Env-specific humoral response in vaccinated rhesus macaques in the context of CD4+ T cell depletion. Unexpectedly, both CD4+ depleted and non-depleted animals developed comparable Tier 1 and 2 heterologous HIV-1 neutralizing plasma antibody titers. There was no deficit in protection from SHIV challenge, no diminution of titers of HIV Env-specific cross-clade binding antibodies, antibody dependent cellular phagocytosis, or antibody-dependent complement deposition in the CD4+ depleted animals. These collective results suggest that in the presence of diminished CD4+ T cell help, HIV neutralizing antibodies were still generated, which may have implications for developing effective HIV vaccine strategies.
Collapse
Affiliation(s)
- Sanghita Sarkar
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David A. Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - William F. Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Madhubanti Basu
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Reuben E. Burch
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John D. Cleveland
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander F. Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael C. Keefer
- Department of Medicine, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, NY, United States
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - James J. Kobie
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Spencer DA, Malherbe DC, Vázquez Bernat N, Ádori M, Goldberg B, Dambrauskas N, Henderson H, Pandey S, Cheever T, Barnette P, Sutton WF, Ackerman ME, Kobie JJ, Sather DN, Karlsson Hedestam GB, Haigwood NL, Hessell AJ. Polyfunctional Tier 2-Neutralizing Antibodies Cloned following HIV-1 Env Macaque Immunization Mirror Native Antibodies in a Human Donor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:999-1012. [PMID: 33472907 PMCID: PMC7887735 DOI: 10.4049/jimmunol.2001082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022]
Abstract
Vaccine efforts to combat HIV are challenged by the global diversity of viral strains and shielding of neutralization epitopes on the viral envelope glycoprotein trimer. Even so, the isolation of broadly neutralizing Abs from infected individuals suggests the potential for eliciting protective Abs through vaccination. This study reports a panel of 58 mAbs cloned from a rhesus macaque (Macaca mulatta) immunized with envelope glycoprotein immunogens curated from an HIV-1 clade C-infected volunteer. Twenty mAbs showed neutralizing activity, and the strongest neutralizer displayed 92% breadth with a median IC50 of 1.35 μg/ml against a 13-virus panel. Neutralizing mAbs predominantly targeted linear epitopes in the V3 region in the cradle orientation (V3C) with others targeting the V3 ladle orientation (V3L), the CD4 binding site (CD4bs), C1, C4, or gp41. Nonneutralizing mAbs bound C1, C5, or undetermined conformational epitopes. Neutralization potency strongly correlated with the magnitude of binding to infected primary macaque splenocytes and to the level of Ab-dependent cellular cytotoxicity, but did not predict the degree of Ab-dependent cellular phagocytosis. Using an individualized germline gene database, mAbs were traced to 23 of 72 functional IgHV alleles. Neutralizing V3C Abs displayed minimal nucleotide somatic hypermutation in the H chain V region (3.77%), indicating that relatively little affinity maturation was needed to achieve in-clade neutralization breadth. Overall, this study underscores the polyfunctional nature of vaccine-elicited tier 2-neutralizing V3 Abs and demonstrates partial reproduction of the human donor's humoral immune response through nonhuman primate vaccination.
Collapse
Affiliation(s)
- David A Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Delphine C Malherbe
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Néstor Vázquez Bernat
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | - Monika Ádori
- Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Stockholm, Sweden
| | | | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
| | - Heidi Henderson
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Tracy Cheever
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - William F Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | | | - James J Kobie
- Infectious Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA 98105; and
| | | | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
- Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University, Portland, OR 97239
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006;
| |
Collapse
|
8
|
Immune Complex Vaccine Strategies to Combat HIV-1 and Other Infectious Diseases. Vaccines (Basel) 2021; 9:vaccines9020112. [PMID: 33540685 PMCID: PMC7913084 DOI: 10.3390/vaccines9020112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 01/16/2023] Open
Abstract
Immune complexes (ICs) made of antibody-bound antigens exhibit immunomodulatory activities exploitable in a vaccination strategy to optimize vaccine efficacy. The modulatory effects of ICs are typically attributed to the Fc fragments of the antibody components, which engage Fc receptors, complement and complement receptors on various immune cells. These Fc-mediated functions facilitate the critical interplay between innate and adaptive immune systems to impact the quality and quantity of the elicited adaptive responses. In addition to the Fc contribution, the Fab fragment also plays an immunoregulation role. The antigen-binding domains of the Fab fragment can bind their specific epitopes at high affinity to sterically occlude these antigenic sites from recognition by other antibodies. Moreover, the Fab-mediated binding has been demonstrated to induce allosteric alterations at nearby or distant antigenic sites. In this review article, we survey published studies to illuminate how the immunomodulatory functions of ICs have been investigated or utilized in a vaccination strategy to fight against an array of infectious pathogens, culminating with IC vaccine designs aimed at preventing HIV-1 infection. In particular, we highlight IC vaccine candidates that exploit Fab-mediated steric and allosteric effects to direct antibody responses away or toward the V1V2 domain, the V3 loop, and other antigenic sites on the HIV-1 envelope gp120 glycoprotein. Like other HIV-1 vaccine approaches, the path for IC-based vaccines to reach the clinic faces major hurdles yet to be overcome; however, investigations into this vaccine strategy have provided insights into the multifaceted activities of antibodies beyond their conventional roles in the host defense against HIV-1 and other microbial pathogens.
Collapse
|
9
|
Kaku Y, Kuwata T, Gorny MK, Matsushita S. Prediction of Contact Residues in Anti-HIV Neutralizing Antibody by Deep Learning. Jpn J Infect Dis 2020; 73:235-241. [PMID: 32009060 DOI: 10.7883/yoken.jjid.2019.496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The monoclonal antibody 1C10 targets the V3 loop of HIV-1 and neutralizes a broad range of clade B viruses. However, the mode of interaction between 1C10 and the V3 loop remains unclear because crystallization of 1C10 and the V3 peptide was unsuccessful due to the flexible regions present in both 1C10 and the V3 peptide. In this study, we predicted the 1C10 amino acid residues that make contact with the V3 loop using a deep learning (DL)-based method. Inputs from ROSIE for docking simulation and FastContact, Naccess, and PDBtools, to approximate interactions were processed by Chainer for DL, and outputs were obtained as probabilities of contact residues. Using this DL algorithm, D95, D97, P100a, and D100b of CDRH3; D53, and D56 of CDRH2; and D61 of FR3 were highly ranked as contact residues of 1C10. Substitution of these residues with alanine significantly decreased the affinity of 1C10 to the V3 peptide. Moreover, the higher the rank of the residue, the more the binding activity diminished. This study demonstrates that the prediction of contact residues using a DL-based approach is a precise and useful tool for the analysis of antibody-antigen interactions.
Collapse
Affiliation(s)
- Yu Kaku
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University
| | - Takeo Kuwata
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University
| | | | - Shuzo Matsushita
- Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University
| |
Collapse
|
10
|
Han Q, Jones JA, Nicely NI, Reed RK, Shen X, Mansouri K, Louder M, Trama AM, Alam SM, Edwards RJ, Bonsignori M, Tomaras GD, Korber B, Montefiori DC, Mascola JR, Seaman MS, Haynes BF, Saunders KO. Difficult-to-neutralize global HIV-1 isolates are neutralized by antibodies targeting open envelope conformations. Nat Commun 2019; 10:2898. [PMID: 31263112 PMCID: PMC6602974 DOI: 10.1038/s41467-019-10899-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
The HIV-1 envelope (Env) is the target for neutralizing antibodies and exists on the surface of virions in open or closed conformations. Difficult-to-neutralize viruses (tier 2) express Env in a closed conformation antigenic for broadly neutralizing antibodies (bnAbs) but not for third variable region (V3) antibodies. Here we show that select V3 macaque antibodies elicited by Env vaccination can neutralize 26% of otherwise tier 2 HIV-1 isolates in standardized virus panels. The V3 antibodies only bound to Env in its open conformation. Thus, Envs on tier 2 viruses sample a state where the V3 loop is not in its closed conformation position. Envelope second variable region length, glycosylation sites and V3 amino acids were signatures of neutralization sensitivity. This study determined that open conformations of Env with V3 exposed are present on a subset of otherwise neutralization-resistant virions, therefore neutralization of tier 2 HIV-1 does not always indicate bnAb induction.
Collapse
Affiliation(s)
- Qifeng Han
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Julia A Jones
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nathan I Nicely
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Rachel K Reed
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Xiaoying Shen
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mark Louder
- Vaccine Research Center, National Instiftute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| | - Ashley M Trama
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - S Munir Alam
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mattia Bonsignori
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Microbiology and Molecular Genetics, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - John R Mascola
- Vaccine Research Center, National Instiftute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, 20892, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Barton F Haynes
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Microbiology and Molecular Genetics, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Increased Epitope Complexity Correlated with Antibody Affinity Maturation and a Novel Binding Mode Revealed by Structures of Rabbit Antibodies against the Third Variable Loop (V3) of HIV-1 gp120. J Virol 2018; 92:JVI.01894-17. [PMID: 29343576 DOI: 10.1128/jvi.01894-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/10/2018] [Indexed: 11/20/2022] Open
Abstract
The third variable (V3) loop of HIV-1 gp120 is an immunodominant region targeted by neutralizing antibodies (nAbs). Despite limited breadth, better characterization of the structural details of the interactions between these nAbs and their target epitopes would enhance our understanding of the mechanism of neutralization and facilitate designing better immunogens to induce nAbs with greater breadth. Recently, we isolated two anti-V3 neutralizing monoclonal antibodies (MAbs), 10A3 and 10A37, from a rabbit immunized with gp120 of the M group consensus sequence. In this study, crystal structures of these MAbs bound to target epitopes were determined. 10A3 binds to the V3 crown (303TRKSIHIGPGRAF317) using the cradle binding mode, similar to human V3 MAbs encoded by IGHV5-51 germ line genes, and its epitope structure resembles that bound to the human antibodies. In contrast, 10A37, which exhibits greater breadth and potency than 10A3, binds the V3 crown and the succeeding stem region (308HIGPGRAFYTTGEI323). Unexpectedly, the 315RAFYTT320 portion of the epitope existed as helical turns, a V3 structure that has not been observed previously. Its main chain-dominated antigen-antibody interactions not only explain the broad neutralization of 10A37 but also show that its epitope is a potential vaccine target to be further evaluated. In conclusion, our study provides novel insights about neutralization-susceptible epitope structures of the V3 loop of HIV-1 gp120 and demonstrates that, despite low amino acid sequence similarity to human antibody germ line genes, rabbits can serve as a useful animal model to evaluate human vaccine candidates.IMPORTANCE The apex crown of V3 of HIV-1 gp120 is the most immunogenic region of the surface glycoprotein, and many MAbs targeting this region have been developed. Structural understanding of V3 crown MAbs not only can help understand how antibody responses target this unique region but also contribute to immunogen design for vaccine development. We present here crystal structures of two neutralizing V3 MAbs, 10A3 and 10A37, developed from a rabbit immunized with gp120. Our analysis of 10A3 in complex with V3 provided a detailed example of how epitope complexity can evolve with affinity maturation, while that of 10A37 revealed a novel V3 binding mode targeting the C-terminal side of the V3 crown and showed that this region can form a helical structure. Our study provides novel insights about neutralization-susceptible V3 epitope structures and demonstrates that rabbits can serve as a useful animal model to evaluate human vaccine candidates.
Collapse
|
12
|
Khan S, Iqbal M, Tariq M, Baig SM, Abbas W. Epigenetic regulation of HIV-1 latency: focus on polycomb group (PcG) proteins. Clin Epigenetics 2018; 10:14. [PMID: 29441145 PMCID: PMC5800276 DOI: 10.1186/s13148-018-0441-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 01/10/2023] Open
Abstract
HIV-1 latency allows the virus to persist until reactivation, in a transcriptionally silent form in its cellular reservoirs despite the presence of effective cART. Such viral persistence represents a major barrier to HIV eradication since treatment interruption leads to rebound plasma viremia. Polycomb group (PcG) proteins have recently got a considerable attention in regulating HIV-1 post-integration latency as they are involved in the repression of proviral gene expression through the methylation of histones. This epigenetic regulation plays an important role in the establishment and maintenance of HIV-1 latency. In fact, PcG proteins act in complexes and modulate the epigenetic signatures of integrated HIV-1 promoter. Key role played by PcG proteins in the molecular control of HIV-1 latency has led to hypothesize that PcG proteins may represent a valuable target for future HIV-1 therapy in purging HIV-1 reservoirs. In this regard, various small molecules have been synthesized or explored to specifically block the epigenetic activity of PcG. In this review, we will highlight the possible therapeutic approaches to achieve either a functional or sterilizing cure of HIV-1 infection with special focus on histone methylation by PcG proteins together with current and novel pharmacological approaches to reactivate HIV-1 from latency that could ultimately lead towards a better clearance of viral latent reservoirs.
Collapse
Affiliation(s)
- Sheraz Khan
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Muhammad Tariq
- Department of Biology (Epigenetics group), SBA School of Science and Engineering, LUMS, Lahore, 54792 Pakistan
| | - Shahid M. Baig
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division (HBD), National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang road, Faisalabad, 38000 Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| |
Collapse
|
13
|
Functional Antibody Response Against V1V2 and V3 of HIV gp120 in the VAX003 and VAX004 Vaccine Trials. Sci Rep 2018; 8:542. [PMID: 29323175 PMCID: PMC5765017 DOI: 10.1038/s41598-017-18863-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
Immunization with HIV AIDSVAX gp120 vaccines in the phase III VAX003 and VAX004 trials did not confer protection. To understand the shortcomings in antibody (Ab) responses induced by these vaccines, we evaluated the kinetics of Ab responses to the V1V2 and V3 regions of gp120 and the induction of Ab-mediated antiviral functions during the course of 7 vaccinations over a 30.5-month period. Plasma samples from VAX003 and VAX004 vaccinees and placebo recipients were measured for ELISA-binding Abs and for virus neutralization, Ab-dependent cellular phagocytosis (ADCP), and Ab-dependent cellular cytotoxicity (ADCC). Ab responses to V1V2 and V3 peaked after 3 to 4 immunizations and declined after 5 to 7 immunizations. The deteriorating responses were most evident against epitopes in the underside of the V1V2 β-barrel and in the V3 crown. Correspondingly, vaccinees demonstrated higher neutralization against SF162 pseudovirus sensitive to anti-V1V2 and anti-V3 Abs after 3 or 4 immunizations than after 7 immunizations. Higher levels of ADCP and ADCC were also observed at early or mid-time points as compared with the final time point. Hence, VAX003 and VAX004 vaccinees generated V1V2- and V3-binding Abs and functional Abs after 3 to 4 immunizations, but subsequent boosts did not maintain these responses.
Collapse
|
14
|
HIV-1 Cross-Reactive Primary Virus Neutralizing Antibody Response Elicited by Immunization in Nonhuman Primates. J Virol 2017; 91:JVI.00910-17. [PMID: 28835491 DOI: 10.1128/jvi.00910-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022] Open
Abstract
Elicitation of broadly neutralizing antibody (bNAb) responses is a major goal for the development of an HIV-1 vaccine. Current HIV-1 envelope glycoprotein (Env) vaccine candidates elicit predominantly tier 1 and/or autologous tier 2 virus neutralizing antibody (NAb) responses, as well as weak and/or sporadic cross-reactive tier 2 virus NAb responses with unknown specificity. To delineate the specificity of vaccine-elicited cross-reactive tier 2 virus NAb responses, we performed single memory B cell sorting from the peripheral blood of a rhesus macaque immunized with YU2gp140-F trimers in adjuvant, using JR-FL SOSIP.664, a native Env trimer mimetic, as a sorting probe to isolate monoclonal Abs (MAbs). We found striking genetic and functional convergence of the SOSIP-sorted Ig repertoire, with predominant VH4 or VH5 gene family usage and Env V3 specificity. Of these vaccine-elicited V3-specific MAbs, nearly 20% (6/33) displayed cross-reactive tier 2 virus neutralization, which recapitulated the serum neutralization capacity. Substantial similarities in binding specificity, neutralization breadth and potency, and sequence/structural homology were observed between selected macaque cross-reactive V3 NAbs elicited by vaccination and prototypic V3 NAbs derived from natural infections in humans, highlighting the convergence of this subset of primate V3-specific B cell repertories. Our study demonstrated that cross-reactive primary virus neutralizing B cell lineages could be elicited by vaccination as detected using a standardized panel of tier 2 viruses. Whether these lineages could be expanded to acquire increased breadth and potency of neutralization merits further investigation.IMPORTANCE Elicitation of antibody responses capable of neutralizing diverse HIV-1 primary virus isolates (designated broadly neutralizing antibodies [bNAbs]) remains a high priority for the vaccine field. bNAb responses were so far observed only in response to natural infection within a subset of individuals. To achieve this goal, an improved understanding of vaccine-elicited responses, including at the monoclonal Ab level, is essential. Here, we isolated and characterized a panel of vaccine-elicited cross-reactive neutralizing MAbs targeting the Env V3 loop that moderately neutralized several primary viruses and recapitulated the serum neutralizing antibody response. Striking similarities between the cross-reactive V3 NAbs elicited by vaccination in macaques and natural infections in humans illustrate commonalities between the vaccine- and infection-induced responses to V3 and support the feasibility of exploring the V3 epitope as a HIV-1 vaccine target in nonhuman primates.
Collapse
|