1
|
Yang Q, Wei J, Ye C, Pei J, Pei X, Wang Y, Dong Y, Zhang H, Jiang D, Yang X, Ma H, Cheng L, Liu H, Zhang L, Lei Y, Xu Z, Yu P, Zhang F, Ye W. Establishment and optimization of a rapid and convenient viral RNA transcript copy reduction neutralization test (VcRNT) for quantification of hantaan orthohantavirus (HTNV) neutralizing antibodies. Virology 2025; 608:110542. [PMID: 40267591 DOI: 10.1016/j.virol.2025.110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Rodent-borne orthohantavirus causes severe hemorrhagic fever worldwide, with hemorrhagic fever with renal syndrome (HFRS) in Eurasia, and hantavirus cardiopulmonary syndrome (HCPS) in the Amrerica. In East Asia, Hantaan orthohantavirus (HTNV) is the main pathogen responsible for severe HFRS, with a case fatality rate up to 10 % with no specific treatment available. The antisera or neutralizing antibody (NAb) is able to block virus infection, however, the traditional NAb titer measuring based on focus reduction neutralization test (FRNT) is quite labour-extensive and takes 7-10 days. This study aims to shorten the measuring time of NAb neutralization efficiency by 1-2 days based on quantitative RT-PCR. For this purpose, we developed an in vitro transcripted viral RNA standard and generated a viral RNA copy number standard curve. Using this standard curve, we compared the HTNV propagation kinetics between viral RNA copy numbers and secreted infectious virion. The detection limit and suitable timeframe and condition for qRT-PCR based viral RNA copy numbers measuring was also determined. In addition, when applying this method to measuring the NAb neutralization efficiency of HFRS convalescent serum samples, we could obtain the NAb neutralization efficiency within 1 or 2 days. Furthermore, this method was also nicely correlated with the FRNT - based NAb measurement. To conclude, we established a rapid and convenient viral RNA transcripts copy reduction neutralization test (VcRNT) to measure NAb neutralization efficiency that could finish within 1 or 2 days, and provided a reliable and efficient alternative for FRNT.
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Jing Wei
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Chuantao Ye
- The Center of Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University: Fourth Military Medical University, Xi'an, China
| | - Jiawei Pei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Xuemin Pei
- School of Medicine, Northwest University, Xi'an, China
| | - Yuan Wang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Dongshen Jiang
- School of Medicine, Yan'an University, Yan'an Key Laboratory of Zoological and Zoonotic Parasitic Diseases, Yan'an, Shaanxi, China
| | - Xiaojing Yang
- School of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Pengbo Yu
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China.
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China.
| |
Collapse
|
2
|
Enhanced In Vitro and In Vivo Potency of a T Cell Epitope in the Ebola Virus Glycoprotein Following Amino Acid Replacement at HLA-A*02:01 Binding Positions. J Virol 2022; 96:e0116621. [PMID: 36069549 PMCID: PMC9517714 DOI: 10.1128/jvi.01166-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on Ebola virus disease (EVD) survivors and clinical studies on Ebola virus (EBOV) vaccine candidates have pinpointed the importance of a strong antibody response in protection and survival from EBOV infection. However, little is known about the T cell responses to EBOV or EBOV vaccines. We used HLA-A*02:01 (HLA-A2) transgenic mice to study HLA-A2-specific T cell responses elicited following vaccination with EBOV glycoprotein (EBOV-GP) presented with three different systems: (i) recombinant protein (rEBOV-GP), (ii) vesicular stomatitis replication-competent recombinant virus (VSV-EBOV-GP), and (iii) modified vaccinia Ankara virus recombinant (MVA-EBOV-GP). T cells from immunized animals were analyzed using peptide pools representing the entire GP region and individual peptides. Regardless of the vaccine formulation, we identified a minimal 9mer epitope containing an HLA-A2 motif (FLDPATTS), which was confirmed through HLA-A2 binding affinity and immunization studies. Using binding prediction software, we identified substitutions surrounding position 9 (S9V, P10V, and Q11V) that predicted enhanced binding to the HLA-A2 molecule. This enhanced binding was confirmed through in vitro binding studies and enhanced potency was shown with in vivo immunization studies using the enhanced sequences and the wild-type sequence. Of note, in silico studies predicted the enhanced 9mer epitope carrying the S9V substitution as the best overall HLA-A2 epitope for the full-length EBOV-GP. These results suggest that EBOV-GP-S9V and EBOV-GP-P10V represent more potent in vivo immunogens. Identification and enhancement of EBOV-specific human HLA epitopes could lead to the development of tools and reagents to induce more robust T cell responses in human subjects. IMPORTANCE Vaccine efficacy and immunity to viral infection are often measured by neutralizing antibody titers. T cells are specialized subsets of immune cells with antiviral activity, but this response is variable and difficult to track. We showed that the HLA-A2-specific T cell response to the Ebola virus glycoprotein can be enhanced significantly by a single residue substitution designed to improve an epitope binding affinity to one of the most frequent MHC alleles in the human population. This strategy could be applied to improve T cell responses to Ebola vaccines designed to elicit antibodies and adapted to target MHC alleles of populations in regions where endemic infections, like Ebola virus disease, are still causing outbreaks with concerning pandemic potential.
Collapse
|
3
|
Bian H, Dou QL, Wei J, Liu JL, Wang X, Liu X. Erythrocyte Ghost Based Fusogenic Glycoprotein Vesicular Stomatitis Virus Glycoprotein Complexes as an Efficient Deoxyribonucleic Acid Delivery System. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to construct a new type of fused erythrocyte vector for gene delivery system. The conditioned medium of AD293 cells expressing vesicular stomatitis virus glycoprotein gene was collected, and erythrocyte ghost was prepared by hypotonic lysis. Using cationic polymer to
condense deoxyribonucleic acid to form a complex, fusogenic erythrocyte ghost was incubated with this complex to obtain virion. Flow cytometry and luciferase activity analysis were used to detect the delivery of fusogenic erythrocyte ghost to deoxyribonucleic acid in AD293 cells and refractory
cells, respectively. Transfection efficiency of fusogenic erythrocyte ghost in vivo was detected by confocal microscope. Vesicular stomatitis virus glycoprotein and erythrocyte ghost were effectively integrated, and fusogenic erythrocyte ghost was successfully prepared. deoxyribonucleic
acid/polyethylenimine complexes form 100–300 nm particles. Fusogenic erythrocyte ghost can effectively incorporation deoxyribonucleic acid complexes. Confocal microscope observed red fluorescence close to blue fluorescence, indicating that labeled fusogenic erythrocyte ghost may trigger
liver and spleen tissue endocytosis or fusion. A new delivery vector of fusogenic erythrocyte ghost was constructed. This system could enhance the delivery efficiency even in cells which refractory to conventional transfections in vitro.
Collapse
Affiliation(s)
- Hong Bian
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Qing-Li Dou
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Jian Wei
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Jing-Le Liu
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Xiao Wang
- The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, Shenzhen 518101, Guangdong, China
| | - Xin Liu
- Ningxia Medical University, Yinchuan 750004, Ningxia, China
| |
Collapse
|
4
|
Lipkin WI, Mishra N, Briese T. Screening for Viral Infections. ENCYCLOPEDIA OF VIROLOGY 2021. [PMCID: PMC7836304 DOI: 10.1016/b978-0-12-814515-9.00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This article reviews methods for diagnosis of viral infections including histopathology, culture, nucleic acid tests, and serology. We discuss the principles that underlie individual assays as well as their strengths and limitations. Our intent is to provide insights into selecting strategies for viral diagnosis and discovery that can be pursued by accessing more detailed and granular protocols.
Collapse
|
5
|
Gyawali N, Murphy AK, Hugo LE, Devine GJ. A micro-PRNT for the detection of Ross River virus antibodies in mosquito blood meals: A useful tool for inferring transmission pathways. PLoS One 2020; 15:e0229314. [PMID: 32706777 PMCID: PMC7380888 DOI: 10.1371/journal.pone.0229314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/06/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction Many arboviruses of public health significance are maintained in zoonotic cycles with complex transmission pathways. The presence of serum antibody against arboviruses in vertebrates provides evidence of their historical exposure but reveals nothing about the vector-reservoir relationship. Moreover, collecting blood or tissue samples from vertebrate hosts is ethically and logistically challenging. We developed a novel approach for screening the immune status of vertebrates against Ross River virus that allows us to implicate the vectors that form the transmission pathways for this commonly notified Australian arboviral disease. Methods A micro-plaque reduction neutralisation test (micro-PRNT) was developed and validated on koala (Phascolarctos cinereus) sera against a standard PRNT. The ability of the micro-PRNT to detect RRV antibodies in mosquito blood meals was then tested using two mosquito models. Laboratory-reared Aedes aegypti were fed, via a membrane, on sheep blood supplemented with RRV seropositive and seronegative human sera. Aedes notoscriptus were fed on RRV seropositive and seronegative human volunteers. Blood-fed mosquitoes were harvested at various time points after feeding and their blood meals analysed for the presence of RRV neutralising antibodies using the micro-PRNT. Results There was significant agreement of the plaque neutralisation resulting from the micro-PRNT and standard PRNT techniques (R2 = 0.65; P<0.0001) when applied to RRV antibody detection in koala sera. Sensitivity and specificity of the micro-PRNT assay were 88.2% and 96%, respectively, in comparison with the standard PRNT. Blood meals from mosquitoes fed on sheep blood supplemented with RRV antibodies, and on blood from RRV seropositive humans neutralised the virus by ≥50% until 48 hr post feeding. The vertebrate origin of the blood meal was also ascertained for the same samples, in parallel, using established molecular techniques. Conclusions The small volumes of blood present in mosquito abdomens can be used to identify RRV antibodies and therefore host exposure to arbovirus infection. In tandem with the accurate identification of the mosquito, and diagnostics for the host origin of the blood meal, this technique has tremendous potential for exploring RRV transmission pathways. It can be adapted for similar studies on other mosquito borne zoonoses.
Collapse
Affiliation(s)
- Narayan Gyawali
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail:
| | - Amanda K. Murphy
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leon E. Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gregor J. Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
McWilliams IL, Kielczewski JL, Ireland DDC, Sykes JS, Lewkowicz AP, Konduru K, Xu BC, Chan CC, Caspi RR, Manangeeswaran M, Verthelyi D. Pseudovirus rVSVΔG-ZEBOV-GP Infects Neurons in Retina and CNS, Causing Apoptosis and Neurodegeneration in Neonatal Mice. Cell Rep 2020; 26:1718-1726.e4. [PMID: 30759384 DOI: 10.1016/j.celrep.2019.01.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/15/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Zaire Ebola virus (ZEBOV) survivors experience visual and CNS sequelae that suggests the ZEBOV glycoprotein can mediate neurotropism. Replication-competent rVSVΔG-ZEBOV-GP vaccine candidate is generally well tolerated; however, its potential neurotropism requires careful study. Here, we show that a single inoculation of rVSVΔG-ZEBOV-GP virus in neonatal C57BL/6 mice results in transient viremia, neurological symptoms, high viral titers in eyes and brains, and death. rVSVΔG-ZEBOV-GP infects the inner layers of the retina, causing severe retinitis. In the cerebellum, rVSVΔG-ZEBOV-GP infects neurons in the granular and Purkinje layers, resulting in progressive foci of apoptosis and neurodegeneration. The susceptibility to infection is not due to impaired type I IFN responses, although MDA5-/-, IFNβ-/-, and IFNAR1-/- mice have accelerated mortality. However, boosting interferon levels by co-administering poly(I:C) reduces viral titers in CNS and improves survival. Although these data should not be directly extrapolated to humans, they challenge the hypothesis that VSV-based vaccines are non-neurotropic.
Collapse
Affiliation(s)
- Ian L McWilliams
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | | | - Derek D C Ireland
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jacob S Sykes
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Aaron P Lewkowicz
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Krishnamurthy Konduru
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Biying C Xu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Mohanraj Manangeeswaran
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Daniela Verthelyi
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
7
|
Vesicular stomatitis virus G protein transmembrane region is crucial for the hemi-fusion to full fusion transition. Sci Rep 2018; 8:10669. [PMID: 30006542 PMCID: PMC6045571 DOI: 10.1038/s41598-018-28868-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/29/2018] [Indexed: 11/30/2022] Open
Abstract
Viral fusion proteins are essential for enveloped virus infection. These proteins mediate fusion between the virus envelope and host cellular membrane to release the viral genome into cells. Vesicular stomatitis virus G (VSV G) protein is a typical type III viral fusion protein. To study the mechanism of VSV G protein mediated membrane fusion, we set up a cell-cell fusion system in which cells are marked by different fluorescent proteins. Taking advantage of this system, we performed real-time recording and quantitative analysis of the cell fusion mediated by VSV G. We found that the time scale required for VSV G mediated cell-cell fusion was approximately 1–2 minutes. Next, we specifically examined the function of the transmembrane (TM) region of VSV G protein in membrane fusion by replacing the TM region with those of other fusion proteins. The TM region replacements dramatically impaired VSV G protein function in the cell-cell fusion assay and diminished VSV G mediated lentivirus and recombinant VSV infection efficiency. Further experiments implied that the TM region played a role in the transition from hemi-fusion to full fusion. Several residues within the TM region were identified as important for membrane fusion. Overall, our findings unraveled the important function of the TM region in VSV G mediated viral fusion.
Collapse
|
8
|
Streatfield SJ, Karczewski J, Yusibov V. Introduction. Vaccine 2017; 35:5435-5436. [PMID: 28826749 PMCID: PMC7130944 DOI: 10.1016/j.vaccine.2017.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jerzy Karczewski
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|