1
|
Kassianos G, Barasheed O, Abbing-Karahagopian V, Khalaf M, Ozturk S, Banzhoff A, Badur S. Meningococcal B Immunisation in Adults and Potential Broader Immunisation Strategies: A Narrative Review. Infect Dis Ther 2023; 12:2193-2219. [PMID: 37428339 PMCID: PMC10581987 DOI: 10.1007/s40121-023-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Recombinant vaccines against invasive meningococcal disease due to Neisseria meningitidis serogroup B (MenB) have shown substantial impact in reducing MenB disease in targeted populations. 4CMenB targets four key N. meningitidis protein antigens; human factor H binding protein (fHbp), Neisserial heparin binding antigen (NHBA), Neisseria adhesin A (NadA) and the porin A protein (PorA P1.4), with one or more of these expressed by most pathogenic MenB strains, while MenB-FHbp targets two distinct fHbp variants. While many countries recommend MenB immunisation in adults considered at high risk due to underlying medical conditions or immunosuppression, there are no recommendations for routine use in the general adult population. We reviewed the burden of MenB in adults, where, while incidence rates remain low (and far lower than in young children < 5 years of age at greatest risk), a substantial proportion of MenB cases (20% or more) is now observed in the adult population; evident in Europe, Australia, and in the United States. We also reviewed immunogenicity data in adults from clinical studies conducted during MenB vaccine development and subsequent post-licensure studies. A 2-dose schedule of 4CMenB generates hSBA titres ≥ 1:4 towards all four key vaccine target antigens in up to 98-100% of subjects. For MenB-FHbp, a ≥ fourfold rise in hSBA titres against the four primary representative test strains was observed in 70-95% of recipients following a 3-dose schedule. While this suggests potential benefits for MenB immunisation if used in adult populations, data are limited (especially for adults > 50 years) and key aspects relating to duration of protection remain unclear. Although a broader adult MenB immunisation policy could provide greater protection of the adult population, additional data are required to support policy decision-making.
Collapse
Affiliation(s)
- George Kassianos
- Royal College of General Practitioners, London, UK
- The British Global and Travel Health Association, London, UK
| | | | | | | | | | | | | |
Collapse
|
2
|
Zografaki I, Detsis M, Del Amo M, Iantomasi R, Maia A, Montuori EA, Mendez C. Invasive Meningococcal Disease epidemiology and vaccination strategies in four Southern European countries: a review of the available data. Expert Rev Vaccines 2023. [PMID: 37316234 DOI: 10.1080/14760584.2023.2225596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Invasive meningococcal disease (IMD) is a major health concern which can be prevented through vaccination. Conjugate vaccines against serogroups A, C, W and Y and two protein-based vaccines against serogroup B are currently available in the European Union. AREAS COVERED We present epidemiologic data for Italy, Portugal, Greece and Spain using publicly available reports from national reference laboratories and national or regional immunization programs (1999-2019), aiming to confirm risk groups, and describe time trends in overall incidence and serogroup distribution, as well as impact of immunization. Analysis of circulating MenB isolates in terms of the surface factor H binding protein (fHbp) using PubMLST is discussed as fHbp represents an important MenB vaccine antigen. Predictions of potential reactivity of the two available MenB vaccines (MenB-fHbp and 4CMenB) with circulating MenB isolates are also provided as assessed using the recently developed MenDeVAR tool. EXPERT OPINION Understanding dynamics of IMD and continued genomic surveillance are essential for evaluating vaccine effectiveness, but also prompting proactive immunization programs to prevent future outbreaks. Importantly, the successful design of further effective meningococcal vaccines to fight IMD relies on considering the unpredictable epidemiology of the disease and combining lessons learnt from capsule polysaccharide vaccines and protein-based vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Ana Maia
- Vaccines Department, Pfizer Portugal, Lisbon, Portugal
| | | | | |
Collapse
|
3
|
Findlow J, Borrow R, Stephens DS, Liberator P, Anderson AS, Balmer P, Jodar L. Correlates of protection for meningococcal surface protein vaccines; current approaches for the determination of breadth of coverage. Expert Rev Vaccines 2022; 21:753-769. [PMID: 35469524 DOI: 10.1080/14760584.2022.2064850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The two currently licensed surface protein non capsular meningococcal serogroup B (MenB) vaccines both have the purpose of providing broad coverage against diverse MenB strains. However, the different antigen compositions and approaches used to assess breadth of coverage currently make direct comparisons complex. AREAS COVERED In the second of two companion papers, we comprehensively review the serology and factors influencing breadth of coverage assessments for two currently licensed MenB vaccines. EXPERT OPINION Surface protein MenB vaccines were developed using different approaches, resulting in unique formulations and thus their breadth of coverage. The surface proteins used as vaccine antigens can vary among meningococcal strains due to gene presence/absence, sequence diversity and differences in protein expression. Assessment of the breadth of coverage provided by vaccines is influenced by the ability to induce cross-reactive functional immune responses to sequence diverse protein variants; the characteristics of the circulating invasive strains from specific geographic locations; methodological differences in the immunogenicity assays; differences in human immune responses between individuals; and the maintenance of protective antibody levels over time. Understanding the proportion of meningococcal strains which are covered by the two licensed vaccines is important in understanding protection from disease and public health use.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - David S Stephens
- Woodruff Health Sciences Center, Emory University, Atlanta, Georgia, USA
| | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| | | | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Luis Jodar
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
4
|
Safadi MAP, Martinón-Torres F, Serra L, Burman C, Presa J. Translating meningococcal serogroup B vaccines for healthcare professionals. Expert Rev Vaccines 2021; 20:401-414. [PMID: 34151699 DOI: 10.1080/14760584.2021.1899820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Vaccination is an effective strategy to combat invasive meningococcal disease (IMD). Vaccines against the major disease-causing meningococcal serogroups are available; however, development of vaccines against serogroup B faced particular challenges, including the inability to target traditional meningococcal antigens (i.e. polysaccharide capsule) and limited alternative antigens due to serogroup B strain diversity. Two different recombinant, protein-based, serogroup B (MenB) vaccines that may address these challenges are currently available. These vaccines have been extensively evaluated in pre-licensure safety and immunogenicity trials, and recently in real-world studies on effectiveness, safety, and impact on disease burden. AREAS COVERED This review provides healthcare professionals, particularly pediatricians, an overview of currently available MenB vaccines, including development strategies and evaluation of coverage. EXPERT OPINION Overall, recombinant MenB vaccines are valuable tools for healthcare professionals to protect patients against IMD. Their development required innovative design approaches that overcame challenging hurdles and identified novel protein antigen targets; however, important distinctions in the approaches used in their development, evaluation, and administration exist and many unanswered questions remain. Healthcare providers frequently prescribing MenB vaccines are challenged to keep abreast of these differences to ensure patient protection against this serious disease.
Collapse
Affiliation(s)
- Marco Aurelio P Safadi
- Department of Pediatrics, Santa Casa De São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain.,Genetics, Vaccines and Pediatrics Research Group, Universitario De Santiago De Compostela, Instituto De Investigación Sanitaria De Santiago De Compostela, Santiago De Compostela, Spain
| | - Lidia Serra
- Pfizer Vaccine Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA
| | - Cynthia Burman
- Pfizer Vaccine Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA
| | - Jessica Presa
- Pfizer Vaccines, Medical and Scientific Affairs, Collegeville, PA, USA
| |
Collapse
|
5
|
Martinón-Torres F, Banzhoff A, Azzari C, De Wals P, Marlow R, Marshall H, Pizza M, Rappuoli R, Bekkat-Berkani R. Recent advances in meningococcal B disease prevention: real-world evidence from 4CMenB vaccination. J Infect 2021; 83:17-26. [PMID: 33933528 DOI: 10.1016/j.jinf.2021.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVES 4CMenB is a broadly protective vaccine against invasive meningococcal capsular group B disease (MenB IMD). Licensed worldwide based on immunogenicity and safety data, effectiveness and impact data are now available. We comprehensively reviewed all available real-world evidence gathered from use of 4CMenB since licensure. RESULTS Data from 7 countries provide evidence of effectiveness and impact across different healthcare settings and age-groups, including national/regional immunization programs, observational studies and outbreak control. At least 2 4CMenB doses reduced MenB IMD by 50%-100% in 2-month to 20-year-olds depending on length of follow-up. Estimates of vaccine effectiveness in fully vaccinated cohorts ranged from 59%-100%. The safety profile of 4CMenB administered in real-world settings was consistent with pre-licensure clinical trial data. CONCLUSION MenB IMD is an uncommon but life-threatening disease with unpredictable epidemiology. The substantial body of data demonstrating 4CMenB effectiveness and impact supports its use in IMD prevention. The results reinforce the importance of direct protection of the highest risk groups; infants/young children and adolescents. Direct protection via routine infant immunization with catch-up in young children and routine adolescent vaccination could be the preferred option for MenB disease control. A Video Abstract linked to this article is available on Figshare: https://doi.org/10.6084/m9.figshare.14546790.
Collapse
Affiliation(s)
- Federico Martinón-Torres
- Hospital Clínico Universitario de Santiago de Compostela and University of Santiago, A Choupana, s/n, 15706 Santiago de Compostela, Spain
| | | | - Chiara Azzari
- University of Florence, Dipartimento di Scienze della Salute, Florence, Italy
| | - Philippe De Wals
- Department of Social and Preventive Medicine, Laval University, Division of Biological Risks and Occupational Health, Quebec National Public Health Institute (Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec), and Quebec University Hospital Research Centre, Quebec City, Canada
| | - Robin Marlow
- Bristol Medical School, University of Bristol, Bristol, BS8* 2PS, United Kingdom
| | - Helen Marshall
- VIRTU, Women's and Children's Health Network & Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | | | | | | |
Collapse
|
6
|
Four-component Meningococcal Serogroup B Vaccine Induces Antibodies With Bactericidal Activity Against Diverse Outbreak Strains in Adolescents. Pediatr Infect Dis J 2021; 40:e66-e71. [PMID: 33060520 DOI: 10.1097/inf.0000000000002957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neisseria meningitidis serogroup B (MenB) causes most meningitis outbreaks worldwide. We evaluated the ability of the 4-component MenB vaccine (4CMenB) to induce bactericidal activity against outbreak strains in adolescents. METHODS Individual sera from 20 United States and 23 Chilean adolescents who received 2 doses of 4CMenB 2 months apart were assayed at prevaccination and 1 month after second dose using a human complement serum bactericidal antibody assay (hSBA) against a full or subset strain panel consisting of 14 MenB outbreak strains and 1 MenW hyperendemic strain collected between 2001 and 2017 in the United States, United Kingdom, and France. Bactericidal activity was determined as the percentage of adolescents with hSBA titer ≥1:4 or ≥1:8. RESULTS One month after the second 4CMenB dose, antibodies from 65% to 100% of the US adolescents were able to kill 12 of 15 strains at 1:4 dilution. The remaining 3 strains were killed by 45%, 25%, and 15% of US adolescent sera. Similar percentages exhibited hSBA titers of ≥1:8. Across a subset of 4 strains, point estimates for the percentages of Chilean and US adolescents with hSBA titers of ≥1:4 after the second 4CMenB dose were similar (100% for strain M27703, 74% vs. 80% for M26312, 52% vs. 45% for M08 0240745), except for strain M39090 (91% vs. 65%). CONCLUSIONS This study was the first to evaluate bactericidal activity elicited by a MenB vaccine against 15 outbreak strains. Two doses of 4CMenB elicited bactericidal activity against MenB outbreak strains and a hyperendemic MenW strain.
Collapse
|
7
|
Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) Index: a Rapid and Accessible Tool That Exploits Genomic Data in Public Health and Clinical Microbiology Applications. J Clin Microbiol 2020; 59:JCM.02161-20. [PMID: 33055180 PMCID: PMC7771438 DOI: 10.1128/jcm.02161-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
As microbial genomics makes increasingly important contributions to clinical and public health microbiology, the interpretation of whole-genome sequence data by nonspecialists becomes essential. In the absence of capsule-based vaccines, two protein-based vaccines have been used for the prevention of invasive serogroup B meningococcal disease (IMD) since their licensure in 2013 and 2014. These vaccines have different components and different levels of coverage of meningococcal variants. Hence, decisions regarding which vaccine to use in managing serogroup B IMD outbreaks require information about the index case isolate, including (i) the presence of particular vaccine antigen variants, (ii) the expression of vaccine antigens, and (iii) the likely susceptibility of its antigen variants to antibody-dependent bactericidal killing. As microbial genomics makes increasingly important contributions to clinical and public health microbiology, the interpretation of whole-genome sequence data by nonspecialists becomes essential. In the absence of capsule-based vaccines, two protein-based vaccines have been used for the prevention of invasive serogroup B meningococcal disease (IMD) since their licensure in 2013 and 2014. These vaccines have different components and different levels of coverage of meningococcal variants. Hence, decisions regarding which vaccine to use in managing serogroup B IMD outbreaks require information about the index case isolate, including (i) the presence of particular vaccine antigen variants, (ii) the expression of vaccine antigens, and (iii) the likely susceptibility of its antigen variants to antibody-dependent bactericidal killing. To obtain this information requires a multitude of laboratory assays, impractical in real-time clinical settings, where the information is most urgently needed. To facilitate assessment for public health and clinical purposes, we synthesized genomic and experimental data from published sources to develop and implement the Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) Index, which is publicly available on PubMLST (https://pubmlst.org). Using whole-genome sequences or individual gene sequences obtained from IMD isolates or clinical specimens, the MenDeVAR Index provides rapid evidence-based information on the presence and possible immunological cross-reactivity of different meningococcal vaccine antigen variants. The MenDeVAR Index enables practitioners who are not genomics specialists to assess the likely reactivity of vaccines for individual cases, outbreak management, or the assessment of public health vaccine programs. The MenDeVAR Index has been developed in consultation with, but independently of, both the 4CMenB (Bexsero; GSK) and rLP2086 (Trumenba; Pfizer, Inc.) vaccine manufacturers.
Collapse
|
8
|
Liberator P, Donald RGK, Balmer P, Findlow J, Anderson AS. Commentary: Variant Signal Peptides of Vaccine Antigen, FHbp, Impair Processing Affecting Surface Localization and Antibody-Mediated Killing in Most Meningococcal Isolates. Front Microbiol 2020; 11:538209. [PMID: 33240223 PMCID: PMC7677564 DOI: 10.3389/fmicb.2020.538209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paul Liberator
- Pfizer Vaccine Research and Development, Pearl River, NY, United States
| | - Robert G K Donald
- Pfizer Vaccine Research and Development, Pearl River, NY, United States
| | - Paul Balmer
- Pfizer Vaccines Medical Development, Scientific and Clinical Affairs, Collegeville, PA, United States
| | - Jamie Findlow
- Pfizer Medical Development, Scientific and Clinical Affairs, Tadworth, United Kingdom
| | | |
Collapse
|
9
|
Findlow J, Bayliss CD, Beernink PT, Borrow R, Liberator P, Balmer P. Broad vaccine protection against Neisseria meningitidis using factor H binding protein. Vaccine 2020; 38:7716-7727. [PMID: 32878710 PMCID: PMC8082720 DOI: 10.1016/j.vaccine.2020.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 11/29/2022]
Abstract
Neisseria meningitidis, the causative agent of invasive meningococcal disease (IMD), is classified into different serogroups defined by their polysaccharide capsules. Meningococcal serogroups A, B, C, W, and Y are responsible for most IMD cases, with serogroup B (MenB) causing a substantial percentage of IMD cases in many regions. Vaccines using capsular polysaccharides conjugated to carrier proteins have been successfully developed for serogroups A, C, W, and Y. However, because the MenB capsular polysaccharide is poorly immunogenic, MenB vaccine development has focused on alternative antigens. The 2 currently available MenB vaccines (MenB-4C and MenB-FHbp) both include factor H binding protein (FHbp), a surface-exposed protein harboured by nearly all meningococcal isolates that is important for survival of the bacteria in human blood. MenB-4C contains a nonlipidated FHbp from subfamily B in addition to other antigens, including Neisserial Heparin Binding Antigen, Neisserial adhesin A, and outer membrane vesicles, whereas MenB-FHbp contains a lipidated FHbp from each subfamily (A and B). FHbp is highly immunogenic and a main target of bactericidal activity of antibodies elicited by both licensed MenB vaccines. FHbp is also an important vaccine component, in contrast to some other meningococcal antigens that may have limited cross-protection across strains, as FHbp-specific antibodies can provide broad cross-protection within each subfamily. Limited cross-protection between subfamilies necessitates the inclusion of FHbp variants from both subfamilies to achieve broad FHbp-based vaccine coverage. Additionally, immune responses to the lipidated form of FHbp have a superior cross-reactive profile to those elicited by the nonlipidated form. Taken together, the inclusion of lipidated FHbp variants from both FHbp subfamilies is expected to provide broad protection against the diverse disease-causing meningococcal strains expressing a wide range of FHbp sequence variants. This review describes the development of vaccines for MenB disease prevention, with a focus on the FHbp antigen.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK.
| | | | - Peter T Beernink
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Ray Borrow
- Public Health England, Manchester Royal Infirmary, Manchester, UK.
| | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA.
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA.
| |
Collapse
|
10
|
Mbaeyi SA, Bozio CH, Duffy J, Rubin LG, Hariri S, Stephens DS, MacNeil JR. Meningococcal Vaccination: Recommendations of the Advisory Committee on Immunization Practices, United States, 2020. MMWR Recomm Rep 2020; 69:1-41. [PMID: 33417592 PMCID: PMC7527029 DOI: 10.15585/mmwr.rr6909a1] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This report compiles and summarizes all recommendations from CDC's Advisory Committee on Immunization Practices (ACIP) for use of meningococcal vaccines in the United States. As a comprehensive summary and update of previously published recommendations, it replaces all previously published reports and policy notes. This report also contains new recommendations for administration of booster doses of serogroup B meningococcal (MenB) vaccine for persons at increased risk for serogroup B meningococcal disease. These guidelines will be updated as needed on the basis of availability of new data or licensure of new meningococcal vaccines. ACIP recommends routine vaccination with a quadrivalent meningococcal conjugate vaccine (MenACWY) for adolescents aged 11 or 12 years, with a booster dose at age 16 years. ACIP also recommends routine vaccination with MenACWY for persons aged ≥2 months at increased risk for meningococcal disease caused by serogroups A, C, W, or Y, including persons who have persistent complement component deficiencies; persons receiving a complement inhibitor (e.g., eculizumab [Soliris] or ravulizumab [Ultomiris]); persons who have anatomic or functional asplenia; persons with human immunodeficiency virus infection; microbiologists routinely exposed to isolates of Neisseria meningitidis; persons identified to be at increased risk because of a meningococcal disease outbreak caused by serogroups A, C, W, or Y; persons who travel to or live in areas in which meningococcal disease is hyperendemic or epidemic; unvaccinated or incompletely vaccinated first-year college students living in residence halls; and military recruits. ACIP recommends MenACWY booster doses for previously vaccinated persons who become or remain at increased risk.In addition, ACIP recommends routine use of MenB vaccine series among persons aged ≥10 years who are at increased risk for serogroup B meningococcal disease, including persons who have persistent complement component deficiencies; persons receiving a complement inhibitor; persons who have anatomic or functional asplenia; microbiologists who are routinely exposed to isolates of N. meningitidis; and persons identified to be at increased risk because of a meningococcal disease outbreak caused by serogroup B. ACIP recommends MenB booster doses for previously vaccinated persons who become or remain at increased risk. In addition, ACIP recommends a MenB series for adolescents and young adults aged 16-23 years on the basis of shared clinical decision-making to provide short-term protection against disease caused by most strains of serogroup B N. meningitidis.
Collapse
|
11
|
Säll O, Olofsson E, Jacobsson S. High genomic-based predicted strain coverage among invasive meningococcal isolates when combining Bexsero and Trumenba vaccines. Vaccine 2020; 38:4374-4378. [PMID: 32414653 DOI: 10.1016/j.vaccine.2020.04.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 01/16/2023]
Abstract
Two protein-based vaccines (Bexsero® and Trumenba®) are licensed for invasive meningococcal disease (IMD) caused by Neisseria meningitidis serogroup B (MenB). The aim of this study was to evaluate the possible protection of these vaccines, based on the genomic profiles of IMD isolates. All invasive meningococcal isolates in Sweden during 2014-2018 (n = 242) were analyzed with the vaccine coverage scheme available at the PubMLST database. The overall estimated genomic strain coverage among the Swedish invasive meningococcal isolates was 55% for Bexsero and 57% for Trumenba (p = 0.714). The estimated serogroup-specific coverage for Bexsero respectively Trumenba was: MenB; 67% and 90% (p < 0.05), MenW; 93% and 4% (p < 0.05), MenC; 87% and 30% (p < 0.05) and MenY; 1% and 96% (p < 0.05). With the combination of the two vaccines, the potential genomic-based strain coverage was 95%, indicating a possible additive effect of combining Bexsero and Trumenba, which, however, needs to be confirmed by analysis of phenotypic antigen expression.
Collapse
Affiliation(s)
- Olof Säll
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro University Hospital, S-701 85 Örebro, Sweden.
| | - Emma Olofsson
- Faculty of Medicine and Health, Örebro University, Campus USÖ, S-701 82 Örebro, Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro University Hospital, S-701 85 Örebro, Sweden.
| |
Collapse
|
12
|
Balmer P, Beeslaar J, Findlow J, Srivastava A. Understanding immunogenicity assessments for meningococcal serogroup B vaccines. Postgrad Med 2020; 132:184-191. [PMID: 32124678 DOI: 10.1080/00325481.2019.1696582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Invasive meningococcal disease (IMD) is a potentially devastating infection associated with high mortality and long-term sequelae; however, vaccines are available to protect against the five common disease-causing serogroups (A, B, C, W, and Y). Because traditional field efficacy clinical trials were not feasible due to low IMD incidence that necessitates a very large number of participants, serum bactericidal antibody (SBA) assays using rabbit (rSBA) or human (hSBA) complement were established as in vitro surrogates of meningococcal vaccine efficacy and are now routinely used to support vaccine licensure. Specifically, rSBA assays have been used to evaluate responses to meningococcal capsular polysaccharide-protein conjugate vaccines against serogroups A, C, W, and Y; the accepted correlate of protection for rSBA assays is a titer ≥1:8. Importantly, because the bacterial capsular polysaccharide antigen is conserved across strains, only one test strain that expresses an invariant polysaccharide capsule for each serogroup is required to assess coverage. rSBA assays are unsuitable for subcapsular protein-based serogroup B (MenB) vaccines, and therefore, hSBA assays have been used for licensure; titers ≥1:4 are considered the correlate of protection against IMD for hSBA. In contrast to MenACWY vaccines, because bacterial surface proteins are antigenically variable, MenB vaccines must be tested with hSBA assays using multiple test strains that represent the antigenic diversity of disease-causing isolates. As this complexity regarding SBA assessment methods can make data interpretation difficult, herein we describe the use of hSBA assays to evaluate MenB vaccine efficacy and to support licensure. In addition, we highlight how the two recently approved MenB vaccines differ in their use of hSBA assays in clinical studies to demonstrate broad protection against MenB IMD.
Collapse
Affiliation(s)
- Paul Balmer
- Vaccine Medical Development, Scientific & Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | | | - Jamie Findlow
- Vaccine Medical & Scientific Affairs, Pfizer Ltd, Tadworth, UK
| | - Amit Srivastava
- Vaccine Medical Development, Scientific & Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
13
|
Harris SL, Tan C, Perez J, Radley D, Jansen KU, Anderson AS, Jones TR. Selection of diverse strains to assess broad coverage of the bivalent FHbp meningococcal B vaccine. NPJ Vaccines 2020; 5:8. [PMID: 32025339 PMCID: PMC6989502 DOI: 10.1038/s41541-019-0154-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023] Open
Abstract
MenB-FHbp is a recombinant meningococcal serogroup B (MenB) vaccine composed of 2 factor H binding proteins (FHbps). Meningococcal vaccines targeting polysaccharide serogroup A, C, Y, and W capsules were licensed upon confirmation of bactericidal antibody induction after initial efficacy studies with serogroup A and C vaccines. Unlike meningococcal polysaccharide vaccines, wherein single strains demonstrated bactericidal antibodies per serogroup for each vaccine, MenB-FHbp required a more robust approach to demonstrate that bactericidal antibody induction could kill strains with diverse FHbp sequences. Serum bactericidal assays using human complement were developed for 14 MenB strains, representing breadth of meningococcal FHbp diversity of ~80% of circulating MenB strains. This work represents an innovative approach to license a non-toxin protein vaccine with 2 antigens representing a single virulence factor by an immune correlate, and uniquely demonstrates that such a vaccine provides coverage across bacterial strains by inducing broadly protective antibodies. Neisseria meningitidis is an important cause of invasive meningococcal disease, effective vaccines exist for some serogroups but immunogenicity to the MenB group is poor. Thomas R. Jones and colleagues examine serum bactericidal responses from volunteers challenged with MenB-FHbp – a recombinant MenB vaccine containing two Factor H (FH)-binding proteins. Serum bactericidal responses are tested against 14 MenB clinical isolates selected in an unbiased manner to cover the vast breadth of FHbp antigen and epidemiological diversity. This work demonstrates the broad efficacy of the MenB-FHbp vaccine using a serum bactericidal activity as a surrogate of protection.
Collapse
Affiliation(s)
| | - Cuiwen Tan
- Pfizer Vaccine Research and Development, Pearl River, NY USA
| | - John Perez
- 2Pfizer Vaccine Research and Development, Collegeville, PA USA
| | - David Radley
- 2Pfizer Vaccine Research and Development, Collegeville, PA USA
| | | | | | - Thomas R Jones
- Pfizer Vaccine Research and Development, Pearl River, NY USA
| |
Collapse
|
14
|
Burman C, Alderfer J, Snow VT. A review of the immunogenicity, safety and current recommendations for the meningococcal serogroup B vaccine, MenB-FHbp. J Clin Pharm Ther 2019; 45:270-281. [PMID: 31820483 DOI: 10.1111/jcpt.13083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE This review describes invasive meningococcal disease (IMD) epidemiology in the United States, provides a brief overview of available meningococcal vaccines and discusses meningococcal serogroup B (MenB) vaccine development. Particular focus is given to the recombinant protein MenB vaccine, MenB-FHbp (Trumenba® , bivalent rLP2086) in light of recent publication of phase 3 data; the other MenB vaccine (Bexsero® , MenB-4C) has been recently reviewed. Current recommendations of the US Advisory Committee on Immunization Practices (ACIP) for MenB vaccination and potential barriers to immunization are also discussed. METHODS Using the published literature, this article reviews the development and use of MenB-FHbp to date, with a focus on the United States. RESULTS AND DISCUSSION Despite the availability of medical treatment, IMD is associated with significant mortality and frequently occurring serious permanent sequelae in surviving individuals. Worldwide, most IMD is caused by six serogroups (A, B, C, W, X and Y). MenB is the most common disease-causing meningococcal serogroup in the United States and has caused several recent university-based IMD outbreaks. MenB vaccines, including MenB-FHbp, are available in the United States. ACIP recommends that all individuals ≥10 years of age at increased risk for meningococcal disease receive MenB vaccination; healthy individuals 16-23 years of age are recommended MenB vaccines based on individual clinical decision-making. MenB-FHbp is used on a 2-dose schedule (0, 6 months) when vaccinating healthy individuals and on a tailored 3-dose schedule (0, 1-2, 6 months) in cases of increased risk. WHAT IS NEW AND CONCLUSION Because vaccination provides the most effective protection against IMD, pharmacists are in an excellent position to offer evidence-based vaccine information, as well as to encourage and provide meningococcal immunizations to adolescents and young adults.
Collapse
Affiliation(s)
- Cynthia Burman
- Pfizer Vaccines Medical Development & Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Justine Alderfer
- Pfizer Vaccines Medical Development & Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Vincenza T Snow
- Pfizer Vaccines Medical Development & Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
15
|
Distribution of Neisseria meningitidis serogroup b (NmB) vaccine antigens in meningococcal disease causing isolates in the United States during 2009-2014, prior to NmB vaccine licensure. J Infect 2019; 79:426-434. [PMID: 31505201 DOI: 10.1016/j.jinf.2019.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Two Neisseria meningitidis serogroup B (NmB) vaccines are licensed in the United States. To estimate their potential coverage, we examined the vaccine antigen diversity among meningococcal isolates prior to vaccine licensure. METHODS NmB vaccine antigen genes of invasive isolates collected in the U.S. from 2009 to 2014 were characterized by Sanger or whole-genome sequencing. RESULTS During 2009-2014, the predominant antigen types have remained similar to those reported in 2000-2008 for NmB and 2006-2008 for NmC, NmY, with the emergence of a few new types. FHbp of subfamily B or variant 1 (B/v1) remained prevalent among NmB whereas FHbp of subfamily A or variant 2 and 3 (A/v2-3) were more prevalent among non-NmB. FHbp peptide 1 (B24/1.1) remains the most prevalent type in NmB. Full-length NadA peptide was detected in 26% of isolates, primarily in NmB and NmW. The greatest diversity of NhbA peptides was detected among NmB, with p0005 as the most prevalent type. CONCLUSIONS The prevalence and diversity of the NmB vaccine antigens have remained stable with common antigen types persisting over time. The data collected prior to NmB vaccine licensure provide the baseline to understand the potential impact of NmB vaccines on antigen diversity and strain coverage.
Collapse
|
16
|
Huppertz HI. Impfprophylaxe invasiver Erkrankungen mit Meningokokken der Serogruppe B. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-019-0698-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
McDaniel A, Dempsey A, Srivastava A. A physician's guide to the 2-dose schedule of MenB-FHbp vaccine. Hum Vaccin Immunother 2019; 15:2729-2737. [PMID: 30932730 PMCID: PMC6930067 DOI: 10.1080/21645515.2019.1596711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 11/24/2022] Open
Abstract
Meningococcal serogroup B (MenB) is the predominant cause of invasive meningococcal disease in the United States, with older adolescents and young adults attending college at increased risk. Notably, MenB caused all meningococcal disease outbreaks at US colleges between 2011 and 2018. MenB disease is vaccine-preventable. The MenB-FHbp vaccine can be administered on a 2-dose (0 and 6 months) schedule to healthy adolescents and young adults or as a tailored 3-dose (0, 1-2, and 6 months) schedule for individuals at increased risk. This review focuses on the 2-dose schedule (0 and 6 months) of MenB-FHbp. Clinical evidence demonstrating strong and broadly protective immunogenicity in adolescents after primary vaccination, immune persistence up to 48 months post-primary vaccination (18-61% of subjects across schedules), and immune memory evidenced by robust response to a single booster dose are described. Implementation approaches to ensure adolescents and young adults are fully vaccinated against meningococcal disease are discussed.
Collapse
Affiliation(s)
- Angee McDaniel
- Medical Development, Scientific & Clinical Affairs, Pfizer Vaccines, Pfizer Inc, Collegeville, PA, USA
| | - Amanda Dempsey
- University of Colorado Denver, Anschutz Medical Campus, Denver, CO, USA
| | - Amit Srivastava
- Medical Development, Scientific & Clinical Affairs, Pfizer Vaccines, Pfizer Inc, Cambridge, MA, USA
| |
Collapse
|
18
|
MenB-FHbp Meningococcal Group B Vaccine (Trumenba ®): A Review in Active Immunization in Individuals Aged ≥ 10 Years. Drugs 2019; 78:257-268. [PMID: 29380290 DOI: 10.1007/s40265-018-0869-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MenB-FHbp (bivalent rLP2086; Trumenba®) is a recombinant protein-based vaccine targeting Neisseria meningitidis serogroup B (MenB), which has recently been licensed in the EU for active immunization to prevent invasive disease caused by MenB in individuals ≥ 10 years of age. The vaccine, which contains a variant from each of the two identified subfamilies of the meningococcal surface protein factor H-binding protein (fHBP), has been licensed in the USA for active immunization in individuals 10-25 years of age since 2014. This article reviews the immunogenicity, reactogenicity and tolerability of MenB-FHbp, with a focus on the EU label and the European setting. As demonstrated in an extensive program of clinical trials in adolescents and young adults, a two-dose or three-dose series of MenB-FHbp elicits a strong immune response against a range of MenB test strains selected to be representative of strains prevalent in Europe and the USA. Follow-up studies investigating the persistence of the MenB-FHbp immune response and the effect of a booster dose of the vaccine indicate that a booster dose should be considered (following a primary vaccine series) in individuals at continued risk of invasive meningococcal disease. MenB-FHbp vaccine appears to be moderately reactogenic but, overall, is generally well tolerated, with most adverse reactions being mild to moderate in severity. Although post-marketing, population-based data will be required to establish the true effectiveness of the vaccine, currently available data indicate that MenB-FHbp, in a two-dose or three-dose series, is likely to provide broad protection against MenB strains circulating in Europe.
Collapse
|
19
|
Invasive meningococcal disease in Shanghai, China from 1950 to 2016: implications for serogroup B vaccine implementation. Sci Rep 2018; 8:12334. [PMID: 30120257 PMCID: PMC6098053 DOI: 10.1038/s41598-018-30048-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022] Open
Abstract
Serogroup B invasive meningococcal disease (IMD) is increasing in China, but little is known about the causative meningococci. Here, IMD and carriage isolates in Shanghai characterised and the applicability of different vaccines assessed. Seven IMD epidemic periods have been observed in Shanghai since 1950, with 460 isolates collected including 169 from IMD and 291 from carriage. Analyses were divided according to the period of meningococcal polysaccharide vaccine (MPV) introduction: (i) pre-MPV-A, 1965–1980; (ii) post-MPV-A, 1981–2008; and (iii) post-MPV-A + C, 2009–2016. Over this period, IMD incidence decreased from 55.4/100,000 to 0.71 then to 0.02, corresponding to successive changes in meningococcal type from serogroup A ST-5 complex (MenA:cc5) to MenC:cc4821, and finally MenB:cc4821. MenB IMD became predominant (63.2%) in the post-MPV-A + C period, and 50% of cases were caused by cc4821, with the highest incidence in infants (0.45/100,000) and a case-fatality rate of 9.5%. IMD was positively correlated with population carriage rates. Using the Bexsero Antigen Sequence Type (BAST) system, fewer than 25% of MenB isolates in the post-MPV-A + C period contained exact or predicted cross reactive matches to the vaccines Bexsero, Trumenba, or an outer membrane vesicle (OMV)-based vaccine, NonaMen. A unique IMD epidemiology was seen in China, changing periodically from epidemic to hyperepidemic and low-level endemic disease. At the time of writing, MenB IMD dominated IMD in Shanghai, with isolates potentially beyond coverage with licenced OMV- and protein-based MenB vaccines.
Collapse
|
20
|
Perez JL, Absalon J, Beeslaar J, Balmer P, Jansen KU, Jones TR, Harris S, York LJ, Jiang Q, Radley D, Anderson AS, Crowther G, Eiden JJ. From research to licensure and beyond: clinical development of MenB-FHbp, a broadly protective meningococcal B vaccine. Expert Rev Vaccines 2018; 17:461-477. [DOI: 10.1080/14760584.2018.1483726] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- John L. Perez
- Pfizer Vaccines Research and Development, Collegeville, PA, USA
| | - Judith Absalon
- Pfizer Vaccines Research and Development, Pearl River, NY, USA
| | | | - Paul Balmer
- Pfizer Vaccines Research and Development, Collegeville, PA, USA
| | | | - Thomas R. Jones
- Pfizer Vaccines Research and Development, Pearl River, NY, USA
| | - Shannon Harris
- Pfizer Vaccines Research and Development, Pearl River, NY, USA
| | - Laura J. York
- Pfizer Vaccines Medical Development, Scientific & Clinical Affairs, Collegeville, PA, USA
| | - Qin Jiang
- Pfizer Vaccines Research and Development, Collegeville, PA, USA
| | - David Radley
- Pfizer Vaccines Research and Development, Collegeville, PA, USA
| | | | | | - Joseph J. Eiden
- Pfizer Vaccines Research and Development, Pearl River, NY, USA
| |
Collapse
|
21
|
Hao L, Holden MTG, Wang X, Andrew L, Wellnitz S, Hu F, Whaley M, Sammons S, Knipe K, Frace M, McNamara LA, Liberator P, Anderson AS. Distinct evolutionary patterns of Neisseria meningitidis serogroup B disease outbreaks at two universities in the USA. Microb Genom 2018; 4. [PMID: 29616896 PMCID: PMC5989579 DOI: 10.1099/mgen.0.000155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neisseria meningitidis serogroup B (MnB) was responsible for two independent meningococcal disease outbreaks at universities in the USA during 2013. The first at University A in New Jersey included nine confirmed cases reported between March 2013 and March 2014. The second outbreak occurred at University B in California, with four confirmed cases during November 2013. The public health response to these outbreaks included the approval and deployment of a serogroup B meningococcal vaccine that was not yet licensed in the USA. This study investigated the use of whole-genome sequencing(WGS) to examine the genetic profile of the disease-causing outbreak isolates at each university. Comparative WGS revealed differences in evolutionary patterns between the two disease outbreaks. The University A outbreak isolates were very closely related, with differences primarily attributed to single nucleotide polymorphisms/insertion-deletion (SNP/indel) events. In contrast, the University B outbreak isolates segregated into two phylogenetic clades, differing in large part due to recombination events covering extensive regions (>30 kb) of the genome including virulence factors. This high-resolution comparison of two meningococcal disease outbreaks further demonstrates the genetic complexity of meningococcal bacteria as related to evolution and disease virulence.
Collapse
Affiliation(s)
- Li Hao
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | | | - Xin Wang
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Lubomira Andrew
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Sabine Wellnitz
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Fang Hu
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Melissa Whaley
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Scott Sammons
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Kristen Knipe
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Mike Frace
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Lucy A McNamara
- 3Division of Bacterial Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Paul Liberator
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Annaliesa S Anderson
- 1Vaccine Research & Development, Pfizer Inc, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| |
Collapse
|
22
|
Predicting the Susceptibility of Meningococcal Serogroup B Isolates to Bactericidal Antibodies Elicited by Bivalent rLP2086, a Novel Prophylactic Vaccine. mBio 2018. [PMID: 29535195 PMCID: PMC5850321 DOI: 10.1128/mbio.00036-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bivalent rLP2086 (Trumenba), a vaccine for prevention of Neisseria meningitidis serogroup B (NmB) disease, was licensed for use in adolescents and young adults after it was demonstrated that it elicits antibodies that initiate complement-mediated killing of invasive NmB isolates in a serum bactericidal assay with human complement (hSBA). The vaccine consists of two factor H binding proteins (fHBPs) representing divergent subfamilies to ensure broad coverage. Although it is the surrogate of efficacy, an hSBA is not suitable for testing large numbers of strains in local laboratories. Previously, an association between the in vitro fHBP surface expression level and the susceptibility of NmB isolates to killing was observed. Therefore, a flow cytometric meningococcal antigen surface expression (MEASURE) assay was developed and validated by using an antibody that binds to all fHBP variants from both fHBP subfamilies and accurately quantitates the level of fHBP expressed on the cell surface of NmB isolates with mean fluorescence intensity as the readout. Two collections of invasive NmB isolates (n = 1,814, n = 109) were evaluated in the assay, with the smaller set also tested in hSBAs using individual and pooled human serum samples from young adults vaccinated with bivalent rLP2086. From these data, an analysis based on fHBP variant prevalence in the larger 1,814-isolate set showed that >91% of all meningococcal serogroup B isolates expressed sufficient levels of fHBP to be susceptible to bactericidal killing by vaccine-induced antibodies.IMPORTANCE Bivalent rLP2086 (Trumenba) vaccine, composed of two factor H binding proteins (fHBPs), was recently licensed for the prevention of N. meningitidis serogroup B (NmB) disease in individuals 10 to 25 years old in the United States. This study evaluated a large collection of NmB isolates from the United States and Europe by using a flow cytometric MEASURE assay to quantitate the surface expression of the vaccine antigen fHBP. We find that expression levels and the proportion of strains above the level associated with susceptibility in an hSBA are generally consistent across these geographic regions. Thus, the assay can be used to predict which NmB isolates are susceptible to killing in the hSBA and therefore is able to demonstrate an fHBP vaccine-induced bactericidal response. This work significantly advances our understanding of the potential for bivalent rLP2086 to provide broad coverage against diverse invasive-disease-causing NmB isolates.
Collapse
|
23
|
Breadth and Duration of Meningococcal Serum Bactericidal Activity in Health Care Workers and Microbiologists Immunized with the MenB-FHbp Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00121-17. [PMID: 28566335 DOI: 10.1128/cvi.00121-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022]
Abstract
MenB-FHbp is a meningococcal serogroup B vaccine with two factor H binding protein (FHbp) antigens from subfamilies A and B. For licensure, efficacy was inferred from serum bactericidal antibody (SBA) responses to four reference strains. Only limited information is available on the breadth or duration of protective SBA responses to genetically diverse disease-causing strains. Seventeen health care or laboratory workers were immunized with two (n = 2) or three (n = 15) doses of MenB-FHbp at 0, 2, and 6 months. SBA levels were measured against 14 serogroup B case isolates, including 6 from U.S. college outbreaks and 2 from Quebec during hyperendemic disease. Compared with preimmunization titers, the proportion of subjects with ≥4-fold increases in SBA titer 1 month after 2 doses of vaccine ranged from 35% to 94% for six isolates with FHbp subfamily A and from 24% to 76% for eight isolates with subfamily B FHbp. The respective proportions with ≥4-fold titer increases at 1 month after dose 3 were 73% to 100% and 67% to 100%. At that time point, the proportion of subjects with titers of ≥1:4 (presumed sufficient for short-term protection) ranged from 93% to 100% for all 14 isolates. By 9 to 11 months after dose 3, 50% or fewer of the subjects with follow-up sera had protective titers of ≥1:4 for 4 of 9 isolates tested. Three doses of MenB-FHbp elicited short-term protective SBA responses to diverse disease-causing serogroup B strains. For some strains, serum titers declined to <1:4 by 9 to 11 months, which raises concerns about the duration of broad, long-term protection. (This study has been registered at ClinicalTrials.gov under registration no. NCT02569632.).
Collapse
|
24
|
Costoya L, Marzoa J, Ferreirós C, Criado MT. Liposomes or traditional adjuvants: induction of bactericidal activity by the macrophage infectivity potentiator protein (Mip) of Neisseria meningitidis. APMIS 2017; 125:725-731. [PMID: 28543600 DOI: 10.1111/apm.12709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/20/2017] [Indexed: 01/10/2023]
Abstract
Currently, one of the main approaches to achieve a vaccine for serogroup B Neisseria meningitidis is based on outer membrane proteins with low antigenic variability among strains. Since these proteins tend to be minor components of the outer membrane, recombinant production is required to obtain them in sufficient amounts for evaluation and development of vaccines. In this study, we analysed the ability of recombinant macrophage infectivity potentiator (rMip) protein to induce protective bactericidal activity in mice. The rMip protein was cloned from N. meningitidis strain H44/76 and was used to immunise mice, and the sera obtained were tested against the homologous and several heterologous N. meningitidis strains. The sera were obtained using the rMip alone, with adjuvant Al(OH)3 , or after inclusion into liposomes. Bactericidal activity was variable depending on the strain, although high titres were seen against strains H44/76 and NmP27. Liposomes enhanced fourfold the reactivity against the homologous strain. The results presented suggest that the rMip protein should be considered a promising candidate for the improvement of future protein-based vaccines.
Collapse
Affiliation(s)
- Liliana Costoya
- Departamento de Microbioloxía e Parasitoloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan Marzoa
- Departamento de Microbioloxía e Parasitoloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Carlos Ferreirós
- Departamento de Microbioloxía e Parasitoloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Maria Teresa Criado
- Departamento de Microbioloxía e Parasitoloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
25
|
Donald RGK, Hawkins JC, Hao L, Liberator P, Jones TR, Harris SL, Perez JL, Eiden JJ, Jansen KU, Anderson AS. Meningococcal serogroup B vaccines: Estimating breadth of coverage. Hum Vaccin Immunother 2016; 13:255-265. [PMID: 27960595 PMCID: PMC5328210 DOI: 10.1080/21645515.2017.1264750] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neisseria meningitidis serogroup B (MenB) is an important cause of invasive meningococcal disease. The development of safe and effective vaccines with activity across the diversity of MenB strains has been challenging. While capsular polysaccharide conjugate vaccines have been highly successful in the prevention of disease due to meningococcal serogroups A, C, W, and Y, this approach has not been possible for MenB owing to the poor immunogenicity of the MenB capsular polysaccharide. Vaccines based on outer membrane vesicles have been successful in the prevention of invasive MenB disease caused by the single epidemic strain from which they were derived, but they do not confer broad protection against diverse MenB strains. Thus, alternative approaches to vaccine development have been pursued to identify vaccine antigens that can provide broad protection against the epidemiologic and antigenic diversity of invasive MenB strains. Human factor H binding protein (fHBP) was found to be such an antigen, as it is expressed on nearly all invasive disease strains of MenB and can induce bactericidal responses against diverse MenB strains. A bivalent vaccine (Trumenba®, MenB-FHbp, bivalent rLP2086) composed of equal amounts of 2 fHBP variants from each of the 2 immunologically diverse subfamilies of fHBP (subfamilies A and B) was the first MenB vaccine licensed in the United States under an accelerated approval pathway for prevention of invasive MenB disease. Due to the relatively low incidence of meningococcal disease, demonstration of vaccine efficacy for the purposes of licensure of bivalent rLP2086 was based on vaccine-elicited bactericidal activity as a surrogate marker of efficacy, as measured in vitro by the serum bactericidal assay using human complement. Because bacterial surface proteins such as fHBP are antigenically variable, an important component for evaluation and licensure of bivalent rLP2086 included stringent criteria for assessment of breadth of coverage across antigenically diverse and epidemiologically important MenB strains. This review describes the rigorous approach used to assess broad coverage of bivalent rLP2086. Alternative nonfunctional assays proposed for assessing vaccine coverage are also discussed.
Collapse
Affiliation(s)
| | | | - Li Hao
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Paul Liberator
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Thomas R Jones
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Shannon L Harris
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - John L Perez
- b Pfizer Vaccine Research and Development , Collegeville , PA , USA
| | - Joseph J Eiden
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Kathrin U Jansen
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | | |
Collapse
|