1
|
Ma X, Zhang Y, Na L, Qi T, Ma W, Guo X, Wang XF, Wang X. Identification and Characterization of Linear Epitopes of Monoclonal Antibodies Against African Horse Sickness Virus Serotype 1 VP2 Protein. Viruses 2024; 16:1780. [PMID: 39599893 PMCID: PMC11599129 DOI: 10.3390/v16111780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
African horse sickness (AHS) is an acute, fatal, contagious disease of animals of the family Equidae and is caused by infection with the African horse sickness virus (AHSV). Based on the outer capsid protein VP2, AHSV is classified into nine serotypes (AHSV-1 to -9) with little or no serological cross-reactivity between them. In 2020, AHS outbreaks caused by AHSV-1 were reported in Thailand and Malaysia, marking the first occurrences of AHS in Southeast Asia. However, little is known about the antigenic profile of AHSV-1 VP2. In this study, a recombinant VP2 protein was expressed in Escherichia coli and used as an immunogen, and three monoclonal antibodies (mAbs), designated 7D11, 10A9, and 9E7, against AHSV-1 VP2, were generated. These three mAbs were then successfully used in IFA, WB, and ELISA for the detection of AHSV-1 VP2. Two overlapping linear epitopes, 670NEFDFE675 (E670-675) recognized by 9E7 and 670NEFDF674 (E670-674) recognized by 7D11 and 10A9, were identified through truncation of GST-fused VP2. Amino acid sequence alignment shows that the 670NEFDFE675 motif is completely conserved within AHSV-1 but is highly divergent in other AHSV serotypes. Our studies provide an important tool for basic research into AHSV-1 and for the diagnosis of AHSV-1.
Collapse
Affiliation(s)
- Xiaohua Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.M.); (Y.Z.); (T.Q.); (W.M.); (X.G.)
| | - Yingzhi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.M.); (Y.Z.); (T.Q.); (W.M.); (X.G.)
| | - Lei Na
- College of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| | - Ting Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.M.); (Y.Z.); (T.Q.); (W.M.); (X.G.)
| | - Weiwei Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.M.); (Y.Z.); (T.Q.); (W.M.); (X.G.)
| | - Xing Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.M.); (Y.Z.); (T.Q.); (W.M.); (X.G.)
| | - Xue-Feng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.M.); (Y.Z.); (T.Q.); (W.M.); (X.G.)
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.M.); (Y.Z.); (T.Q.); (W.M.); (X.G.)
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
2
|
O’Kennedy MM, Roth R, Ebersohn K, du Plessis LH, Mamputha S, Rutkowska DA, du Preez I, Verschoor JA, Lemmer Y. Immunogenic profile of a plant-produced nonavalent African horse sickness viral protein 2 (VP2) vaccine in IFNAR-/- mice. PLoS One 2024; 19:e0301340. [PMID: 38625924 PMCID: PMC11020708 DOI: 10.1371/journal.pone.0301340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/12/2024] [Indexed: 04/18/2024] Open
Abstract
A safe, highly immunogenic multivalent vaccine to protect against all nine serotypes of African horse sickness virus (AHSV), will revolutionise the AHS vaccine industry in endemic countries and beyond. Plant-produced AHS virus-like particles (VLPs) and soluble viral protein 2 (VP2) vaccine candidates were developed that have the potential to protect against all nine serotypes but can equally well be formulated as mono- and bi-valent formulations for localised outbreaks of specific serotypes. In the first interferon α/β receptor knock-out (IFNAR-/-) mice trial conducted, a nine-serotype (nonavalent) vaccine administered as two pentavalent (5 μg per serotype) vaccines (VLP/VP2 combination or exclusively VP2), were directly compared to the commercially available AHS live attenuated vaccine. In a follow up trial, mice were vaccinated with an adjuvanted nine-serotype multivalent VP2 vaccine in a prime boost strategy and resulted in the desired neutralising antibody titres of 1:320, previously demonstrated to confer protective immunity in IFNAR-/- mice. In addition, the plant-produced VP2 vaccine performed favourably when compared to the commercial vaccine. Here we provide compelling data for a nonavalent VP2-based vaccine candidate, with the VP2 from each serotype being antigenically distinguishable based on LC-MS/MS and ELISA data. This is the first preclinical trial demonstrating the ability of an adjuvanted nonavalent cocktail of soluble, plant-expressed AHS VP2 proteins administered in a prime-boost strategy eliciting high antibody titres against all 9 AHSV serotypes. Furthermore, elevated T helper cells 2 (Th2) and Th1, indicative of humoral and cell-mediated memory T cell immune responses, respectively, were detected in mouse serum collected 14 days after the multivalent prime-boost vaccination. Both Th2 and Th1 may play a role to confer protective immunity. These preclinical immunogenicity studies paved the way to test the safety and protective efficacy of the plant-produced nonavalent VP2 vaccine candidate in the target animals, horses.
Collapse
Affiliation(s)
- Martha M. O’Kennedy
- Council for Scientific and Industrial Research (CSIR), Chemical Cluster, Pretoria, South Africa
| | - Robyn Roth
- Council for Scientific and Industrial Research (CSIR), Chemical Cluster, Pretoria, South Africa
| | - Karen Ebersohn
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Lissinda H. du Plessis
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom, South Africa
| | - Sipho Mamputha
- Council for Scientific and Industrial Research (CSIR), Chemical Cluster, Pretoria, South Africa
| | - Daria A. Rutkowska
- Council for Scientific and Industrial Research (CSIR), Chemical Cluster, Pretoria, South Africa
| | - Ilse du Preez
- Council for Scientific and Industrial Research (CSIR), Chemical Cluster, Pretoria, South Africa
| | - Jan A. Verschoor
- Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Yolandy Lemmer
- Council for Scientific and Industrial Research (CSIR), Chemical Cluster, Pretoria, South Africa
| |
Collapse
|
3
|
Developing a Feline Immunodeficiency Virus Subtype B Vaccine Prototype Using a Recombinant MVA Vector. Vaccines (Basel) 2022; 10:vaccines10101717. [PMID: 36298582 PMCID: PMC9611692 DOI: 10.3390/vaccines10101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
The feline immunodeficiency virus (FIV) is a retrovirus with global impact and distribution, affecting both domestic and wild cats. This virus can cause severe and progressive immunosuppression culminating in the death of felids. Since the discovery of FIV, only one vaccine has been commercially available. This vaccine has proven efficiency against FIV subtypes A and D, whereas subtype B (FIV-B), found in multiple continents, is not currently preventable by vaccination. We, therefore, developed and evaluated a vaccine prototype against FIV-B using the recombinant viral vector modified vaccinia virus Ankara (MVA) expressing the variable region V1-V3 of the FIV-B envelope protein. We conducted preclinical tests in immunized mice (C57BL/6) using a prime-boost protocol with a 21 day interval and evaluated cellular and humoral responses as well the vaccine viability after lyophilization and storage. The animals immunized with the recombinant MVA/FIV virus developed specific splenocyte proliferation when stimulated with designed peptides. We also detected cellular and humoral immunity activation with IFN-y and antibody production. The data obtained in this study support further development of this immunogen and testing in cats.
Collapse
|
4
|
O'Kennedy MM, Coetzee P, Koekemoer O, du Plessis L, Lourens CW, Kwezi L, du Preez I, Mamputha S, Mokoena NB, Rutkowska DA, Verschoor JA, Lemmer Y. Protective immunity of plant-produced African horse sickness virus serotype 5 chimaeric virus-like particles (VLPs) and viral protein 2 (VP2) vaccines in IFNAR -/- mice. Vaccine 2022; 40:5160-5169. [PMID: 35902279 DOI: 10.1016/j.vaccine.2022.06.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Next generation vaccines have the capability to contribute to and revolutionise the veterinary vaccine industry. African horse sickness (AHS) is caused by an arbovirus infection and is characterised by respiratory distress and/or cardiovascular failure and is lethal to horses. Mandatory annual vaccination in endemic areas curtails disease occurrence and severity. However, development of a next generation AHSV vaccine, which is both safe and efficacious, has been an objective globally for years. In this study, both AHSV serotype 5 chimaeric virus-like particles (VLPs) and soluble viral protein 2 (VP2) were successfully produced in Nicotiana benthamiana ΔXT/FT plants, partially purified and validated by gel electrophoresis, transmission electron microscopy and liquid chromatography-mass spectrometry (LC-MS/MS) based peptide sequencing before vaccine formulation. IFNAR-/- mice vaccinated with the adjuvanted VLPs or VP2 antigens in a 10 µg prime-boost regime resulted in high titres of antibodies confirmed by both serum neutralising tests (SNTs) and enzyme-linked immunosorbent assays (ELISA). Although previous studies reported high titres of antibodies in horses when vaccinated with plant-produced AHS homogenous VLPs, this is the first study demonstrating the protective efficacy of both AHSV serotype 5 chimaeric VLPs and soluble AHSV-5 VP2 as vaccine candidates. Complementary to this, coating ELISA plates with the soluble VP2 has the potential to underpin serotype-specific serological assays.
Collapse
Affiliation(s)
- Martha M O'Kennedy
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa.
| | - Peter Coetzee
- Onderstepoort Biological Products SOC Ltd, Onderstepoort, South Africa
| | - Otto Koekemoer
- Onderstepoort Biological Products SOC Ltd, Onderstepoort, South Africa
| | - Lissinda du Plessis
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2520, South Africa
| | - Carina W Lourens
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort South Africa
| | - Lusisizwe Kwezi
- Council for Scientific and Industrial Research (CSIR) Chemical Cluster, Pretoria, South Africa
| | - Ilse du Preez
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| | - Sipho Mamputha
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| | | | - Daria A Rutkowska
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| | - Jan A Verschoor
- Department of Biochemistry, University of Pretoria, South Africa
| | - Yolandy Lemmer
- Council for Scientific and Industrial Research (CSIR) Next Generation Health, Pretoria, South Africa
| |
Collapse
|
5
|
Durán-Ferrer M, Villalba R, Fernández-Pacheco P, Tena-Tomás C, Jiménez-Clavero MÁ, Bouzada JA, Ruano MJ, Fernández-Pinero J, Arias M, Castillo-Olivares J, Agüero M. Clinical, Virological and Immunological Responses after Experimental Infection with African Horse Sickness Virus Serotype 9 in Immunologically Naïve and Vaccinated Horses. Viruses 2022; 14:v14071545. [PMID: 35891525 PMCID: PMC9316263 DOI: 10.3390/v14071545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
This study described the clinical, virological, and serological responses of immunologically naïve and vaccinated horses to African horse sickness virus (AHSV) serotype 9. Naïve horses developed a clinical picture resembling the cardiac form of African horse sickness. This was characterized by inappetence, reduced activity, and hyperthermia leading to lethargy and immobility–recumbency by days 9–10 post-infection, an end-point criteria for euthanasia. After challenge, unvaccinated horses were viremic from days 3 or 4 post-infection till euthanasia, as detected by serogroup-specific (GS) real time RT-PCR (rRT-PCR) and virus isolation. Virus isolation, antigen ELISA, and GS-rRT-PCR also demonstrated high sensitivity in the post-mortem detection of the pathogen. After infection, serogroup-specific VP7 antibodies were undetectable by blocking ELISA (b-ELISA) in 2 out of 3 unvaccinated horses during the course of the disease (9–10 dpi). Vaccinated horses did not show significant side effects post-vaccination and were largely asymptomatic after the AHSV-9 challenge. VP7-specific antibodies could not be detected by the b-ELISA until day 21 and day 30 post-inoculation, respectively. Virus neutralizing antibody titres were low or even undetectable for specific serotypes in the vaccinated horses. Virus isolation and GS-rRT-PCR detected the presence of AHSV vaccine strains genomes and infectious vaccine virus after vaccination and challenge. This study established an experimental infection model of AHSV-9 in horses and characterized the main clinical, virological, and immunological parameters in both immunologically naïve and vaccinated horses using standardized bio-assays.
Collapse
Affiliation(s)
- Manuel Durán-Ferrer
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - Rubén Villalba
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - Paloma Fernández-Pacheco
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
| | | | - Miguel-Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - José-Antonio Bouzada
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - María-José Ruano
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
| | - Marisa Arias
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. M-106, pk 8,1, 28130 Valdeolmos, Spain; (P.F.-P.); (M.-Á.J.-C.); (J.F.-P.); (M.A.)
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Ctra. M-106, pk 1,4, 28110 Algete, Spain; (M.D.-F.); (R.V.); (J.-A.B.); (M.-J.R.)
- Correspondence:
| |
Collapse
|
6
|
Castillo‐Olivares J. African horse sickness in Thailand: Challenges of controlling an outbreak by vaccination. Equine Vet J 2021; 53:9-14. [PMID: 33007121 PMCID: PMC7821295 DOI: 10.1111/evj.13353] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Javier Castillo‐Olivares
- Laboratory of Viral ZoonoticsDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
- School of Veterinary Medicine and ScienceUniversity of NottinghamLoughboroughLeicsUK
| |
Collapse
|
7
|
Calvo-Pinilla E, Marín-López A, Utrilla-Trigo S, Jiménez-Cabello L, Ortego J. Reverse genetics approaches: a novel strategy for African horse sickness virus vaccine design. Curr Opin Virol 2020; 44:49-56. [PMID: 32659516 PMCID: PMC7351391 DOI: 10.1016/j.coviro.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/26/2023]
Abstract
African horse sickness (AHS) is a devastating disease caused by African horse sickness virus (AHSV) and transmitted by arthropods between its equine hosts. AHSV is endemic in sub-Saharan Africa, where polyvalent live attenuated vaccine is in use even though it is associated with safety risks. This review article summarizes and compares new strategies to generate safe and effective AHSV vaccines based on protein, virus like particles, viral vectors and reverse genetics technology. Manipulating the AHSV genome to generate synthetic viruses by means of reverse genetic systems has led to the generation of potential safe vaccine candidates that are under investigation.
Collapse
Affiliation(s)
- Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Luís Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
8
|
Rutkowska DA, Mokoena NB, Tsekoa TL, Dibakwane VS, O’Kennedy MM. Plant-produced chimeric virus-like particles - a new generation vaccine against African horse sickness. BMC Vet Res 2019; 15:432. [PMID: 31796116 PMCID: PMC6892175 DOI: 10.1186/s12917-019-2184-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.
Collapse
Affiliation(s)
| | - Nobalanda B. Mokoena
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | | - Vusi S. Dibakwane
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | |
Collapse
|
9
|
Marín-López A, Barreiro-Piñeiro N, Utrilla-Trigo S, Barriales D, Benavente J, Nogales A, Martínez-Costas J, Ortego J, Calvo-Pinilla E. Cross-protective immune responses against African horse sickness virus after vaccination with protein NS1 delivered by avian reovirus muNS microspheres and modified vaccinia virus Ankara. Vaccine 2019; 38:882-889. [PMID: 31708178 DOI: 10.1016/j.vaccine.2019.10.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023]
Abstract
African horse sickness virus (AHSV) is an insect-borne pathogen that causes acute disease in horses and other equids. In an effort to improve the safety of currently available vaccines and to acquire new knowledge about the determinants of AHSV immunogenicity, new generation vaccines are being developed. In this work we have generated and tested a novel immunization approach comprised of nonstructural protein 1 (NS1) of AHSV serotype 4 (AHSV-4) incorporated into avian reovirus muNS protein microspheres (MS-NS1) and/or expressed using recombinant modified vaccinia virus Ankara vector (MVA-NS1). The protection conferred against AHSV by a homologous MS-NS1 or heterologous MS-NS1 and MVA-NS1 prime/boost was evaluated in IFNAR (-/-) mice. Our results indicate that immunization based on MS-NS1 and MVA-NS1 afforded complete protection against the infection with homologous AHSV-4. Moreover, priming with MS-NS1 and boost vaccination with MVA-NS1 (MS-MVA-NS1) triggered NS1 specific cytotoxic CD8 + T cells and prevented AHSV disease in IFNAR (-/-) mice after challenge with heterologous serotype AHSV-9. Cross-protective immune responses are highly important since AHS can be caused by nine different serotypes, which means that a universal polyvalent vaccination would need to induce protective immunity against all serotypes.
Collapse
Affiliation(s)
- Alejandro Marín-López
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sergio Utrilla-Trigo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Diego Barriales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Javier Benavente
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Ortego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain.
| | - Eva Calvo-Pinilla
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| |
Collapse
|
10
|
Dennis SJ, Meyers AE, Hitzeroth II, Rybicki EP. African Horse Sickness: A Review of Current Understanding and Vaccine Development. Viruses 2019; 11:E844. [PMID: 31514299 PMCID: PMC6783979 DOI: 10.3390/v11090844] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
African horse sickness is a devastating disease that causes great suffering and many fatalities amongst horses in sub-Saharan Africa. It is caused by nine different serotypes of the orbivirus African horse sickness virus (AHSV) and it is spread by Culicoid midges. The disease has significant economic consequences for the equine industry both in southern Africa and increasingly further afield as the geographic distribution of the midge vector broadens with global warming and climate change. Live attenuated vaccines (LAV) have been used with relative success for many decades but carry the risk of reversion to virulence and/or genetic re-assortment between outbreak and vaccine strains. Furthermore, the vaccines lack DIVA capacity, the ability to distinguish between vaccine-induced immunity and that induced by natural infection. These concerns have motivated interest in the development of new, more favourable recombinant vaccines that utilize viral vectors or are based on reverse genetics or virus-like particle technologies. This review summarizes the current understanding of AHSV structure and the viral replication cycle and also evaluates existing and potential vaccine strategies that may be applied to prevent or control the disease.
Collapse
Affiliation(s)
- Susan J Dennis
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
11
|
Dennis SJ, O’Kennedy MM, Rutkowska D, Tsekoa T, Lourens CW, Hitzeroth II, Meyers AE, Rybicki EP. Safety and immunogenicity of plant-produced African horse sickness virus-like particles in horses. Vet Res 2018; 49:105. [PMID: 30309390 PMCID: PMC6389048 DOI: 10.1186/s13567-018-0600-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/28/2018] [Indexed: 11/10/2022] Open
Abstract
African horse sickness (AHS) is caused by multiple serotypes of the dsRNA AHSV and is a major scourge of domestic equids in Africa. While there are well established commercial live attenuated vaccines produced in South Africa, risks associated with these have encouraged attempts to develop new and safer recombinant vaccines. Previously, we reported on the immunogenicity of a plant-produced AHS serotype 5 virus-like particle (VLP) vaccine, which stimulated high titres of AHS serotype 5-specific neutralizing antibodies in guinea pigs. Here, we report a similar response to the vaccine in horses. This is the first report demonstrating the safety and immunogenicity of plant-produced AHS VLPs in horses.
Collapse
Affiliation(s)
- Susan J. Dennis
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701 South Africa
| | - Martha M. O’Kennedy
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, 0001 South Africa
| | - Daria Rutkowska
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, 0001 South Africa
| | - Tsepo Tsekoa
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, 0001 South Africa
| | - Carina W. Lourens
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, Pretoria, 0110 South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701 South Africa
| | - Ann E. Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701 South Africa
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701 South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
12
|
Aksular M, Calvo-Pinilla E, Marín-López A, Ortego J, Chambers AC, King LA, Castillo-Olivares J. A single dose of African horse sickness virus (AHSV) VP2 based vaccines provides complete clinical protection in a mouse model. Vaccine 2018; 36:7003-7010. [PMID: 30309744 PMCID: PMC6219453 DOI: 10.1016/j.vaccine.2018.09.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 11/24/2022]
Abstract
Baculovirus-expressed AHS-VP2 and MVA-VP2 vaccines were evaluated in mice. Clinical protection was complete in mice receiving one or two doses of MVA-VP2. Clinical protection complete after two doses of baculovirus-expressed VP2. Significant reduction of viraemia in all vaccinated groups. Significant levels of immunity were achieved with one dose of either vaccine.
African horse sickness is a severe, often fatal, arboviral disease of equids. The control of African horse sickness virus (AHSV) in endemic countries is based currently on the use of live attenuated vaccines despite some biosafety concerns derived from its biological properties. Thus, experimental vaccination platforms have been developed over the years in order to avoid the biosafety concerns associated with the use of attenuated vaccines. Various studies showed that baculovirus-expressed AHSV-VP2 or modified Vaccinia Ankara virus expressing AHSV-VP2 (MVA-VP2) induced virus neutralising antibodies and protective immunity in small animals and horses. AHSV is an antigenically diverse pathogen and immunity against AHS is serotype-specific. Therefore, AHS vaccines for use in endemic countries need to induce an immune response capable of protecting against all existing serotypes. For this reason, current live attenuated vaccines are administered as polyvalent preparations comprising combinations of AHSV attenuated strains of different serotypes. Previous studies have shown that it is possible to induce cross-reactive virus neutralising antibodies against different serotypes of AHSV by using polyvalent vaccines comprising combinations of either different serotype-specific VP2 proteins, or MVA-VP2 viruses. However, these strategies could be difficult to implement if induction of protective immunity is highly dependent on using a two-dose vaccination regime for each serotype the vaccine intends to protect against. In our study, we have tested the protective capacity of MVA-VP2 and baculovirus-expressed VP2 vaccines when a single dose was used. Groups of interferon alpha receptor knock-out mice were inoculated with either MVA-VP2 or baculovirus-expressed VP2 vaccines using one dose or the standard two-dose vaccination regime. After vaccination, all four vaccinated groups were challenged with AHSV and clinical responses, lethality and viraemia compared between the groups. Our results show that complete clinical protection was achieved after a single vaccination with either MVA-VP2 or baculovirus sub-unit VP2 vaccines.
Collapse
Affiliation(s)
- Mine Aksular
- Department of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; Oxford Expression Technologies Ltd, Gipsy Lane, Oxford OX3 0BP, UK; The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NB, UK
| | | | | | | | - Adam C Chambers
- Oxford Expression Technologies Ltd, Gipsy Lane, Oxford OX3 0BP, UK
| | - Linda A King
- Department of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Javier Castillo-Olivares
- Department of Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NB, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES Cambridge, UK.
| |
Collapse
|
13
|
Calvo-Pinilla E, Gubbins S, Mertens P, Ortego J, Castillo-Olivares J. The immunogenicity of recombinant vaccines based on modified Vaccinia Ankara (MVA) viruses expressing African horse sickness virus VP2 antigens depends on the levels of expressed VP2 protein delivered to the host. Antiviral Res 2018; 154:132-139. [PMID: 29678552 PMCID: PMC5966619 DOI: 10.1016/j.antiviral.2018.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Abstract
African horse sickness (AHS) is a lethal equine disease transmitted by Culicoides biting midges and caused by African horse sickness virus (AHSV). AHS is endemic to sub-Saharan Africa, but devastating outbreaks have been recorded periodically outside this region. The perceived risk of an AHS outbreak occurring in Europe has increased following the frequent epidemics caused in ruminants by bluetongue virus, closely related to AHSV. Attenuated vaccines for AHS are considered unsuitable for use in non-endemic countries due bio-safety concerns. Further, attenuated and inactivated vaccines are not compatible with DIVA (differentiate infected from vaccinated animals) strategies. All these factors stimulated the development of novel AHS vaccines that are safer, more efficacious and DIVA compatible. We showed previously that recombinant modified Vaccinia Ankara virus (MVA) vaccines encoding the outer capsid protein of AHSV (AHSV-VP2) induced virus neutralising antibodies (VNAb) and protection against AHSV in a mouse model and also in the horse. Passive immunisation studies demonstrated that immunity induced by MVA-VP2 was associated with pre-challenge VNAb titres in the vaccinates. Analyses of the inoculum of these MVA-VP2 experimental vaccines showed that they contained pre-formed AHSV-VP2. We continued studying the influence of pre-formed AHSV-VP2, present in the inoculum of MVA-VP2 vaccines, in the immunogenicity of MVA-VP2 vaccines. Thus, we compared correlates of immunity in challenged mice that were previously vaccinated with: a) MVA-VP2 (live); b) MVA-VP2 (live and sucrose gradient purified); c) MVA-VP2 (UV light inactivated); d) MVA-VP2 (UV light inactivated and diluted); e) MVA-VP2 (heat inactivated); f) MVA-VP2 (UV inactivated) + MVA-VP2 (purified); g) MVA-VP2 (heat inactivated) + MVA-VP2 (purified); and h) wild type-MVA (no insert). The results of these experiments showed that protection was maximal using MVA-VP2 (live) vaccine and that the protection conferred by all other vaccines correlated strongly with the levels of pre-formed AHSV-VP2 in the vaccine inoculum. MVA-VP2 vaccines (expressing African horse sickness virus VP2) induce protective immunity in mouse model and in horses. Experimental MVA-VP2 vaccines contain preformed AHSV-VP2 in the inoculum if they are not sucrose-gradient purified. MVA-VP2 vaccines express AHSV-VP2 in MVA-VP2 infected cells. Both pre-formed AHSV-VP2 and ‘de novo’ synthesised AHSV-VP2 in MVA-VP2 vaccinates contribute to MVA-VP2 immunogenicity.
Collapse
Affiliation(s)
- Eva Calvo-Pinilla
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK; INIA-CISA, 28130, Valdeolmos, Madrid, Spain
| | - Simon Gubbins
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Peter Mertens
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | | | | |
Collapse
|