1
|
Liu Y, Chen D, Zhao L, Zhang H, Wu S, Chen X, Shen E, Li L, Yang Z, Wang Y, Yin F, Zhang Y, Shi Y, Zhou S, Li S, Du X, Guo J, Wang D, Wang H, Liu S, Jin G, Zhang H, Yu X, Chen X, Shang L, Liu Y, Liu Y. Stability study of recombinant 9-valent human papillomavirus vaccine based on Escherichia coli expression system. Hum Vaccin Immunother 2025; 21:2455807. [PMID: 39973250 PMCID: PMC11845052 DOI: 10.1080/21645515.2025.2455807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
This study reports on the long-term stability of a recombinant 9-valent HPV vaccine, addressing a gap in the literature as previous research did not extend beyond 72 months. The vaccine targets HPV types 6, 11, 16, 18, 31, 33, 45, 52, and 58 and was produced using an E. coli expression system. We optimized soluble HPV L1 protein expression by truncating the N- and C-termini, resulting in HPV L1 virus-like particles (VLPs). Structural analysis confirmed the VLPs' resemblance to natural ones, suitable for vaccine production. Stability testing encompassed appearance, dosage, pH, osmolarity, aluminum content, polysorbate 80, in vitro relative potency, abnormal toxicity, in vivo potency, sterility, and endotoxin levels. The vaccine showed stability under extreme conditions of light (4500 lx) and shaking table vibration (10-30 rpm) for at least 7 days at 5 ± 3°C. Long-term storage at 5 ± 3°C maintained stability for up to 72 months, while accelerated testing at 25 ± 2°C showed stability for at least 12 months. The findings suggest that the vaccine's potency is best preserved under protection from high temperatures and direct light, with even harsh conditions not significantly compromising stability. This enhances the global distribution potential of the HPV vaccine.
Collapse
Affiliation(s)
- Yuying Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Dan Chen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Li Zhao
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Haijiang Zhang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shuming Wu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xiao Chen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Ercui Shen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Ling Li
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Zengmin Yang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yan Wang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Fei Yin
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yao Zhang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yazheng Shi
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shuyi Zhou
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shuang Li
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xiaoli Du
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Jiaping Guo
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Di Wang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Huan Wang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shujuan Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Guiying Jin
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Hongcai Zhang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xinyu Yu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xuejiao Chen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Lulu Shang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yang Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yongjiang Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| |
Collapse
|
2
|
Rajendar B, Reddy MVNJ, Adusumilli M, Matur RV. Quantification of residual DTT by high-performance anion-exchange chromatography coupled with pulsed amperometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1259:124609. [PMID: 40286484 DOI: 10.1016/j.jchromb.2025.124609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/25/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
VLP (virus-like particle) have proven to be safer vaccine candidates compared to live-attenuated or inactivated viral vaccines. As part of the manufacturing process of VLP-based vaccines, dithiothreitol (DTT) and other reducing agents are commonly used in the disassembly of VLPs, followed by a subsequent reassembly process for the removal of the added reducing agents. This disassembly and reassembly processes improve VLP integrity, stability and immunoreactivity. In the manufacture of VLPs, it is essential that DTT removal is ensured since it is a highly toxic substance. Residual DTT content has to be monitored throughout the manufacturing process flow of the final pharmaceutical product. The available method for DTT estimation involves chemical derivatization which is complex and may require 100 % derivatization of low levels of DTT. In this study, we report a simple, novel and sensitive method for DTT quantification based on the combination of HPAEC-PAD and an electrochemical detector. The developed method has a linear range from 1 to 10 ng/mL with a limit of quantification of 100 pg. It is cost-effective and more sensitive than current available fluorescent and HPLC-MS-based methods for detecting residual DTT in viral and VLP-based vaccines. This method can be implemented to monitor residual DTT levels in any vaccine or product where DTT is used as a process reagent.
Collapse
Affiliation(s)
- Burki Rajendar
- Research & Development, Biological E Limited, Shameerpet, Hyderabad 500078, India.
| | | | - Madhavi Adusumilli
- Research & Development, Biological E Limited, Shameerpet, Hyderabad 500078, India
| | - Ramesh V Matur
- Research & Development, Biological E Limited, Shameerpet, Hyderabad 500078, India.
| |
Collapse
|
3
|
Fatema K, Snowden JS, Watson A, Sherry L, Ranson NA, Stonehouse NJ, Rowlands DJ. A VLP vaccine platform comprising the core protein of hepatitis B virus with N-terminal antigen capture. Int J Biol Macromol 2025; 305:141152. [PMID: 39961558 DOI: 10.1016/j.ijbiomac.2025.141152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Nanoparticle presentation systems offer the potential to develop new vaccines rapidly in response to emerging diseases, a public health need that has become increasingly evident in the wake of the COVID-19 pandemic. Previously, we reported a nanoparticle scaffold system termed VelcroVax. This was constructed by insertion of a high affinity SUMO binding protein (Affimer), able to recognise a SUMO peptide tag, into the major immunodominant region of VLPs assembled from a tandem (fused dimer) form of hepatitis B virus (HBV) core protein (HBc). Here we describe an alternative form, termed N-VelcroVax, a VLP vaccine platform assembled from a monomeric HBc protein (N-anti-SUMO Affimer HBc 190) with the Affimer inserted at the N-terminus. In contrast to the tandem form of VelcroVax, N-VelcroVax VLPs were expressed well in E. coli. The VLPs effectively bound SUMO-tagged Junín virus glycoprotein, gp1 as assessed by structural and serological analyses. Cryo-EM characterisation of N-VelcroVax complexed with a SUMO-Junín gp1 showed continuous density attributable to the fused Affimer, in addition to evidence of target antigen capture. Collectively, these data suggest that N-VelcroVax has potential as a versatile next generation vaccine scaffold.
Collapse
Affiliation(s)
- Kaniz Fatema
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Alexander Watson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lee Sherry
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
4
|
Tang S, Zhao C, Zhu X. Engineering Escherichia coli-Derived Nanoparticles for Vaccine Development. Vaccines (Basel) 2024; 12:1287. [PMID: 39591189 PMCID: PMC11598912 DOI: 10.3390/vaccines12111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The development of effective vaccines necessitates a delicate balance between maximizing immunogenicity and minimizing safety concerns. Subunit vaccines, while generally considered safe, often fail to elicit robust and durable immune responses. Nanotechnology presents a promising approach to address this dilemma, enabling subunit antigens to mimic critical aspects of native pathogens, such as nanoscale dimensions, geometry, and highly repetitive antigen display. Various expression systems, including Escherichia coli (E. coli), yeast, baculovirus/insect cells, and Chinese hamster ovary (CHO) cells, have been explored for the production of nanoparticle vaccines. Among these, E. coli stands out due to its cost-effectiveness, scalability, rapid production cycle, and high yields. However, the E. coli manufacturing platform faces challenges related to its unfavorable redox environment for disulfide bond formation, lack of post-translational modifications, and difficulties in achieving proper protein folding. This review focuses on molecular and protein engineering strategies to enhance protein solubility in E. coli and facilitate the in vitro reassembly of virus-like particles (VLPs). We also discuss approaches for antigen display on nanocarrier surfaces and methods to stabilize these carriers. These bioengineering approaches, in combination with advanced nanocarrier design, hold significant potential for developing highly effective and affordable E. coli-derived nanovaccines, paving the way for improved protection against a wide range of infectious diseases.
Collapse
Affiliation(s)
- Shubing Tang
- Shanghai Reinovax Biologics Co., Ltd., Pudong New District, Shanghai 200135, China;
| | - Chen Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201058, China
| | - Xianchao Zhu
- Shanghai Reinovax Biologics Co., Ltd., Pudong New District, Shanghai 200135, China;
| |
Collapse
|
5
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024; 32:1877-1892. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Chi X, Han F, Jiang Y, Cao L, Chen J, Qian C, Zhang S, Li J, Guo X, Jiang M, Zheng Q, Xia N, Li S, Gu Y. Characterization of a triple-type chimeric vaccine against human papillomavirus types 18, 45, and 59. Vaccine 2024; 42:126245. [PMID: 39216181 DOI: 10.1016/j.vaccine.2024.126245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Persistent infection with high-risk human papillomavirus (HPV) types can lead to the development of cancer in HPV-infected tissues, including the cervix, oropharynx, anus, penis, vagina, and vulva. While current HPV vaccines cover approximately 90 % of cervical cancers, nearly 10 % of cases associated with HPV types not included in the vaccines remain unaddressed, notably HPV59. This study describes the development of a chimeric virus-like particle (VLP) targeting HPV18/45/59, proposed as a vaccine candidate for high-risk HPV type (HPV59) currently lacking commercial vaccines. Given that the majority of neutralizing antibody epitopes are located on the surface loops, we engineered a strategic swap of these loops between the closely related HPV18 and HPV45. This methodology was then extended to incorporate surface loops of HPV59, resulting in the lead candidate construct of the H18-45BCEF-59HI chimeric VLP with two surface loops swapping from HPV45 to HPV18. Characterization confirmed that H18-45BCEF-59HI closely resembled the wild-type (WT) backbone types in particle size and morphology, as verified by Transmission Electron Microscopy (TEM), High-Performance Size-Exclusion Chromatography (HPSEC), and Analytical Ultracentrifugation (AUC), and demonstrated similar thermal stability as evidenced by Differential Scanning Calorimetry (DSC). Immunization studies in mice with the chimeric VLPs assessed their immunogenicity, revealing that the H18-45EF-59HI chimeric VLP exhibited optimal cross-neutralization. Additionally, when produced in a Good Manufacturing Practice (GMP)-like facility, the H18-45BCEF-59HI VLP was selected as a promising vaccine candidate for the prevention of HPV18/45/59 infection. This study not only offers a potential solution to the current vaccination gap but also provides a foundational approach for the design of vaccines targeting viruses with multiple subtypes or variants.
Collapse
Affiliation(s)
- Xin Chi
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Yanan Jiang
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Lin Cao
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Jie Chen
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Ciying Qian
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Shuyue Zhang
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Jinjin Li
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Xinyin Guo
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Mingxia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China; The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China.
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory,School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,National Institute of Diagnostics and Vaccine Development in Infectious Diseases,National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Zaman K, Schuind AE, Adjei S, Antony K, Aponte JJ, Buabeng PB, Qadri F, Kemp TJ, Hossain L, Pinto LA, Sukraw K, Bhat N, Agbenyega T. Safety and immunogenicity of Innovax bivalent human papillomavirus vaccine in girls 9-14 years of age: Interim analysis from a phase 3 clinical trial. Vaccine 2024; 42:2290-2298. [PMID: 38431444 PMCID: PMC11007388 DOI: 10.1016/j.vaccine.2024.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND World Health Organization human papillomavirus (HPV) vaccination recommendations include a single- or two-dose schedule in individuals 9-20 years old and advice for generating data on single-dose efficacy or immunobridging. The ongoing Phase 3 trial of Innovax's bivalent (types 16 and 18) HPV vaccine (Cecolin®) assesses in low- and middle-income countries alternative dosing schedules and generates data following one dose in girls 9-14 years old. Interim data for the 6-month dosing groups are presented. METHODS In Bangladesh and Ghana, 1,025 girls were randomized to receive either two doses of Cecolin at 6-, 12-, or 24-month intervals; one dose of Gardasil® followed by one dose of Cecolin at month 24; or two doses of Gardasil 6 months apart (referent). Serology was measured by enzyme-linked immunosorbent assay (ELISA) and, in a subset, by neutralization assays. Primary objectives include immunological non-inferiority of the Cecolin schedules to referent one month after the second dose. Safety endpoints include reactogenicity and unsolicited adverse events for 7 and 30 days post-vaccination, respectively, as well as serious adverse events throughout the study. RESULTS Interim analyses included data from the two groups on a 0, 6-month schedule with 205 participants per group. One month after Dose 2, 100% of participants were seropositive by ELISA and had seroconverted for both antigens. Non-inferiority of Cecolin to Gardasil was demonstrated. Six months following one dose, over 96% of participants were seropositive by ELISA for both HPV antigens, with a trend for higher geometric mean concentration following Cecolin administration. Reactogenicity and safety were comparable between both vaccines. CONCLUSIONS Cecolin in a 0, 6-month schedule elicits robust immunogenicity. Non-inferiority to Gardasil was demonstrated one month after a 0, 6-month schedule. Immunogenicity following one dose was comparable to Gardasil up to six months. Both vaccines were safe and well tolerated (ClinicalTrials.gov No. 04508309).
Collapse
Affiliation(s)
- Khalequ Zaman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Anne E Schuind
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, United States.
| | - Samuel Adjei
- Malaria Research Center, Agogo Presbyterian Hospital/Kwame Nkrumah University of Science and Technology, Agogo, Ghana
| | - Kalpana Antony
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, United States
| | - John J Aponte
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, United States
| | - Patrick By Buabeng
- Malaria Research Center, Agogo Presbyterian Hospital/Kwame Nkrumah University of Science and Technology, Agogo, Ghana
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Troy J Kemp
- HPV Serology Laboratory, Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States
| | - Lokman Hossain
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ligia A Pinto
- HPV Serology Laboratory, Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States
| | - Kristen Sukraw
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, United States
| | - Niranjan Bhat
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, United States
| | - Tsiri Agbenyega
- Malaria Research Center, Agogo Presbyterian Hospital/Kwame Nkrumah University of Science and Technology, Agogo, Ghana
| |
Collapse
|
8
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein-based nanoparticles (part 2): Pharmaceutical applications. Eur J Pharm Sci 2023; 189:106558. [PMID: 37567394 DOI: 10.1016/j.ejps.2023.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Viral protein nanoparticles (ViP NPs) such as virus-like particles and virosomes are structures halfway between viruses and synthetic nanoparticles. The biological nature of ViP NPs endows them with the biocompatibility, biodegradability, and functional properties that many synthetic nanoparticles lack. At the same time, the absence of a viral genome avoids the safety concerns of viruses. Such characteristics of ViP NPs offer a myriad of opportunities for theirapplication at several points across disease development: from prophylaxis to diagnosis and treatment. ViP NPs present remarkable immunostimulant properties, and thus the vaccination field has benefited the most from these platforms capable of overcoming the limitations of both traditional and subunit vaccines. This was reflected in the marketing authorization of several VLP- and virosome-based vaccines. Besides, ViP NPs inherit the ability of viruses to deliver their cargo to target cells. Because of that, ViP NPs are promising candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze the pharmaceutical applications of ViP NPs, describing the products that are commercially available or under clinical evaluation, but also the advances that scientists are making toward the implementation of ViP NPs in other areas of major pharmaceutical interest.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Park I, Unger ER, Kemp TJ, Pinto LA. The second HPV serology meeting: Progress and challenges in standardization of human papillomavirus serology assays. Vaccine 2023; 41:1177-1181. [PMID: 36642631 PMCID: PMC11216077 DOI: 10.1016/j.vaccine.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
The HPV Serology Laboratory in the Frederick National Laboratory for Cancer Research is working in partnership with the scientific community with the goal of standardizing and harmonizing current HPV serology assay platforms in response to the increasing number of immunobridging trials relying on serology data for approval of new vaccine dosing schedules and new formulations. A virtual meeting was held on June 29-30, 2021, to review the progress of the standardization initiative thus far and to bridge scientific gaps and outstanding questions. The main aims and outcomes of the meeting were to discuss: 1) standardization of assays and reagents; 2) International Standard calibration procedures; 3) assay cut-off values; 4) current immunobridging clinical trials; and 5) gaps and challenges in standardization of HPV serology.
Collapse
Affiliation(s)
- Isabel Park
- HPV Immunology and HPV Serology Laboratories, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Elizabeth R Unger
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Troy J Kemp
- HPV Immunology and HPV Serology Laboratories, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ligia A Pinto
- HPV Immunology and HPV Serology Laboratories, Frederick National Laboratory for Cancer Research, Frederick, MD, United States.
| |
Collapse
|
10
|
Omics-guided bacterial engineering of Escherichia coli ER2566 for recombinant protein expression. Appl Microbiol Biotechnol 2023; 107:853-865. [PMID: 36539564 PMCID: PMC9767853 DOI: 10.1007/s00253-022-12339-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The goal of bacterial engineering is to rewire metabolic pathways to generate high-value molecules for various applications. However, the production of recombinant proteins is constrained by the complexity of the connections between cellular physiology and recombinant protein synthesis. Here, we used a rational and highly efficient approach to improve bacterial engineering. Based on the complete genome and annotation information of the Escherichia coli ER2566 strain, we compared the transcriptomic profiles of the strain under leaky expression and low temperature-induced stress. Combining the gene ontology (GO) enrichment terms and differentially expressed genes (DEGs) with higher expression, we selected and knocked out 36 genes to determine the potential impact of these genes on protein production. Deletion of bluF, cydA, mngR, and udp led to a significant decrease in soluble recombinant protein production. Moreover, at low-temperature induction, 4 DEGs (gntK, flgH, flgK, flgL) were associated with enhanced expression of the recombinant protein. Knocking out several motility-related DEGs (ER2666-ΔflgH-ΔflgL-ΔflgK) simultaneously improved the protein yield by 1.5-fold at 24 °C induction, and the recombinant strain had the potential to be applied in the expression studies of different exogenous proteins, aiming to improve the yields of soluble form to varying degrees in comparison to the ER2566 strain. Totally, this study focused on the anabolic and stress-responsive hub genes of the adaptation of E. coli to recombinant protein overexpression on the transcriptome level and constructs a series of engineering strains increasing the soluble protein yield of recombinant proteins which lays a solid foundation for the engineering of bacterial strains for recombinant technological advances. KEY POINTS: • Comparative transcriptome analysis shows host responses with altered induction stress. • Deletion of bluF, cydA, mngR, and udp genes was identified to significantly decrease the soluble recombinant protein productions. • Synchronal knockout of flagellar genes in E. coli can enhance recombinant protein yield up to ~ 1.5-fold at 24 °C induction. • Non-model bacterial strains can be re-engineered for recombinant protein expression.
Collapse
|
11
|
Zhao FH, Wu T, Hu YM, Wei LH, Li MQ, Huang WJ, Chen W, Huang SJ, Pan QJ, Zhang X, Hong Y, Zhao C, Li Q, Chu K, Jiang YF, Li MZ, Tang J, Li CH, Guo DP, Ke LD, Wu X, Yao XM, Nie JH, Lin BZ, Zhao YQ, Guo M, Zhao J, Zheng FZ, Xu XQ, Su YY, Zhang QF, Sun G, Zhu FC, Li SW, Li YM, Pan HR, Zhang J, Qiao YL, Xia NS. Efficacy, safety, and immunogenicity of an Escherichia coli-produced Human Papillomavirus (16 and 18) L1 virus-like-particle vaccine: end-of-study analysis of a phase 3, double-blind, randomised, controlled trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:1756-1768. [PMID: 36037823 DOI: 10.1016/s1473-3099(22)00435-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This Escherichia coli-produced bivalent HPV 16 and 18 vaccine was well tolerated and effective against HPV 16 and 18 associated high-grade genital lesions and persistent infection in interim analysis of this phase 3 trial. We now report data on long-term efficacy and safety after 66 months of follow-up. METHODS This phase 3, double-blind, randomised, controlled trial was done in five study sites in China. Eligible participants were women aged 18-45 years, with intact cervix and 1-4 lifetime sexual partners. Women who were pregnant or breastfeeding, had chronic disease or immunodeficiency, or had HPV vaccination history were excluded. Women were stratified by age (18-26 and 27-45 years) and randomly (1:1) allocated by software (block randomisation with 12 codes to a block) to receive three doses of the E coli-produced HPV 16 and 18 vaccine or hepatitis E vaccine (control) and followed-up for 66 months. The primary outcomes were high-grade genital lesions and persistent infection (longer than 6 months) associated with HPV 16 or 18 in the per-protocol susceptible population. This trial was registered with ClinicalTrials.gov, NCT01735006. FINDINGS Between Nov 22, 2012, and April 1, 2013, 8827 women were assessed for eligibility. 1455 women were excluded, and 7372 women were enrolled and randomly assigned to receive the HPV vaccine (n=3689) or control (n=3683). Vaccine efficacy was 100·0% (95% CI 67·2-100·0) against high-grade genital lesions (0 [0%] of 3310 participants in the vaccine group and 13 [0·4%] of 3302 participants in the control group) and 97·3% (89·9-99·7) against persistent infection (2 [0·1%] of 3262 participants in the vaccine group and 73 [2·2%] of 3271 participants in the control group) in the per-protocol population. Serious adverse events occurred at a similar rate between vaccine (267 [7·2%] of 3691 participants) and control groups (290 [7·9%] of 3681); none were considered related to vaccination. INTERPRETATION The E coli-produced HPV 16 and 18 vaccine was well tolerated and highly efficacious against HPV 16 and 18 associated high-grade genital lesions and persistent infection and would supplement the global HPV vaccine availability and accessibility for cervical cancer prevention. FUNDING National Natural Science Foundation of China, National Key R&D Program of China, Fujian Provincial Project, Fundamental Funds for the Central Universities, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and Xiamen Innovax.
Collapse
Affiliation(s)
- Fang-Hui Zhao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Yue-Mei Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Li-Hui Wei
- Peking University People's Hospital, Beijing, China
| | - Ming-Qiang Li
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Wei-Jin Huang
- National Institute for Food and Drug Control, Beijing, China
| | - Wen Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Shou-Jie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Qin-Jing Pan
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xun Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ying Hong
- the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Zhao
- Peking University People's Hospital, Beijing, China
| | - Qing Li
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Kai Chu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Yun-Fei Jiang
- the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ming-Zhu Li
- Peking University People's Hospital, Beijing, China
| | - Jie Tang
- Funing Center for Disease Control and Prevention, Funing, Jiangsu, China
| | - Cai-Hong Li
- Xinmi Maternal and Child Health Hospital, Xinmi, Henan, China
| | - Dong-Ping Guo
- Yangcheng Maternal and Child Health Hospital, Yangcheng, Shanxi, China
| | - Li-Dong Ke
- Fengning Hospital of Traditional Chinese Medicine, Fengning, Hebei, China
| | - Xin Wu
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Xing-Mei Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jian-Hui Nie
- National Institute for Food and Drug Control, Beijing, China
| | - Bi-Zhen Lin
- Xiamen Innovax Biotech Xiamen, Fujian, China
| | - Yu-Qian Zhao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Meng Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jun Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | | | - Xiao-Qian Xu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ying-Ying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | | | - Guang Sun
- Xiamen Innovax Biotech Xiamen, Fujian, China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Shao-Wei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Yi-Min Li
- Beijing Wantai Biological Pharmacy Enterprise, Beijing, China
| | | | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China.
| | - You-Lin Qiao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China; Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, China
| |
Collapse
|
12
|
Yao X, He W, Wu X, Gu J, Zhang J, Lin B, Bi Z, Su Y, Huang S, Hu Y, Wu T, Zhang J, Xia N. Long-Term immunopersistence and safety of the Escherichia coli-produced HPV-16/18 bivalent vaccine in Chinese adolescent girls. Hum Vaccin Immunother 2022; 18:2061248. [PMID: 35417301 PMCID: PMC9897638 DOI: 10.1080/21645515.2022.2061248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The study assessed long-term immunopersistence and safety of the Escherichia coli (E. coli)-produced HPV-16/18 bivalent vaccine. In total, 979 participants in the initial immunogenicity noninferiority study, including girls aged 9-14 years who were randomized in a 1:1 ratio to receive 2 doses at months 0 and 6 (n = 301) or 3 doses at months 0, 1 and 6 (n = 304); girls aged 15-17 years (n = 149) and women aged 18-26 years (n = 225) who received 3 doses of the vaccine, were invited to participate in follow-up to 30 months post vaccination (NCT03206255). Serum samples were collected at months 18 and 30, and anti-HPV-16/18 IgG antibodies were measured by enzyme-linked immunosorbent assay. Serious adverse events (SAEs) occurred from month 7 through month 30 were recorded. At month 30, in the per-protocol set, all participants remained seropositive, except for one girl in the 9-14 years (2 doses) group who seroconverted to negative for HPV-18. HPV-16 and HPV-18 antibody levels were higher in girls aged 9-17 years who received 3 doses (125.3 and 60.2 IU/ml) than in women aged 18-26 years who received 3 doses (72.6 and 28.3 IU/ml), and those in girls aged 9-14 years who received 2 doses (73.2 and 24.9 IU/ml) were comparable to those in women aged 18-26 years who received 3 doses. No SAEs were reported to be causally related to vaccination. The E. coli-produced bivalent HPV-16/18 vaccine is safe and induces persistent protective antibodies for up to 30 months after vaccination in girls aged 9-17 years receiving 2 or 3 doses.
Collapse
Affiliation(s)
- Xingmei Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Wengang He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xianghong Wu
- Integrated Business Department, Sheyang Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Jianxiang Gu
- Integrated Business Department, Sheyang Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Jing Zhang
- Integrated Business Department, Sheyang Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Bizhen Lin
- Quality Research Department, Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - Zhaofeng Bi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yingying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Shoujie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yuemei Hu
- Department of Vaccine Evaluation, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China,CONTACT Ting Wu State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiang’an South Road, Xiamen, Fujian, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China,Yuemei Hu Jiangsu Provincial Center for Disease Control and Prevention, No 172 Jiangsu Road, Gulou District, Nanjing, Jiangsu, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, Fujian, China,The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| |
Collapse
|
13
|
Jerajani K, Wan Y, Hickey JM, Kumru OS, Sharma N, Pullagurla SR, Ogun O, Mapari S, Whitaker N, Brendle S, Christensen ND, Batwal S, Mahedvi M, Rao H, Dogar V, Chandrasekharan R, Shaligram U, Joshi SB, Volkin DB. Analytical and Preformulation Characterization Studies of Human Papillomavirus Virus-Like Particles to Enable Quadrivalent Multi-Dose Vaccine Formulation Development. J Pharm Sci 2022; 111:2983-2997. [PMID: 35914546 DOI: 10.1016/j.xphs.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022]
Abstract
Introducing multi-dose formulations of Human Papillomavirus (HPV) vaccines will reduce costs and enable improved global vaccine coverage, especially in low- and middle-income countries. This work describes the development of key analytical methods later utilized for HPV vaccine multi-dose formulation development. First, down-selection of physicochemical methods suitable for multi-dose formulation development of four HPV (6, 11, 16, and 18) Virus-Like Particles (VLPs) adsorbed to an aluminum adjuvant (Alhydrogel®, AH) was performed. The four monovalent AH-adsorbed HPV VLPs were then characterized using these down-selected methods. Second, stability-indicating competitive ELISA assays were developed using HPV serotype-specific neutralizing mAbs, to monitor relative antibody binding profiles of the four AH-adsorbed VLPs during storage. Third, concentration-dependent preservative-induced destabilization of HPV16 VLPs was demonstrated by addition of eight preservatives found in parenterally administered pharmaceuticals and vaccines, as measured by ELISA, dynamic light scattering, and differential scanning calorimetry. Finally, preservative stability and effectiveness in the presence of vaccine components were evaluated using a combination of RP-UHPLC, a microbial growth inhibition assay, and a modified version of the European Pharmacopoeia assay (Ph. Eur. 5.1.3). Results are discussed in terms of analytical challenges encountered to identify and develop high-throughput methods that facilitate multi-dose formulation development of aluminum-adjuvanted protein-based vaccine candidates.
Collapse
Affiliation(s)
- Kaushal Jerajani
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Ying Wan
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Nitya Sharma
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Swathi R Pullagurla
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Oluwadara Ogun
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Shweta Mapari
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Neal Whitaker
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Sarah Brendle
- Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Neil D Christensen
- Department of Pathology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | - Harish Rao
- Serum Institute of India Pvt. Ltd., Pune, India
| | - Vikas Dogar
- Serum Institute of India Pvt. Ltd., Pune, India
| | | | | | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| |
Collapse
|
14
|
Miao C, Ma X, Fan J, Shi L, Wei J. Methylparaben as a preservative in the development of a multi-dose HPV-2 vaccine. Hum Vaccin Immunother 2022; 18:2067421. [PMID: 35471842 PMCID: PMC9302532 DOI: 10.1080/21645515.2022.2067421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The human papillomavirus (HPV) vaccine is the simplest, most economical, convenient, and effective method of preventing cervical cancer. However, the current HPV vaccine is supplied as a single-dose vial with a relatively high cost per dose, which hinders its supply to low- and middle-income countries (LMICs), where the demand for HPV vaccine is highest. Therefore, it is necessary to develop a multi-dose HPV vaccine to promote large-scale affordable vaccination in LMICs. Moreover, the addition of preservatives is required to reduce the risk of microbial contamination in multi-dose vaccines within a single vial. In this study, we investigated the effects of six preservatives on HPV 16L1 and 18L1 virus-like particles in solution, as well as the aluminum adsorption status, under normal and high-temperature conditions. Multiple methods were employed, including dynamic light scattering, differential scanning calorimetry, an in vitro relative potency assay, and an in vivo potency assay in mice. Based on the above results, four types of selected preservatives were further studied, and an antimicrobial effectiveness test was performed on the HPV-2 vaccine, which was employed as a model HPV vaccine. Finally, three preservatives were selected based on their performance to evaluate the long-term stability of the HPV-2 vaccine. The results indicated that 0.12% methylparaben is the most suitable preservative for the multi-dose HPV-2 vaccine, guaranteeing the shelf life for at least three years and meeting “B” standards for antimicrobial effectiveness. The formula developed in this study can contribute toward combating cervical cancer in LMICs.
Collapse
Affiliation(s)
- Chenyang Miao
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Xinxing Ma
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Jiang Fan
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Li Shi
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Jian Wei
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
15
|
Kim SH, Park YC, Song JM. Evaluation of the antigenic stability of influenza virus like particles after exposure to acidic or basic pH. Clin Exp Vaccine Res 2021; 10:252-258. [PMID: 34703808 PMCID: PMC8511596 DOI: 10.7774/cevr.2021.10.3.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose Virus-like particles (VLPs) are being developed as a promising vaccine platform and therapeutic delivery. Various strategies for effectively constructing VLPs have been studied, but relatively few studies have been done on various factors affecting storage. In this study, we investigated the antigenic changes of VLPs in an acidic or basic pH environment using influenza VLPs as an experimental model. Materials and Methods Influenza VLPs containing hemagglutination and M1 proteins were generated and their antigenicity and protective immunity in vitro and in vivo were evaluated after exposure to acidic (pH 4 and 5) or basic (pH 9 and 10) pH buffers. Results VLP exposed to basic pH showed similar levels of antigenicity to those stored in neutral pH, while antigenicity of VLP exposed to acidic pH was found to be significantly reduced compared to those expose neutral or basic pH. All groups of mice responded effectively to low concentrations of virus infections; however, VLP vaccine groups exposed to acid pH were found not to induce sufficient protective immune responses when a high concentration of influenza virus infection. Conclusion In order for VLP to be used as a more powerful vaccine platform, it should be developed in a strategic way to respond well to external changes such as acidic pH conditions.
Collapse
Affiliation(s)
- So Hwa Kim
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea
| | - Young Chan Park
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea
| | - Jae Min Song
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women's University, Seoul, Korea.,School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
16
|
Núñez-Muñoz L, Marcelino-Pérez G, Calderón-Pérez B, Pérez-Saldívar M, Acosta-Virgen K, González-Conchillos H, Vargas-Hernández B, Olivares-Martínez A, Ruiz-Medrano R, Roa-Velázquez D, Morales-Ríos E, Ramos-Flores J, Torres-Franco G, Peláez-González D, Fernández-Hernández J, Espinosa-Cantellano M, Tapia-Sidas D, Ramírez-Pool JA, Padilla-Viveros A, Xoconostle-Cázares B. Recombinant Antigens Based on Non-Glycosylated Regions from RBD SARS-CoV-2 as Potential Vaccine Candidates against COVID-19. Vaccines (Basel) 2021; 9:928. [PMID: 34452053 PMCID: PMC8402574 DOI: 10.3390/vaccines9080928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/22/2023] Open
Abstract
The Receptor-Binding Domain (RBD) of the Spike (S) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has glycosylation sites which can limit the production of reliable antigens expressed in prokaryotic platforms, due to glycan-mediated evasion of the host immune response. However, protein regions without glycosylated residues capable of inducing neutralizing antibodies could be useful for antigen production in systems that do not carry the glycosylation machinery. To test this hypothesis, the potential antigens NG06 and NG19, located within the non-glycosylated S-RBD region, were selected and expressed in Escherichia coli, purified by FPLC and employed to determine their immunogenic potential through detection of antibodies in serum from immunized rabbits, mice, and COVID-19 patients. IgG antibodies from sera of COVID-19-recovered patients detected the recombinant antigens NG06 and NG19 (A450 nm = 0.80 ± 0.33; 1.13 ± 0.33; and 0.11 ± 0.08 for and negatives controls, respectively). Also, the purified antigens were able to raise polyclonal antibodies in animal models evoking a strong immune response with neutralizing activity in mice model. This research highlights the usefulness of antigens based on the non-N-glycosylated region of RBD from SARS-CoV-2 for candidate vaccine development.
Collapse
Affiliation(s)
- Leandro Núñez-Muñoz
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (L.N.-M.); (G.M.-P.); (B.C.-P.); (B.V.-H.); (A.O.-M.); (R.R.-M.); (D.T.-S.); (J.A.R.-P.)
| | - Gabriel Marcelino-Pérez
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (L.N.-M.); (G.M.-P.); (B.C.-P.); (B.V.-H.); (A.O.-M.); (R.R.-M.); (D.T.-S.); (J.A.R.-P.)
- Doctoral Program in Nanosciences and Nanotechnology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico;
| | - Berenice Calderón-Pérez
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (L.N.-M.); (G.M.-P.); (B.C.-P.); (B.V.-H.); (A.O.-M.); (R.R.-M.); (D.T.-S.); (J.A.R.-P.)
| | - Miriam Pérez-Saldívar
- Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (M.P.-S.); (K.A.-V.); (H.G.-C.); (M.E.-C.)
| | - Karla Acosta-Virgen
- Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (M.P.-S.); (K.A.-V.); (H.G.-C.); (M.E.-C.)
| | - Hugo González-Conchillos
- Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (M.P.-S.); (K.A.-V.); (H.G.-C.); (M.E.-C.)
| | - Brenda Vargas-Hernández
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (L.N.-M.); (G.M.-P.); (B.C.-P.); (B.V.-H.); (A.O.-M.); (R.R.-M.); (D.T.-S.); (J.A.R.-P.)
| | - Ana Olivares-Martínez
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (L.N.-M.); (G.M.-P.); (B.C.-P.); (B.V.-H.); (A.O.-M.); (R.R.-M.); (D.T.-S.); (J.A.R.-P.)
| | - Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (L.N.-M.); (G.M.-P.); (B.C.-P.); (B.V.-H.); (A.O.-M.); (R.R.-M.); (D.T.-S.); (J.A.R.-P.)
| | - Daniela Roa-Velázquez
- Doctoral Program in Nanosciences and Nanotechnology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico;
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico;
| | - Edgar Morales-Ríos
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico;
| | - Jorge Ramos-Flores
- Laboratory Animal Production and Experimentation Unit, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (J.R.-F.); (G.T.-F.); (D.P.-G.); (J.F.-H.)
| | - Gustavo Torres-Franco
- Laboratory Animal Production and Experimentation Unit, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (J.R.-F.); (G.T.-F.); (D.P.-G.); (J.F.-H.)
| | - Diana Peláez-González
- Laboratory Animal Production and Experimentation Unit, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (J.R.-F.); (G.T.-F.); (D.P.-G.); (J.F.-H.)
| | - Jorge Fernández-Hernández
- Laboratory Animal Production and Experimentation Unit, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (J.R.-F.); (G.T.-F.); (D.P.-G.); (J.F.-H.)
| | - Martha Espinosa-Cantellano
- Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (M.P.-S.); (K.A.-V.); (H.G.-C.); (M.E.-C.)
| | - Diana Tapia-Sidas
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (L.N.-M.); (G.M.-P.); (B.C.-P.); (B.V.-H.); (A.O.-M.); (R.R.-M.); (D.T.-S.); (J.A.R.-P.)
| | - José Abrahan Ramírez-Pool
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (L.N.-M.); (G.M.-P.); (B.C.-P.); (B.V.-H.); (A.O.-M.); (R.R.-M.); (D.T.-S.); (J.A.R.-P.)
| | - América Padilla-Viveros
- Transdisciplinary Doctoral Program in Scientific and Technological Development for Society, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico;
| | - Beatriz Xoconostle-Cázares
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, México City 07360, Mexico; (L.N.-M.); (G.M.-P.); (B.C.-P.); (B.V.-H.); (A.O.-M.); (R.R.-M.); (D.T.-S.); (J.A.R.-P.)
| |
Collapse
|
17
|
Zhuang CL, Lin ZJ, Bi ZF, Qiu LX, Hu FF, Liu XH, Lin BZ, Su YY, Pan HR, Zhang TY, Huang SJ, Hu YM, Qiao YL, Zhu FC, Wu T, Zhang J, Xia NS. Inflammation-related adverse reactions following vaccination potentially indicate a stronger immune response. Emerg Microbes Infect 2021; 10:365-375. [PMID: 33583360 PMCID: PMC7928063 DOI: 10.1080/22221751.2021.1891002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concerns about vaccine safety are an important reason for vaccine hesitancy, however, limited information is available on whether common adverse reactions following vaccination affect the immune response. Data from three clinical trials of recombinant vaccines were used in this post hoc analysis to assess the correlation between inflammation-related solicited adverse reactions (ISARs, including local pain, redness, swelling or induration and systematic fever) and immune responses after vaccination. In the phase III trial of the bivalent HPV-16/18 vaccine (Cecolin®), the geometric mean concentrations (GMCs) for IgG anti-HPV-16 and -18 (P<0.001) were significantly higher in participants with any ISAR following vaccination than in those without an ISAR. Local pain, induration, swelling and systemic fever were significantly correlated with higher GMCs for IgG anti-HPV-16 and/or anti-HPV-18, respectively. Furthermore, the analyses of the immunogenicity bridging study of Cecolin® and the phase III trial of a hepatitis E vaccine yielded similar results. Based on these results, we built a scoring model to quantify the inflammation reactions and found that the high score of ISAR indicates the strong vaccine-induced antibody level. In conclusion, this study suggests inflammation-related adverse reactions following vaccination potentially indicate a stronger immune response.
Collapse
Affiliation(s)
- Chun-Lan Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Zhi-Jie Lin
- Xiamen Innovax Biotech CO., Ltd., Xiamen, People's Republic of China
| | - Zhao-Feng Bi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ling-Xian Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Fang-Fang Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Xiao-Hui Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Bi-Zhen Lin
- Xiamen Innovax Biotech CO., Ltd., Xiamen, People's Republic of China
| | - Ying-Ying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Hui-Rong Pan
- Xiamen Innovax Biotech CO., Ltd., Xiamen, People's Republic of China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Shou-Jie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Yue-Mei Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Public Health research institute of Jiangsu Province, Nanjing, People's Republic of China
| | - You-Lin Qiao
- Chinese Academy of Medical Sciences/Peking Union Medical College School of Population Medicine and Public Health, Beijing, People's Republic of China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Public Health research institute of Jiangsu Province, Nanjing, People's Republic of China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
18
|
Serrano Y, Brito SM, Pimienta E, Falero A, Marrero K. Soluble production of a full-length human papillomavirus type 16 L1 protein by Escherichia coli. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.02.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Persistent infection with human papillomavirus type 16 (HPV16) causes the development of cervical cancer. Escherichia coli is a cost-effective host successfully used to develop a second-generation vaccine against HPV, based on the purification of soluble truncated L1 protein variants. Previous attempts to produce soluble full-length HPV16-L1 protein by E. coli have failed. This study was aimed at cloning a Cuban HPV16-L1 gene in E. coli and assessing its expression as a soluble full-length L1 protein by manipulating culture conditions. The L1 gene was amplified from a Cuban patient’s cervical sample and cloned into pET28a and pBAD/Myc-HisA vectors. Production and solubility of L1 protein were evaluated in E. coli TOP10 harboring pBADHPV16-L1 plasmid and E. coli BL21-(DE3), Rosetta-(DE3)/pLysS, and SHuffle® T7 Express lysY strains harboring pETHPV16-L1 plasmid, grown under arabinose (0.2%)- or isopropyl β-D-1-thiogalactopyranoside (IPTG, 100 µM)-induction or Super Broth-based auto-induction for 24 and 48 h. The recombinant plasmids pETHPV16-L1 and pBADHPV16-L1 were constructed. The HPV16-L1 protein was produced insoluble to high levels in conventionally IPTG-induced E. coli-pETHPV16-L1 cells. However, under auto-induction, soluble full-length HPV16-L1 protein was successfully produced at similar levels by E. coli BL21 (DE3), Rosetta (DE3) pLysS and SHuffle® T7 Express lysY cells, reaching up to 7.2 ± 0.5% and 14.3 ± 1.6% of the total proteins in the soluble fraction after growing for 24 and 48 h, respectively. It is concluded that the auto-induction procedure at 18 °C with 30 µM IPTG and 100 rev/min promotes soluble full-length HPV16-L1 protein production by E. coli.
Collapse
Affiliation(s)
- Yunier Serrano
- Unit for Biological Products Research, Division of Research, Development & Innovation, National Center for Scientific Research, Avenue 25 and 158. Cubanacán, Playa, La Habana, Cuba. P.O. Box 6414
| | | | - Elsa Pimienta
- Unit for Biological Products Research, Division of Research, Development & Innovation, National Center for Scientific Research, Avenue 25 and 158. Cubanacán, Playa, La Habana, Cuba. P.O. Box 6414
| | - Alina Falero
- Unit for Biological Products Research, Division of Research, Development & Innovation, National Center for Scientific Research, Avenue 25 and 158. Cubanacán, Playa, La Habana, Cuba. P.O. Box 6414
| | - Karen Marrero
- Unit for Biological Products Research, Division of Research, Development & Innovation, National Center for Scientific Research, Avenue 25 and 158. Cubanacán, Playa, La Habana, Cuba. P.O. Box 6414
| |
Collapse
|
19
|
Le DT, Müller KM. In Vitro Assembly of Virus-Like Particles and Their Applications. Life (Basel) 2021; 11:334. [PMID: 33920215 PMCID: PMC8069851 DOI: 10.3390/life11040334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are increasingly used for vaccine development and drug delivery. Assembly of VLPs from purified monomers in a chemically defined reaction is advantageous compared to in vivo assembly, because it avoids encapsidation of host-derived components and enables loading with added cargoes. This review provides an overview of ex cella VLP production methods focusing on capsid protein production, factors that impact the in vitro assembly, and approaches to characterize in vitro VLPs. The uses of in vitro produced VLPs as vaccines and for therapeutic delivery are also reported.
Collapse
Affiliation(s)
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| |
Collapse
|
20
|
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021; 19:59. [PMID: 33632278 PMCID: PMC7905985 DOI: 10.1186/s12951-021-00806-7] [Citation(s) in RCA: 424] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Collapse
Affiliation(s)
- Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK.
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
| |
Collapse
|
21
|
Kombe Kombe AJ, Li B, Zahid A, Mengist HM, Bounda GA, Zhou Y, Jin T. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Front Public Health 2021; 8:552028. [PMID: 33553082 PMCID: PMC7855977 DOI: 10.3389/fpubh.2020.552028] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Diagnosed in more than 90% of cervical cancers, the fourth deadliest cancer in women, human papillomavirus (HPV) is currently the most common pathogen responsible for female cancers. Moreover, HPV infection is associated with many other diseases, including cutaneous and anogenital warts, and genital and upper aerodigestive tract cancers. The incidence and prevalence of these pathologies vary considerably depending on factors including HPV genotype, regional conditions, the study population, and the anatomical site sampled. Recently, features of the cervicovaginal microbiota are found to be associated with the incidence of HPV-related diseases, presenting a novel approach to identify high-risk women through both blood and cervical samples. Overall, the HPV repartition data show that HPV infection and related diseases are more prevalent in developing countries. Moreover, the available (2-, 4-, and 9-valent) vaccines based on virus-like particles, despite their proven effectiveness and safety, present some limitations in terms of system development cost, transport cold chain, and oncogenic HPV variants. In addition, vaccination programs face some challenges, leading to a considerable burden of HPV infection and related diseases. Therefore, even though the new (9-valent) vaccine seems promising, next-generation vaccines as well as awareness programs associated with HPV vaccination and budget reinforcements for immunization are needed.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Gabonese Scientific Research Consortium, Libreville, Gabon
| | - Bofeng Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ayesha Zahid
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hylemariam Mihiretie Mengist
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guy-Armel Bounda
- Gabonese Scientific Research Consortium, Libreville, Gabon.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Sinomedica Co., Ltd., Mong Kok, Hong Kong
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Chinese Academy of Science Center for Excellence in Molecular Cell Science, Shanghai, China
| |
Collapse
|
22
|
Qiao YL, Wu T, Li RC, Hu YM, Wei LH, Li CG, Chen W, Huang SJ, Zhao FH, Li MQ, Pan QJ, Zhang X, Li Q, Hong Y, Zhao C, Zhang WH, Li YP, Chu K, Li M, Jiang YF, Li J, Zhao H, Lin ZJ, Cui XL, Liu WY, Li CH, Guo DP, Ke LD, Wu X, Tang J, Gao GQ, Li BY, Zhao B, Zheng FX, Dai CH, Guo M, Zhao J, Su YY, Wang JZ, Zhu FC, Li SW, Pan HR, Li YM, Zhang J, Xia NS. Efficacy, Safety, and Immunogenicity of an Escherichia coli-Produced Bivalent Human Papillomavirus Vaccine: An Interim Analysis of a Randomized Clinical Trial. J Natl Cancer Inst 2020; 112:145-153. [PMID: 31086947 DOI: 10.1093/jnci/djz074] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The high cost and insufficient supply of human papillomavirus (HPV) vaccines have slowed the pace of controlling cervical cancer. A phase III clinical trial was conducted to evaluate the efficacy, safety, and immunogenicity of a novel Escherichia coli-produced bivalent HPV-16/18 vaccine. METHODS A multicenter, randomized, double-blind trial started on November 22, 2012 in China. In total, 7372 eligible women aged 18-45 years were age-stratified and randomly assigned to receive three doses of the test or control (hepatitis E) vaccine at months 0, 1, and 6. Co-primary endpoints included high-grade genital lesions and persistent infection (over 6 months) associated with HPV-16/18. The primary analysis was performed on a per-protocol susceptible population of individuals who were negative for relevant HPV type-specific neutralizing antibodies (at day 0) and DNA (at day 0 through month 7) and who received three doses of the vaccine. This report presents data from a prespecified interim analysis used for regulatory submission. RESULTS In the per-protocol cohort, the efficacies against high-grade genital lesions and persistent infection were 100.0% (95% confidence interval = 55.6% to 100.0%, 0 of 3306 in the vaccine group vs 10 of 3296 in the control group) and 97.8% (95% confidence interval = 87.1% to 99.9%, 1 of 3240 vs 45 of 3246), respectively. The side effects were mild. No vaccine-related serious adverse events were noted. Robust antibody responses for both types were induced and persisted for at least 42 months. CONCLUSIONS The E coli-produced HPV-16/18 vaccine is well tolerated and highly efficacious against HPV-16/18-associated high-grade genital lesions and persistent infection in women.
Collapse
Affiliation(s)
- You-Lin Qiao
- National Cancer Center, National Center for Cancer Clinical Research, The Cancer Institute, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ting Wu
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Rong-Cheng Li
- Guangxi Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Yue-Mei Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Li-Hui Wei
- Peking University People's Hospital, Beijing, China
| | - Chang-Gui Li
- National Institute for Food and Drug Control, Beijing, China
| | - Wen Chen
- National Cancer Center, National Center for Cancer Clinical Research, The Cancer Institute, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Shou-Jie Huang
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Fang-Hui Zhao
- National Cancer Center, National Center for Cancer Clinical Research, The Cancer Institute, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ming-Qiang Li
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Qin-Jing Pan
- National Cancer Center, National Center for Cancer Clinical Research, The Cancer Institute, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xun Zhang
- National Cancer Center, National Center for Cancer Clinical Research, The Cancer Institute, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.,Xinmi Maternal and Child Health Hospital, Xinmi, Henan, China
| | - Qing Li
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Ying Hong
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Zhao
- Peking University People's Hospital, Beijing, China
| | - Wen-Hua Zhang
- National Cancer Center, National Center for Cancer Clinical Research, The Cancer Institute, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yan-Ping Li
- Guangxi Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Kai Chu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Mei Li
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yun-Fei Jiang
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Juan Li
- National Institute for Food and Drug Control, Beijing, China
| | - Hui Zhao
- National Institute for Food and Drug Control, Beijing, China
| | - Zhi-Jie Lin
- Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - Xue-Lian Cui
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Wen-Yu Liu
- Funing Center for Disease Control and Prevention, Funing, Jiangsu, China
| | - Cai-Hong Li
- Xinmi Maternal and Child Health Hospital, Xinmi, Henan, China
| | - Dong-Ping Guo
- Yangcheng Maternal and Child Health Hospital, Yangcheng, Shanxi, China
| | - Li-Dong Ke
- Fengning Hospital of Traditional Chinese Medicine, Fengning, Hebei, China
| | - Xin Wu
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Jie Tang
- Funing Center for Disease Control and Prevention, Funing, Jiangsu, China
| | - Guo-Qi Gao
- Xinmi Maternal and Child Health Hospital, Xinmi, Henan, China
| | - Ba-Yi Li
- Yangcheng Maternal and Child Health Hospital, Yangcheng, Shanxi, China
| | - Bin Zhao
- Fengning Hospital of Traditional Chinese Medicine, Fengning, Hebei, China
| | - Feng-Xian Zheng
- Xinmi Maternal and Child Health Hospital, Xinmi, Henan, China
| | - Cui-Hong Dai
- Fengning Hospital of Traditional Chinese Medicine, Fengning, Hebei, China
| | - Meng Guo
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jun Zhao
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ying-Ying Su
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jun-Zhi Wang
- National Institute for Food and Drug Control, Beijing, China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Shao-Wei Li
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Hui-Rong Pan
- Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - Yi-Min Li
- Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - Jun Zhang
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ning-Shao Xia
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
23
|
Chen Q, Zhao H, Yao X, Lin Z, Li J, Lin B, Wang R, Huang Y, Su Y, Wu T, Li C, Pan H, Huang S, Zhang J, Xia N. Comparing immunogenicity of the Escherichia coli-produced bivalent human papillomavirus vaccine in females of different ages. Vaccine 2020; 38:6096-6102. [PMID: 32718817 DOI: 10.1016/j.vaccine.2020.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND The safety and efficacy of a recently licensed Escherichia coli (E. coli)-produced bivalent HPV vaccine have been shown. Specific antibody levels are important indicators to evaluate the efficacy of vaccination. Therefore, we compared the immunogenicity of this HPV 16/18 vaccine in females of different ages in this study. METHODS Immunogenicity of the vaccine was analyzed in the per-protocol sets for immunogenicity (PPS-I) of a phase III trial and an immune-bridging trial. The serum samples were collected at month 0 and one month after the final dose (month 7) to assess the specific IgG antibody levels by ELISA. The seroconversion rates, geometric mean concentration (GMC), and geometric mean increase (GMI) were used to assess the immunogenicity of the test vaccine. The non-linear association of antibody levels with age was estimated via natural cubic splines and the Akaike information criterion was used to assess optimal model. RESULTS By combining the PPS-I data from the two trials, nearly all of the females seroconverted for both HPV types. In the 3-dose group, the GMC of IgG to both HPV types decreased with increasing age, especially in adolescent girls and young women. For HPV-16 and -18, the declining trend slowed down in women older than 32 and 35 years old, respectively. The GMI ranged from 648 to 80 for HPV-16 and from 218 to 42 for HPV-18. In the 2-dose group, the specific antibodies for HPV-16 and -18 peaked in girls aged 10 years with GMIs of 401 and 98, respectively, and then decreased with age. CONCLUSIONS The E. coli-produced bivalent HPV-16/18 vaccine induced specific antibody responses in females aged 9-45 years. The antibody levels were inversely associated with age, and the declining trends slowed down in women older than 32 or 35 years for HPV-16 and -18, respectively.
Collapse
Affiliation(s)
- Qi Chen
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Hui Zhao
- National Institute for Food and Drug Control, Beijing 100050, China
| | - Xingmei Yao
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Xiamen, Fujian 361022, China
| | - Juan Li
- National Institute for Food and Drug Control, Beijing 100050, China
| | - Bizhen Lin
- Xiamen Innovax Biotech Company, Xiamen, Fujian 361022, China
| | - Rui Wang
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Huang
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingying Su
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Ting Wu
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Changgui Li
- National Institute for Food and Drug Control, Beijing 100050, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Xiamen, Fujian 361022, China.
| | - Shoujie Huang
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jun Zhang
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Ningshao Xia
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
24
|
Yu XJ, Li J, Lin ZJ, Zhao H, Lin BZ, Qiao YL, Hu YM, Wei LH, Li RC, Huang WD, Wu T, Huang SJ, Li CG, Pan HR, Zhang J. Immunogenicity of an Escherichia coli-produced bivalent human papillomavirus vaccine under different vaccination intervals. Hum Vaccin Immunother 2020; 16:1630-1635. [PMID: 32544361 PMCID: PMC7482734 DOI: 10.1080/21645515.2020.1761202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022] Open
Abstract
A new Escherichia coli-produced human papillomavirus (HPV)-16/18 vaccine has been shown to be safe and highly efficacious and was recently licensed in China. As a post hoc analysis of the phase III trial, this study aimed to assess the impact of vaccination time deviations on the specific antibody response and guide the better usage of this vaccine in the real world. A total of 3689 healthy women aged 18-45 years old were randomly assigned to receive the bivalent HPV-16/18 vaccine according to a 0-, 1- and 6-month schedule with a wide vaccination interval. The first vaccination interval between the 1st and 2nd doses (the 1st interval) was divided into three groups: 28-40 d, 41-50 d and 51-60 d. The second vaccination interval between the 2nd and 3rd doses (the 2nd interval) was divided into three groups: 103-139 d, 140-160 d and 161-198 d. The reverse cumulative curves for the IgG of the three groups with different 1st vaccination intervals or with different 2nd vaccination intervals at month 7 almost overlapped for both HPV-16 and HPV-18. Compared with the standard vaccination schedule (a 1st interval of 28-40 d and a 2nd interval of 140-160 d) subgroup, all the subgroups had GMC ratios greater than 0.83, with the lower limit of 95% CIs higher than 0.64. In conclusion, a slight deviation in the vaccination time of the 2nd and 3rd doses has only a minor, insignificant impact on the immune response induced by the Escherichia coli-produced HPV-16/18 vaccine.
Collapse
Affiliation(s)
- Xiao-Juan Yu
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics(SCIBP), School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Juan Li
- Division of Respiratory Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Zhi-Jie Lin
- Vaccine R&D Department, Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - Hui Zhao
- Division of Respiratory Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Bi-Zhen Lin
- Vaccine R&D Department, Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - You-Lin Qiao
- Department of Cancer Epidemiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Mei Hu
- Department of Vaccine Evaluation, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Li-Hui Wei
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Rong-Cheng Li
- Center for Vaccine Clinical Research, Guangxi Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Wei-Dan Huang
- Vaccine R&D Department, Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - Ting Wu
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics(SCIBP), School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Shou-Jie Huang
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics(SCIBP), School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Chang-Gui Li
- Division of Respiratory Virus Vaccines, National Institute for Food and Drug Control, Beijing, China
| | - Hui-Rong Pan
- Vaccine R&D Department, Xiamen Innovax Biotech Company, Xiamen, Fujian, China
| | - Jun Zhang
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics(SCIBP), School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
25
|
Wang D, Liu X, Wei M, Qian C, Song S, Chen J, Wang Z, Xu Q, Yang Y, He M, Chi X, Huang S, Li T, Kong Z, Zheng Q, Yu H, Wang Y, Zhao Q, Zhang J, Xia N, Gu Y, Li S. Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of virus-like particles. Nat Commun 2020; 11:2841. [PMID: 32503989 PMCID: PMC7275066 DOI: 10.1038/s41467-020-16639-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/17/2020] [Indexed: 12/22/2022] Open
Abstract
The capsid of human papillomavirus (HPV) spontaneously arranges into a T = 7 icosahedral particle with 72 L1 pentameric capsomeres associating via disulfide bonds between Cys175 and Cys428. Here, we design a capsomere-hybrid virus-like particle (chVLP) to accommodate multiple types of L1 pentamers by the reciprocal assembly of single C175A and C428A L1 mutants, either of which alone encumbers L1 pentamer particle self-assembly. We show that co-assembly between any pair of C175A and C428A mutants across at least nine HPV genotypes occurs at a preferred equal molar stoichiometry, irrespective of the type or number of L1 sequences. A nine-valent chVLP vaccine-formed through the structural clustering of HPV epitopes-confers neutralization titers that are comparable with that of Gardasil 9 and elicits minor cross-neutralizing antibodies against some heterologous HPV types. These findings may pave the way for a new vaccine design that targets multiple pathogenic variants or cancer cells bearing diverse neoantigens.
Collapse
Affiliation(s)
- Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Xinlin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Minxi Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Ciying Qian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Shuo Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Jie Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Zhiping Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Qin Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Yurou Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Xin Chi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Shiwen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China.
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
26
|
Qian C, Liu X, Xu Q, Wang Z, Chen J, Li T, Zheng Q, Yu H, Gu Y, Li S, Xia N. Recent Progress on the Versatility of Virus-Like Particles. Vaccines (Basel) 2020; 8:vaccines8010139. [PMID: 32244935 PMCID: PMC7157238 DOI: 10.3390/vaccines8010139] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/11/2022] Open
Abstract
Virus-like particles (VLPs) are multimeric nanostructures composed of one or more structural proteins of a virus in the absence of genetic material. Having similar morphology to natural viruses but lacking any pathogenicity or infectivity, VLPs have gradually become a safe substitute for inactivated or attenuated vaccines. VLPs can achieve tissue-specific targeting and complete and effective cell penetration. With highly ordered epitope repeats, VLPs have excellent immunogenicity and can induce strong cellular and humoral immune responses. In addition, as a type of nanocarrier, VLPs can be used to display antigenic epitopes or deliver small molecules. VLPs have thus become powerful tools for vaccinology and biomedical research. This review highlights the versatility of VLPs in antigen presentation, drug delivery, and vaccine technology.
Collapse
Affiliation(s)
- Ciying Qian
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Xinlin Liu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qin Xu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Zhiping Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Jie Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Tingting Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| | - Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
- Correspondence: (Y.G.); (S.L.)
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.L.); (Q.X.); (Z.W.); (J.C.); (T.L.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Z.); (H.Y.)
| |
Collapse
|
27
|
Su YY, Lin BZ, Zhao H, Li J, Lin ZJ, Qiao YL, Wei LH, Hu YM, Li RC, Zhuang SJ, Sun G, Zheng ZZ, Huang SJ, Wu T, Zhang J, Pan HR, Li CG. Lot-to-lot consistency study of an Escherichia coli-produced bivalent human papillomavirus vaccine in adult women: a randomized trial. Hum Vaccin Immunother 2019; 16:1636-1644. [PMID: 31770068 DOI: 10.1080/21645515.2019.1691413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An Escherichia. coli-produced HPV-16/18 bivalent vaccine has been proved to be well-tolerated and highly efficacious against diseases associated with vaccine HPV types. As a part of the multi-center, randomized, double-blind phase III clinical trial, this lot-to-lot consistency study aimed to assess the safety and immunogenicity consistency of this novel HPV vaccine, which is also one of the objectives of the phase III trial. A total of 3689 healthy women aged 18-45 years were enrolled and randomly assigned 1:1:1 to three lots of the HPV vaccine groups. The primary outcomes were the IgG antibody level at 1 month after the last dose (month 7). In the immunogenicity per-protocol set (PPS), almost all of the participants seroconverted at month 7 and remained seropositive at month 42. For each paired comparison of the three lot groups, the two-sides of 90% CIs of GMC ratios for both IgG and neutralizing antibodies for HPV-16 and HPV-18 at month 7 were within the equivalence interval [0.5, 2]. Lot consistency was also demonstrated at month 42. The majority of recorded solicited reactions were mild or moderate. The incidences of solicited reactions of Lot 2 and Lot 3 were slightly higher than Lot 1. However, the incidences of solicited reactions of ≥ grade 3 and solicited reactions by symptoms were all similar among the three lot groups. None of the SAEs was considered related to vaccination by the investigator. In conclusion, this study demonstrates lot-to-lot consistency of the 3 consecutive lots of the E. coli-produced HPV-16/18 bivalent vaccine.
Collapse
Affiliation(s)
- Ying-Ying Su
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University , Xiamen, Fujian, China
| | - Bi-Zhen Lin
- Vaccine R&D Department, Xiamen Innovax Biotech Company , Xiamen, Fujian, China
| | - Hui Zhao
- National Institute for Food and Drug Control, Division of Respiratory Virus Vaccines , Beijing, China
| | - Juan Li
- National Institute for Food and Drug Control, Division of Respiratory Virus Vaccines , Beijing, China
| | - Zhi-Jie Lin
- Vaccine R&D Department, Xiamen Innovax Biotech Company , Xiamen, Fujian, China
| | - You-Lin Qiao
- National Cancer Center, National Center for Cancer Clinical Research, the Cancer Institute, Chinese Academy of Medical Sciences/Peking Union Medical College , Beijing, China
| | - Li-Hui Wei
- Department of Obstetrics and Gynecology, Peking University People's Hospital , Beijing, China
| | - Yue-Mei Hu
- Department of Vaccine Evaluation, Jiangsu Provincial Center for Disease Control and Prevention , Nanjing, Jiangsu, China
| | - Rong-Cheng Li
- Center for Vaccine Clinical Research, Guangxi Center for Disease Control and Prevention , Nanning, Guangxi, China
| | - Si-Jie Zhuang
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University , Xiamen, Fujian, China
| | - Guang Sun
- Vaccine R&D Department, Xiamen Innovax Biotech Company , Xiamen, Fujian, China
| | - Zi-Zheng Zheng
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University , Xiamen, Fujian, China
| | - Shou-Jie Huang
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University , Xiamen, Fujian, China
| | - Ting Wu
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University , Xiamen, Fujian, China
| | - Jun Zhang
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University , Xiamen, Fujian, China
| | - Hui-Rong Pan
- Vaccine R&D Department, Xiamen Innovax Biotech Company , Xiamen, Fujian, China
| | - Chang-Gui Li
- National Institute for Food and Drug Control, Division of Respiratory Virus Vaccines , Beijing, China
| |
Collapse
|
28
|
Zhang Z, Zhang T, Cao L, Wang X, Cao J, Huang X, Cai Y, Lin Z, Pan H, Yuan Q, Fang M, Li S, Zhang J, Xia N, Zhao Q. Simultaneous in situ visualization and quantitation of dual antigens adsorbed on adjuvants using high content analysis. Nanomedicine (Lond) 2019; 14:2535-2548. [PMID: 31603382 DOI: 10.2217/nnm-2019-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Traditional antigenicity assay requires antigen recovery from the particulate adjuvants prior to analysis. An in situ method was developed for interrogating vaccine antigens with monoclonal antibodies while being adsorbed on adjuvants. Materials & methods: The fluorescence imaging-based high content analysis was used to visualize the antigen distribution on adjuvant agglomerates and to analyze the antigenicity for adsorbed antigens. Results: Simultaneous visualization and quantitation were achieved for dual antigens in a bivalent human papillomavirus vaccine with uniquely labeled antibodies. Good agreement was observed between the in situ multiplexed assays with well-established sandwich enzyme-linked immunosorbent assays. Conclusion: The streamlined procedures and the amenability for multiplexing make the in situ antigenicity analysis a favorable choice for in vitro functional assessment of bionanoparticles as vaccine antigens.
Collapse
Affiliation(s)
- Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Lu Cao
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Jiali Cao
- National Institute of Diagnostics & Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Yashuang Cai
- National Institute of Diagnostics & Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Zhijie Lin
- Xiamen Innovax Biotech Co., Ltd, Xiamen, Fujian 361022, PR China
| | - Huirong Pan
- Xiamen Innovax Biotech Co., Ltd, Xiamen, Fujian 361022, PR China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China.,National Institute of Diagnostics & Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China.,National Institute of Diagnostics & Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China.,National Institute of Diagnostics & Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, Fujian 361105, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology & Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361105, PR China
| |
Collapse
|
29
|
Immunogenicity noninferiority study of 2 doses and 3 doses of an Escherichia coli-produced HPV bivalent vaccine in girls vs. 3 doses in young women. SCIENCE CHINA-LIFE SCIENCES 2019; 63:582-591. [PMID: 31231780 PMCID: PMC7223315 DOI: 10.1007/s11427-019-9547-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 01/26/2023]
Abstract
A new HPV-16/18 bivalent vaccine expressed by the Escherichia coli has been proven to be efficacious in adult women. A randomized, immunogenicity noninferiority study of this candidate vaccine was conducted in December 2015 in China. Girls aged 9–14 years were randomized to receive 2 doses at months 0 and 6 (n=301) or 3 doses at months 0, 1 and 6 (n=304). Girls aged 15–17 years (n=149) and women aged 18–26 years (n=225) received 3 doses. The objectives included noninferiority analysis of the IgG geometric mean concentration (GMC) ratio (95% CI, lower bound>0.5) to HPV-16 and HPV-18 at month 7 in girls compared with women. In the per-protocol set, the GMC ratio of IgG was noninferior for girls aged 9–17 years receiving 3 doses compared with women (1.76 (95% CI, 1.56, 1.99) for HPV-16 and 1.93 (95% CI, 1.69, 2.21) for HPV-18) and noninferior for girls aged 9–14 years receiving 2 doses compared with women (1.45 (95% CI, 1.25, 1.62) for HPV-16 and 1.17 (95% CI, 1.02, 1.33) for HPV-18). Noninferiority was also demonstrated for neutralizing antibodies. The immunogenicity of the HPV vaccine in girls receiving 3 or 2 doses was noninferior compared with that in young adult women.
Collapse
|
30
|
Chen S, Huang X, Li Y, Wang X, Pan H, Lin Z, Zheng Q, Li S, Zhang J, Xia N, Zhao Q. Altered antigenicity and immunogenicity of human papillomavirus virus-like particles in the presence of thimerosal. Eur J Pharm Biopharm 2019; 141:221-231. [PMID: 31154067 DOI: 10.1016/j.ejpb.2019.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
Abstract
Thimerosal has been widely used as a preservative in human vaccines for decades. Thimerosal, a thiol capping agent with ethyl mercury being the active degradant, could have impacts on the vaccine potency due to potential thiol modification. The effects on the antigenicity and immunogenicity of human papillomavirus (HPV) virus-like particles (VLPs) in the presence of thimerosal was studied. In general, reduced binding activity was observed between HPV antigens and monoclonal antibodies (mAbs) upon thimerosal treatment, accompanied by reduced protein conformational stability. The immunogenicity of a pentavalent vaccine formulation (HPV6, HPV11, HPV16, HPV18 and hepatitis E virus) with or without thimerosal was studied in mice. The functional antibody titres, as well as the binding titres, were determined, showing a substantial decrease for vaccine formulations containing thimerosal for HPV16/18. Similarly, epitope-specific competition assays using specific and functional mAbs as tracers also showed a significant reduction in immunogenicity for HPV16/18 in the presence of thimerosal. Structural alterations in the capsid protein for HPV18 were observed with cryo-electron microscopy and 3-dimensional reconstruction in the comparative structural analysis. The results should alert scientists in formulation development field on the choice for vaccine preservatives, in particular for thiol-containing antigens.
Collapse
Affiliation(s)
- Siyi Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China
| | - Xiaofen Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yike Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Ltd, Xiamen, China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Ltd, Xiamen, China
| | - Qingbing Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China.
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
31
|
Li Z, Song S, He M, Wang D, Shi J, Liu X, Li Y, Chi X, Wei S, Yang Y, Wang Z, Li J, Qian H, Yu H, Zheng Q, Yan X, Zhao Q, Zhang J, Gu Y, Li S, Xia N. Rational design of a triple-type human papillomavirus vaccine by compromising viral-type specificity. Nat Commun 2018; 9:5360. [PMID: 30560935 PMCID: PMC6299097 DOI: 10.1038/s41467-018-07199-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 10/18/2018] [Indexed: 11/21/2022] Open
Abstract
Sequence variability in surface-antigenic sites of pathogenic proteins is an important obstacle in vaccine development. Over 200 distinct genomic sequences have been identified for human papillomavirus (HPV), of which more than 18 are associated with cervical cancer. Here, based on the high structural similarity of L1 surface loops within a group of phylogenetically close HPV types, we design a triple-type chimera of HPV33/58/52 using loop swapping. The chimeric VLPs elicit neutralization titers comparable with a mix of the three wild-type VLPs both in mice and non-human primates. This engineered region of the chimeric protein recapitulates the conformational contours of the antigenic surfaces of the parental-type proteins, offering a basis for this high immunity. Our stratagem is equally successful in developing other triplet-type chimeras (HPV16/35/31, HPV56/66/53, HPV39/68/70, HPV18/45/59), paving the way for the development of an improved HPV prophylactic vaccine against all carcinogenic HPV strains. This technique may also be extrapolated to other microbes.
Collapse
Affiliation(s)
- Zhihai Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Shuo Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Maozhou He
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Daning Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Jingjie Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Xinlin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Yunbing Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Xin Chi
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Shuangping Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Yurou Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Zhiping Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Jinjin Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Huilian Qian
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102
| | - Xiaodong Yan
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California-San Diego, San Diego, CA, 92093-0378, USA
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, China, 361102.
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, Xiamen, China, 361102.
| |
Collapse
|
32
|
Zhang C, Huang X, Chen S, Li Y, Li Y, Wang X, Tang J, Xia L, Lin Z, Luo W, Li T, Li S, Zhang J, Xia N, Zhao Q. Epitope clustering analysis for vaccine-induced human antibodies in relationship to a panel of murine monoclonal antibodies against HPV16 viral capsid. Vaccine 2018; 36:6761-6771. [PMID: 30287156 DOI: 10.1016/j.vaccine.2018.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
Abstract
Human papillomavirus (HPV) type 16 is the most common type implicated as the etiological agent that causes cervical cancer. The marketed prophylactic vaccines against HPV infection are composed of virus-like particles (VLPs) assembled from the recombinant major capsid protein L1. Elicitation of functional and neutralizing antibodies by vaccination is the mode of action by which the vaccines prevent the viral infection. In this study, a panel of murine mAbs against HPV16 L1 were generated and comprehensively characterized with respect to their mapping to the epitope spectrum on the viral capsid. These mAbs were categorized into five epitope bins by two different methods based on the pairwise cross-inhibition and competition with human polyclonal antibodies. In addition, a preliminary demonstration of the spatial relationship of the epitopes recognized by these mAbs was performed using a cross-blocking assay with a well-characterized human mAb, 26D1. Interestingly, two mAbs recognizing different epitopes were found to act synergistically in the pseudovirion-based neutralization assay (PBNA). To facilitate cross-lab and cross-study comparison, the international standard (IS) serum 05/134 was used to calibrate the mAbs as well as the human serum samples from the HPV16/18 vaccine recipients. The neutralizing mAbs, particularly those that recognizing immunodominant epitopes, would be useful in developing epitope-specific assays for monitoring the vaccine production process and for serological assessment.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Siyi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China
| | - Yike Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Yufang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Jixian Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Lin Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Ltd, Xiamen, Fujian, PR China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Life Science, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, PR China; School of Public Health, Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
33
|
Wei M, Wang D, Li Z, Song S, Kong X, Mo X, Yang Y, He M, Li Z, Huang B, Lin Z, Pan H, Zheng Q, Yu H, Gu Y, Zhang J, Li S, Xia N. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Emerg Microbes Infect 2018; 7:160. [PMID: 30254257 PMCID: PMC6156512 DOI: 10.1038/s41426-018-0158-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/03/2022]
Abstract
Human papillomavirus (HPV) is the causative agent in genital warts and nearly all cervical, anogenital, and oropharyngeal cancers. Nine HPV types (6, 11, 16, 18, 31, 33, 45, 52, and 58) are associated with about 90% of cervical cancers and 90% of genital warts. HPV neutralization by vaccine-elicited neutralizing antibodies can block viral infection and prevent HPV-associated diseases. However, there is only one commercially available HPV vaccine, Gardasil 9, produced from Saccharomyces cerevisiae that covers all nine types, raising the need for microbial production of broad-spectrum HPV vaccines. Here, we investigated whether N-terminal truncations of the major HPV capsid proteins L1, improve their soluble expression in Escherichia coli. We found that N-terminal truncations promoted the soluble expression of HPV 33 (truncated by 10 amino acids [aa]), 52 (15 aa), and 58 (10 aa). The resultant HPV L1 proteins were purified in pentamer form and extensively characterized with biochemical, biophysical, and immunochemical methods. The pentamers self-assembled into virus-like particles (VLPs) in vitro, and 3D cryo-EM reconstructions revealed that all formed T = 7 icosahedral particles having 50–60-nm diameters. Moreover, we formulated a nine-valent HPV vaccine candidate with aluminum adjuvant and L1 VLPs from four genotypes used in this study and five from previous work. Immunogenicity assays in mice and non-human primates indicated that this HPV nine-valent vaccine candidate elicits neutralizing antibody titers comparable to those induced by Gardasil 9. Our study provides a method for producing a nine-valent HPV vaccine in E. coli and may inform strategies for the soluble expression of other vaccine candidates. • N-terminal truncations promote the soluble expression of HPV L1 proteins in E. coli and their self-assembly of T = 7 icosahedral particle in vitro • An HPV 9-valent vaccine candidate was formulated with E. coli-derived HPV 6, 11, 16, 18, 31, 33, 45, 52, and 58 VLPs, and conferred comparable immunogenicity with Gardasil 9
Collapse
Affiliation(s)
- Minxi Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Daning Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Zhihai Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Shuo Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Xianglin Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Xiaobing Mo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Yurou Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Maozhou He
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Zhongyi Li
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Bo Huang
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Qingbing Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Hai Yu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|