1
|
Kim YR, Hyun H, Kim EJ, Choi YH, Yoo JS, Lee Y, Oh HS, Heo JY. Effectiveness of quadrivalent meningococcal conjugate vaccine against meningococcal carriage and genotype character changes: A secondary analysis of prospective cohort study in Korean military trainees. Int J Infect Dis 2024; 146:107150. [PMID: 38914368 DOI: 10.1016/j.ijid.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE We evaluated the changes and molecular epidemiology of meningococcal carriage in military recruits after quadrivalent meningococcal conjugate vaccines (MenACWY) vaccination. METHODS Oropharyngeal swabs were obtained at the beginning and end of the 5-week training. Carriage rates before and after vaccination were compared to estimate vaccine effectiveness (VE). Cultured isolates were characterized by multi-locus sequence typing (MLST). RESULTS Of 866 vaccinated participants, the overall carriage rate was 10.6% prior to MenACWY vaccination and it tended to decrease to 9.5% after 5 weeks of vaccination (P = 0.424). Carriage rate of serogroup ACWY decreased significantly after vaccination (VEACWY = 72.6%, 95% CI: 36.3-88.2), and serogroup C was particularly reduced (VEC = 83.0%, 95% CI: 50.6-94.1), whereas non-groupable isolates increased significantly after vaccination (VENG = -76.1%, 95% CI: -176.2 to -13.1). Among 99 carriage isolates with complete MLST profiles, 45 different sequence types with nine clonal complexes (CCs) were identified, and 35.3% of the carriage isolates belonged to hypervirulent strains such as CC-32, CC-41/44, and CC-269. CONCLUSIONS MenACWY vaccination in military recruits led to reduced carriage rates of serogroups C, W, and Y within a short 5-week period. However, serogroup B isolates belonging to the hypervirulent lineage remained after the implementation of MenACWY vaccination.
Collapse
Affiliation(s)
- Young Rong Kim
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hakjun Hyun
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Eun Jin Kim
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young Hwa Choi
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jin Sae Yoo
- Department of Acute Care Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yeunji Lee
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hong Sang Oh
- Division of Infectious Disease, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Republic of Korea
| | - Jung Yeon Heo
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Huber A, Kovács E, Horváth A, Sahin-Tóth J, Kaptás Á, Juhász E, Kristóf K, Dobay O. Prevalence, serogroup distribution and risk factors of Neisseria meningitidis carriage in high school and university students in Hungary. Vaccine 2024; 42:2271-2277. [PMID: 38423809 DOI: 10.1016/j.vaccine.2024.02.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Neisseria meningitidis causes life-threatening invasive meningococcal disease (IMD) with high mortality worldwide. Asymptomatic pharyngeal meningococcus colonisation is an important reservoir for the spread of the bacterium. The aim of this study was to determine N. meningitidis colonisation rates in asymptomatic high school and university students and to identify risk factors for carriage. Oropharyngeal swab samples and data from a self-reported questionnaire were obtained from overall 610 students, among them 303 university students and 307 high school students, aged between 15 and 31 years in Budapest, Hungary, between November 2017 and December 2018. Meningococcal carriage and serogroup of N. meningitidis were determined by RT-PCR from DNA extracted directly from the specimen. N. meningitidis was identified in 212 (34.8 %) of the participants. Significantly higher carriage rate was found among high school students (48.9 %) compared to university students (20.5 %). Peak of colonisation rate was among 17-19-year-old students (48.7 %). Most carriage isolates were non-typable (87.3 %). From the 212 meningococcus carriers, 19 were colonised by serogroup B (9 %), 5 by serogroup C (2.4 %), and 1 had serogroup Y (0.5 %). Significantly higher colonisation rate was found among males (42.4 %) than in females (33.1 %). Antibiotic use in the past 2 months has decreased the rate of meningococcal colonisation. Recent respiratory infection, active or passive smoking and attending parties have not influenced meningococcal colonisation rate significantly. In conclusion, we have found high asymptomatic meningococcus carriage rate among high school students and young adults, however, the majority of the colonizing meningococci were non-typable.
Collapse
Affiliation(s)
- Annamária Huber
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Eszter Kovács
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Andrea Horváth
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Judit Sahin-Tóth
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Ákos Kaptás
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Emese Juhász
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Katalin Kristóf
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Kristinsdottir I, Visser LJ, Miellet WR, Mariman R, Pluister G, Haraldsson G, Haraldsson A, Trzciński K, Thors V. Meningococcal carriage in children and young adults: a cross-sectional and longitudinal study, Iceland, 2019 to 2021. Euro Surveill 2023; 28:2300215. [PMID: 37768562 PMCID: PMC10540516 DOI: 10.2807/1560-7917.es.2023.28.39.2300215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/07/2023] [Indexed: 09/29/2023] Open
Abstract
BackgroundNeisseria meningitidis is a commensal bacterium which can cause invasive disease. Colonisation studies are important to guide vaccination strategies.AimThe study's aim was to determine the prevalence of meningococcal colonisation, duration of carriage and distribution of genogroups in Iceland.MethodsWe collected samples from 1 to 6-year-old children, 15-16-year-old adolescents and 18-20-year-old young adults. Carriers were sampled at regular intervals until the first negative swab. Conventional culture methods and qPCR were applied to detect meningococci and determine the genogroup. Whole genome sequencing was done on groupable meningococci.ResultsNo meningococci were detected among 460 children, while one of 197 (0.5%) adolescents and 34 of 525 young adults (6.5 %) carried meningococci. Non-groupable meningococci were most common (62/77 isolates from 26/35 carriers), followed by genogroup B (MenB) (12/77 isolates from 6/35 carriers). Genogroup Y was detected in two individuals and genogroup W in one. None carried genogroup C (MenC). The longest duration of carriage was at least 21 months. Serial samples from persistent carriers were closely related in WGS.ConclusionsCarriage of pathogenic meningococci is rare in young Icelanders. Non-groupable meningococci were the most common colonising meningococci in Iceland, followed by MenB. No MenC were found. Whole genome sequencing suggests prolonged carriage of the same strains in persistent carriers.
Collapse
Affiliation(s)
- Iris Kristinsdottir
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - Linda J Visser
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Willem R Miellet
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob Mariman
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gerlinde Pluister
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gunnsteinn Haraldsson
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland
| | - Asgeir Haraldsson
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Valtyr Thors
- Children's Hospital Iceland, Landspitali University Hospital, Reykjavik, Iceland
- University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| |
Collapse
|
4
|
Ong HH, Toh WK, Thong LY, Phoon LQ, Clarke SC, Cheah ESG. Investigation of Upper Respiratory Carriage of Bacterial Pathogens among University Students in Kampar, Malaysia. Trop Med Infect Dis 2023; 8:tropicalmed8050269. [PMID: 37235317 DOI: 10.3390/tropicalmed8050269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The carriage of bacterial pathogens in the human upper respiratory tract (URT) is associated with a risk of invasive respiratory tract infections, but the related epidemiological information on this at the population level is scarce in Malaysia. This study aimed to investigate the URT carriage of Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa among 100 university students by nasal and oropharyngeal swabbing. The presence of S. aureus, K. pneumoniae and P. aeruginosa was assessed via swab culture on selective media and PCR on the resulting isolates. For S. pneumoniae, H. influenzae and N. meningitidis, their presence was assessed via multiplex PCR on the total DNA extracts from chocolate agar cultures. The carriage prevalence of H. influenzae, S. aureus, S. pneumoniae, K. pneumoniae, N. meningitidis and P. aeruginosa among the subjects was 36%, 27%, 15%, 11%, 5% and 1%, respectively, by these approaches. Their carriage was significantly higher in males compared to females overall. The S. aureus, K. pneumoniae and P. aeruginosa isolates were also screened by the Kirby-Bauer assay, in which 51.6% of S. aureus were penicillin-resistant. The outcomes from carriage studies are expected to contribute to informing infectious disease control policies and guidelines.
Collapse
Affiliation(s)
- Hing Huat Ong
- Department of Biological Science, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Wai Keat Toh
- Department of Biological Science, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Li Ying Thong
- Department of Biological Science, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Lee Quen Phoon
- Department of Allied Health Sciences, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Centre for Biomedical and Nutrition Research, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Stuart C Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
- Global Health Research Institute, University of Southampton, Southampton SO17 1BJ, UK
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia
- Centre for Translational Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Eddy Seong Guan Cheah
- Department of Biological Science, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Centre for Biomedical and Nutrition Research, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| |
Collapse
|
5
|
Carr JP, MacLennan JM, Plested E, Bratcher HB, Harrison OB, Aley PK, Bray JE, Camara S, Rodrigues CMC, Davis K, Bartolf A, Baxter D, Cameron JC, Cunningham R, Faust SN, Fidler K, Gowda R, Heath PT, Hughes S, Khajuria S, Orr D, Raman M, Smith A, Turner DP, Whittaker E, Williams CJ, Zipitis CS, Pollard AJ, Oliver J, Morales-Aza B, Lekshmi A, Clark SA, Borrow R, Christensen H, Trotter C, Finn A, Maiden MCJ, Snape MD. Impact of meningococcal ACWY conjugate vaccines on pharyngeal carriage in adolescents: evidence for herd protection from the UK MenACWY programme. Clin Microbiol Infect 2022; 28:1649.e1-1649.e8. [PMID: 35840033 DOI: 10.1016/j.cmi.2022.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Serogroup W and Y invasive meningococcal disease (IMD) increased globally from 2000 onwards. Responding to a rapid increase in serogroup W clonal complex 11 (W:cc11) IMD, the UK replaced an adolescent booster dose of meningococcal C conjugate vaccine with quadrivalent MenACWY conjugate vaccine in 2015. By 2018, vaccine coverage in the eligible school cohorts aged 14-19 years-old was 84%. We assessed the impact of the MenACWY vaccination programme on meningococcal carriage. METHODS An observational study of culture-defined oropharyngeal meningococcal carriage prevalence before and after the start of the MenACWY vaccination programme in UK school students, aged 15-19 years, using two cross-sectional studies: 2014-15 "UKMenCar4" and 2018 "Be on the TEAM" (ISRCTN75858406). RESULTS A total of 10625 participants pre-implementation and 13434 post-implementation were included. Carriage of genogroups C, W, and Y (combined) decreased from 2·03% to 0·71% (OR 0·34 [95% CI 0·27-0·44] p<0·001). Carriage of genogroup B meningococci did not change (1·26% vs 1·23% [95% CI 0.77-1.22] p=0·80) and genogroup C remained rare (n = 7/10625 vs 17/13488, p=0·135). The proportion of serogroup positive isolates, i.e., those expressing capsule, decreased for genogroup W by 53.8% (95% CI -5.0%-79.8%, p=0·016) and for genogroup Y by 30·1% (95% CI 8·9%-46·3%, p=0·0025). CONCLUSIONS The UK MenACWY vaccination programme reduced carriage acquisition of genogroup and serogroup Y and W meningococci and sustained low levels of genogroup C carriage. These data support the use of quadrivalent MenACWY conjugate vaccine for indirect (herd) protection.
Collapse
Affiliation(s)
- Jeremy P Carr
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK; Monash University, Melbourne, Australia; Monash Children's Hospital, Melbourne, Australia
| | | | - Emma Plested
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | | | | | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | | | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Charlene M C Rodrigues
- Department of Zoology, University of Oxford, UK; Department of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, UK
| | - Kimberly Davis
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Angela Bartolf
- St George's Vaccine Institute, Institute of Infection & Immunity; St George's University of London, UK
| | | | | | | | - Saul N Faust
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust; and Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Katy Fidler
- Brighton and Sussex Medical School, UK; Royal Alexandra Children's Hospital, University Hospital Sussex NHS Foundation Trust, Brighton, UK
| | | | - Paul T Heath
- St George's Vaccine Institute, Institute of Infection & Immunity; St George's University of London, UK
| | - Stephen Hughes
- Royal Manchester Children's Hospital; Manchester University NHS Foundation Trust, UK
| | | | - David Orr
- Lancashire Teaching Hospitals NHS Foundation Trust, UK
| | - Mala Raman
- University Hospitals Plymouth NHS Foundation Trust, UK
| | - Andrew Smith
- Glasgow Dental Hospital & School, College of Medical, Veterinary & Life Sciences, University of Glasgow, UK
| | - David Pj Turner
- School of Life Sciences, University of Nottingham & Nottingham University Hospitals NHS Trust, UK
| | - Elizabeth Whittaker
- Imperial College London, UK; Imperial College Healthcare NHS Trust, London, UK
| | | | - Christos S Zipitis
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Jennifer Oliver
- Bristol Children's Vaccine Centre, University of Bristol, UK
| | | | - Aiswarya Lekshmi
- UK Health Security Agency Meningococcal Reference Unit, Manchester Royal Infirmary Manchester, UK
| | - Stephen A Clark
- UK Health Security Agency Meningococcal Reference Unit, Manchester Royal Infirmary Manchester, UK
| | - Ray Borrow
- UK Health Security Agency Meningococcal Reference Unit, Manchester Royal Infirmary Manchester, UK
| | - Hannah Christensen
- School of Population Health Sciences, Bristol Medical School, University of Bristol, UK
| | | | - Adam Finn
- School of Population Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, United Kingdom.
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | | |
Collapse
|
6
|
Ohm M, Boef AGC, Stoof SP, van Ravenhorst MB, van der Klis FRM, Berbers GAM, Knol MJ. Sex-Related Differences in the Immune Response to Meningococcal Vaccinations During Adolescence. Front Public Health 2022; 10:871670. [PMID: 35602158 PMCID: PMC9120633 DOI: 10.3389/fpubh.2022.871670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Immune responses to pediatric vaccinations have been reported to differ according to sex. Such sex-differential responses may become more pronounced during adolescence due to hormonal differences. We investigated whether the vaccine response following primary vaccination against meningococcal serogroup A (MenA), MenW and MenY and booster vaccination against MenC differed between girls and boys using data from two clinical studies. Methods Children aged 10, 12, and 15 years, who had been primed with MenC vaccination between 14 months and 6 years of age, received a booster MenC vaccination or MenACWY vaccination. Polysaccharide-specific IgG concentrations and functional antibody titers [determined with the serum bactericidal antibody (SBA) assay] were measured at baseline, 1 month, 1 year, and 3 years (only MenC group) after vaccination. We calculated geometric mean concentrations and titers (GMC and GMT) ratios for girls vs. boys adjusted for age group. Additionally, we compared the proportion protected individuals between girls and boys at all timepoints. Results This study included 342 girls and 327 boys from two clinical trials. While MenAWY antibody levels did not differ consistently 1 month after vaccination, all GMC- and GMT-ratios were in favor of girls 1 year after vaccination [range: 1.31 (1.02–1.70) for MenA IgG to 1.54 (1.10–2.16) for MenW IgG]. Overall, MenC antibody levels were slightly higher in girls at all postvaccination timepoints (GMC- and GMT-ratios: 1.16/1.17 at 1 month, 1.16/1.22 at 1 year and 1.12/1.15 3 years postvaccination). Higher MenC antibody levels were observed in 12- and 15-year-old girls compared to boys of the same age, whereas 10-year-old boys and girls had similar antibody levels. The percentage of participants protected (SBA titer ≥ 8) was very high (95–100%) at all timepoints, and did not differ significantly between boys and girls. Conclusion Antibody responses were higher in girls than in boys for all serogroups at most timepoints after primary MenAWY vaccination and booster MenC vaccination. The differences in average titers were however small and the percentage participants with protective titers was very high for both sexes.
Collapse
|
7
|
Marcus JE, Bennett WN, Frankel DN, Kieffer JW, Casey TM, Huston AE, Hintz CN, Keller AP, Smolka MT, Sikorski CS, Yun HC, Dolan MJ, Kiley JL. Response to a Serogroup B Meningococcal Disease Case Among Military Trainees. Open Forum Infect Dis 2022; 9:ofac162. [PMID: 35493127 PMCID: PMC9043002 DOI: 10.1093/ofid/ofac162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 08/27/2024] Open
Abstract
We describe the public health response to a military trainee who developed serogroup B meningococcal disease while sharing underwater breathing equipment. Despite high transmission risk, with rapid isolation and postexposure prophylaxis administration, there were no secondary cases. This case supports carefully weighing serogroup B meningococcal vaccination in high-risk settings.
Collapse
Affiliation(s)
- Joseph E Marcus
- Infectious Disease Service, Brooke Army Medical Center, Joint Base San Antonio, Texas, USA
| | - William N Bennett
- Infectious Disease Service, Brooke Army Medical Center, Joint Base San Antonio, Texas, USA
| | - Dianne N Frankel
- Office of the Command Surgeon, Air Education and Training Command, Joint Base San Antonio-Randolph, Texas, USA
| | - John W Kieffer
- Trainee Health Surveillance, 559 Medical Group, Joint Base San Antonio-Lackland, Texas, USA
| | - Theresa M Casey
- Trainee Health Surveillance, 559 Medical Group, Joint Base San Antonio-Lackland, Texas, USA
| | - Amanda E Huston
- Public Health, 559 Aerospace Medical Squadron, Joint Base San Antonio-Lackland, Texas, USA
| | - Courtney N Hintz
- Special Warfare Human Performance Support Group, Joint Base San Antonio-Lackland, Texas, USA
| | - Alexander P Keller
- Special Warfare Human Performance Support Group, Joint Base San Antonio-Lackland, Texas, USA
| | - Michael T Smolka
- Special Warfare Human Performance Support Group, Joint Base San Antonio-Lackland, Texas, USA
| | | | - Heather C Yun
- Infectious Disease Service, Brooke Army Medical Center, Joint Base San Antonio, Texas, USA
| | - Matthew J Dolan
- Infectious Disease Service, Brooke Army Medical Center, Joint Base San Antonio, Texas, USA
| | - John L Kiley
- Infectious Disease Service, Brooke Army Medical Center, Joint Base San Antonio, Texas, USA
| |
Collapse
|
8
|
Whaley MJ, Vuong JT, Topaz N, Chang HY, Thomas JD, Jenkins LT, Hu F, Schmink S, Steward-Clark E, Mathis M, Rodriguez-Rivera LD, Retchless AC, Joseph SJ, Chen A, Acosta AM, McNamara L, Soeters HM, Mbaeyi S, Marjuki H, Wang X. Genomic Insights on Variation Underlying Capsule Expression in Meningococcal Carriage Isolates From University Students, United States, 2015-2016. Front Microbiol 2022; 13:815044. [PMID: 35250931 PMCID: PMC8893959 DOI: 10.3389/fmicb.2022.815044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
In January and February 2015, Neisseria meningitidis serogroup B (NmB) outbreaks occurred at two universities in the United States, and mass vaccination campaigns using MenB vaccines were initiated as part of a public health response. Meningococcal carriage evaluations were conducted concurrently with vaccination campaigns at these two universities and at a third university, where no NmB outbreak occurred. Meningococcal isolates (N = 1,514) obtained from these evaluations were characterized for capsule biosynthesis by whole-genome sequencing (WGS). Functional capsule polysaccharide synthesis (cps) loci belonging to one of seven capsule genogroups (B, C, E, W, X, Y, and Z) were identified in 122 isolates (8.1%). Approximately half [732 (48.4%)] of isolates could not be genogrouped because of the lack of any serogroup-specific genes. The remaining 660 isolates (43.5%) contained serogroup-specific genes for genogroup B, C, E, W, X, Y, or Z, but had mutations in the cps loci. Identified mutations included frameshift or point mutations resulting in premature stop codons, missing or fragmented genes, or disruptions due to insertion elements. Despite these mutations, 49/660 isolates expressed capsule as observed with slide agglutination, whereas 45/122 isolates with functional cps loci did not express capsule. Neither the variable capsule expression nor the genetic variation in the cps locus was limited to a certain clonal complex, except for capsule null isolates (predominantly clonal complex 198). Most of the meningococcal carriage isolates collected from student populations at three US universities were non-groupable as a result of either being capsule null or containing mutations within the capsule locus. Several mutations inhibiting expression of the genes involved with the synthesis and transport of the capsule may be reversible, allowing the bacteria to switch between an encapsulated and non-encapsulated state. These findings are particularly important as carriage is an important component of the transmission cycle of the pathogen, and understanding the impact of genetic variations on the synthesis of capsule, a meningococcal vaccine target and an important virulence factor, may ultimately inform strategies for control and prevention of disease caused by this pathogen.
Collapse
Affiliation(s)
- Melissa J. Whaley
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jeni T. Vuong
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Nadav Topaz
- CDC Foundation Field Employee assigned to the Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - How-Yi Chang
- IHRC Inc., Contractor to Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jennifer Dolan Thomas
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Laurel T. Jenkins
- IHRC Inc., Contractor to Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Fang Hu
- IHRC Inc., Contractor to Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Susanna Schmink
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Evelene Steward-Clark
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Marsenia Mathis
- IHRC Inc., Contractor to Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Lorraine D. Rodriguez-Rivera
- IHRC Inc., Contractor to Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Adam C. Retchless
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sandeep J. Joseph
- IHRC Inc., Contractor to Meningitis and Vaccine Preventable Diseases Branch, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Alexander Chen
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Anna M. Acosta
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Lucy McNamara
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Heidi M. Soeters
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sarah Mbaeyi
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Henju Marjuki
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
9
|
Fahimzad A, Khatmi M, Shiva F, Mortazavi SE, Shirvani F, Gorji FA. Evaluation of pharyngeal carriage of Neisseria meningitidis in tehran, Iran. New Microbes New Infect 2022; 45:100953. [PMID: 35145699 PMCID: PMC8819400 DOI: 10.1016/j.nmni.2022.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Meningitis and meningococcal septicemia are potentially life-threatening illnesses; young people in educational institutions have been repeatedly exposed to outbreaks of meningococcal infections. Since invasive meningococcal disease is preceded by pharyngeal carriage of Neisseria meningitidis, ascertaining the prevalence of meningococcal carriage in this population is of utmost importance. The aim of this study was to determine the rate of meningococcal carriage in students of Shahid Beheshti University of Medical Sciences. This cross-sectional study was conducted on pharyngeal swab specimens of 251 healthy asymptomatic students from November 2019 for one year. A questionnaire was used to find correlation between isolation of Neisseria spp. and the place of residence, number of roommates, antibiotic use in the last month, and smoking. One sample from each student was used for culture on general and selective culture media for Neisseria spp. Polymerase chain reaction was used for the final diagnosis of Neisseria meningitidis. Participants in the study included 222 medical students (88.4%), 23 nursing students (9.2%) and 6 radiology students (2.4%). Mean (IQR1) age of students was 23 years, 134 students were female, (53.4%); 234 students were single, (93.2%). 92 students (36.7%) lived in dormitories. Neisseria were isolated from 18 specimens (7.2%), of which 11 (4.4%) were pigmented bacteria. PCR assay did not detect Neisseria meningitidis in any of the samples. This study showed that meningococcal bacteria were not detected in any of the oropharyngeal specimens from students participating in the study during the one-year study period.
Collapse
|
10
|
McMillan M, Marshall HS, Richmond P. 4CMenB vaccine and its role in preventing transmission and inducing herd immunity. Expert Rev Vaccines 2021; 21:103-114. [PMID: 34747302 DOI: 10.1080/14760584.2022.2003708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION : Vaccination is the most effective method of protecting people from invasive meningococcal disease (IMD). Of all the capsular groups, B is the most common cause of invasive meningococcal disease in many parts of the world. Despite this, adolescent meningococcal B vaccine programs have not been implemented globally, partly due to the lack of evidence for herd immunity afforded by meningococcal B vaccines. AREAS COVERED This review aims to synthesise the available evidence on recombinant 4CMenB vaccines' ability to reduce pharyngeal carriage and therefore provide indirect (herd) immunity against IMD. EXPERT OPINION There is some evidence that the 4CMenB vaccine may induce cross-protection against non-B carriage of meningococci. However, the overall body of evidence does not support a clinically significant reduction in carriage of disease-associated or group B meningococci following 4CMenB vaccination. No additional cost-benefit from herd immunity effects should be included when modelling the cost-effectiveness of 4CMenB vaccine programs against group B IMD. 4CMenB immunisation programs should focus on direct (individual) protection for groups at greatest risk of meningococcal disease. Future meningococcal B and combination vaccines being developed should consider the impact of the vaccine on carriage as part of their clinical evaluation.
Collapse
Affiliation(s)
- Mark McMillan
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network, Adelaide, South Australia, Australia.,Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Helen S Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network, Adelaide, South Australia, Australia.,Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Peter Richmond
- Division of Paediatrics, School of Medicine, University of Western Australia, Department of General Paediatrics and Immunology, Perth Children's Hospital.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kid's Institute, Perth, Western Australia
| |
Collapse
|
11
|
Schaffer DeRoo S, Torres RG, Fu LY. Meningococcal disease and vaccination in college students. Hum Vaccin Immunother 2021; 17:4675-4688. [PMID: 34613863 PMCID: PMC8828137 DOI: 10.1080/21645515.2021.1973881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022] Open
Abstract
Neisseria meningitidis is a bacterial pathogen capable of causing rapidly progressing illness from nonspecific symptoms to end-organ failure or death in a matter of hours to days. Despite the availability of meningococcal vaccines, there remains a notable disease incidence peak among individuals aged 18-19 years, with college students at increased risk for disease relative to non-college students. Between 2007 and 2017, as many as one in five colleges in the United States experienced an outbreak of meningococcal disease at their own or a nearby institution. Evidence-based strategies to promote meningococcal vaccination among students can be adapted for the college setting, but barriers exist that limit widespread implementation of these strategies by colleges. In this article, we review meningococcal disease characteristics and epidemiology among US college students, vaccination indications and coverage levels among US college students, as well as college vaccination policies and practices that can impact students' vaccine uptake.
Collapse
Affiliation(s)
| | - Rachel G. Torres
- Center for Translational Research, Children’s National Hospital, Washington, DC, USA
| | - Linda Y. Fu
- Department of Pediatrics, Children’s National Hospital, Washington, DC, USA
- Center for Translational Research, Children’s National Hospital, Washington, DC, USA
| |
Collapse
|
12
|
McMillan M, Koehler AP, Lawrence A, Sullivan TR, Bednarz J, MacLennan JM, Maiden MCJ, Ladhani SN, Ramsay ME, Trotter C, Borrow R, Finn A, Kahler CM, Whelan J, Vadivelu K, Richmond PC, Marshall HS. 'B Part of It' School Leaver study: a repeat cross-sectional study to assess the impact of increasing coverage with meningococcal B (4CMenB) vaccine on carriage of Neisseria meningitidis. J Infect Dis 2021; 225:637-649. [PMID: 34487174 DOI: 10.1093/infdis/jiab444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/05/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Recombinant protein-based vaccines targeting serogroup B meningococci protect against invasive disease, but impacts on carriage are uncertain. This study assessed carriage prevalence of disease-associated meningococci from 2018-2020, as the proportion of vaccinated adolescents increased following introduction of a school-based 4CMenB immunisation program. METHODS Eligible participants who completed high school (age 17-25) in South Australia in the previous year had an oropharyngeal swab taken and completed a risk factor questionnaire. Disease-associated meningococci (genogroups A, B, C, W, X, Y) were detected by meningococcal and genogroup-specific polymerase chain reaction. RESULTS The final analysis included 4104 participants in 2018, 2690 in 2019, and 1338 in 2020. The proportion vaccinated with 4CMenB increased from 43% in 2018, to 78% in 2019, and 76% in 2020. Carriage prevalence of disease-associated meningococci in 2018 was 225/4104 (5.5%). There was little difference between the carriage prevalence in 2019 (134/2690, 5.0%, adjusted odds ratio [aOR] 0.82, 95% CI 0.64-1.05) and 2020 (68/1338, 5.1% aOR 0.82, 95% CI 0.57-1.17) compared to 2018. CONCLUSIONS Increased 4CMenB uptake in adolescents was not associated with a decline in carriage of disease-associated meningococci. 4CMenB immunisation programs should focus on direct (individual) protection for groups at greatest risk of disease.
Collapse
Affiliation(s)
- Mark McMillan
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network, Adelaide, South Australia, Australia.,Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ann P Koehler
- Communicable Disease Control Branch, SA Health, Adelaide, South Australia, Australia
| | | | - Thomas R Sullivan
- SAHMRI Women & Kids, South Australian Health & Medical Research Institute, Adelaide, Australia.,School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Jana Bednarz
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | - Mary E Ramsay
- Immunisation Department, Public Health England, London, England
| | - Caroline Trotter
- Immunisation Department, Public Health England, London, England.,Department of Pathology & Veterinary Medicine, University of Cambridge, Cambridge, England
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester, England
| | - Adam Finn
- Bristol Children's Vaccine Centre, Schools of Cellular and Molecular Medicine & of Population Health Sciences, University of Bristol, Bristol, England
| | - Charlene M Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
| | | | | | - Peter C Richmond
- School of Medicine, University of Western Australia, Perth Children's Hospital and Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kid's Institute, Perth, Western Australia
| | - Helen S Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network, Adelaide, South Australia, Australia.,Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Richardson E, Ryan KA, Lawrence RM, Harle CA, Desai SM, Livingston MD, Rawal A, Staras SAS. Increasing awareness and uptake of the MenB vaccine on a large university campus. Hum Vaccin Immunother 2021; 17:3239-3246. [PMID: 34076556 PMCID: PMC8381836 DOI: 10.1080/21645515.2021.1923347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022] Open
Abstract
Objective: At a large public university, we aimed to evaluate an intervention designed to increase serogroup B meningococcal (MenB) vaccine uptake and awareness.Methods: Using a pretest-posttest design with a double posttest, we evaluated an intervention conducted by a local foundation and the Florida Department of Health that distributed MenB vaccine on campus and conducted an educational campaign. Prior to intervention activities, we recruited students to complete a survey about their MenB knowledge and attitudes. For survey participants who provided contact information, we sent two follow-up surveys and assessed MenB vaccine records. We used chi-square tests, adjusted for nonindependence, to compare preintervention to postintervention (three-month and one-year) vaccination and attitudes.Results: Among the 686 students with accessible vaccine records, MenB vaccine initiation increased 9% (from 24% to 33%) and completion increased 8% (from 13% to 21%) from before the intervention to one year after the intervention. When restricting to students who completed the relevant follow-up surveys, the percentage of students who heard of the MenB vaccine increased by 15% (p > .001) from before the intervention to three months after (n = 188 students) and maintained a 10% increase (p > .001) one year after the intervention (n = 261 students). Among students that heard of the MenB vaccine, the percentage of students who thought they needed the MenB vaccine even though they received the MenACWY increased 14% (p = .03) by the three-month postintervention survey and up to 18% by the one-year follow-up (p = .002).Conclusions: A university-wide, on-campus vaccination and educational campaign increased college students' MenB vaccine initiation, completion, and knowledge.Clinicaltrials.gov ID: NCT02975596.
Collapse
Affiliation(s)
- Eric Richardson
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kathleen A. Ryan
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Robert M. Lawrence
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher A. Harle
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Shivani M. Desai
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - Stephanie A. S. Staras
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
- The Institute for Child Health Policy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
McMillan M, Chandrakumar A, Wang HLR, Clarke M, Sullivan TR, Andrews RM, Ramsay M, Marshall HS. Effectiveness of Meningococcal Vaccines at Reducing Invasive Meningococcal Disease and Pharyngeal Neisseria meningitidis Carriage: A Systematic Review and Meta-analysis. Clin Infect Dis 2021; 73:e609-e619. [PMID: 33212510 DOI: 10.1093/cid/ciaa1733] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Invasive meningococcal disease (IMD), caused by Neisseria meningitidis, leads to significant morbidity and mortality worldwide. This review aimed to establish the effectiveness of meningococcal vaccines at preventing IMD and N. meningitidis pharyngeal carriage. METHODS A search within PubMed, Embase, Scopus, and unpublished studies up to 1 February 2020 was conducted. RESULTS After removal of duplicates, 8565 studies were screened and 27 studies included. Protection was provided by meningococcal C vaccines for group C IMD (odds ratio [OR], 0.13 [95% confidence interval {CI}, .07-.23]), outer membrane vesicle (OMV) vaccines against group B IMD (OR, 0.35 [95% CI, .25-.48]), and meningococcal A, C, W, Y (MenACWY) vaccines against group ACWY IMD (OR, 0.31 [95% CI, .20-.49]). A single time series analysis found a reduction following an infant 4CMenB program (incidence rate ratio, 0.25 [95% CI, .19-.36]). Multivalent MenACWY vaccines did not reduce carriage (relative risk [RR], 0.88 [95% CI, .66-1.18]), unlike monovalent C vaccines (RR, 0.50 [95% CI, .26-.97]). 4CMenB vaccine had no effect on group B carriage (RR, 1.12 [95% CI, .90-1.40]). There was also no reduction in group B carriage following MenB-FHbp vaccination (RR, 0.98 [95% CI, .53-1.79]). CONCLUSIONS Meningococcal conjugate C, ACWY, and OMV vaccines are effective at reducing IMD. A small number of studies demonstrate that monovalent C conjugate vaccines reduce pharyngeal N. meningitidis carriage. There is no evidence of carriage reduction for multivalent MenACWY, OMV, or recombinant MenB vaccines, which has implications for immunization strategies. CLINICAL TRIALS REGISTRATION CRD42018082085 (PROSPERO).
Collapse
Affiliation(s)
- Mark McMillan
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network, Adelaide, South Australia, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Abira Chandrakumar
- Central Adelaide Local Health Network, South Australia Health, Adelaide, South Australia, Australia
| | - Hua Lin Rachael Wang
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Michelle Clarke
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network, Adelaide, South Australia, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas R Sullivan
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia,Australia.,School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Ross M Andrews
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.,National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Mary Ramsay
- Immunisation Department, Public Health England, London, United Kingdom
| | - Helen S Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network, Adelaide, South Australia, Australia.,Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Meiring S, Cohen C, de Gouveia L, du Plessis M, Ganesh K, Kleynhans J, Quan V, Tempia S, von Gottberg A. Human Immunodeficiency Virus Infection Is Associated With Increased Meningococcal Carriage Acquisition Among First-year Students in 2 South African Universities. Clin Infect Dis 2021; 73:e28-e38. [PMID: 32369560 PMCID: PMC8246797 DOI: 10.1093/cid/ciaa521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/30/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Invasive meningococcal disease clusters occur among university students and may reflect higher carriage prevalence among this population. We aimed to measure meningococcal carriage prevalence, acquisition, and risk factors among first-year university students in South Africa. METHODS In summer-autumn 2017, after consenting to participate, we collected oropharyngeal swabs and questionnaires on carriage risk factors and tested students for HIV at 2 universities, during registration week (survey 1) and 6-8 weeks later (survey 2). Meningococci were detected by culture and polymerase chain reaction. RESULTS We enrolled 2120 students at registration. Mean age was 18.5 years, 59% (1252/2120) were female and 0.8% (16/1984) had HIV. Seventy-eight percent of students returned for survey 2 (1655/2120). Among the cohort, carriage prevalence was 4.7% (77/1655) at registration, increasing to 7.9% (130/1655) at survey 2: 5.0% (83) acquired new carriage, 2.8% (47) had persistent carriage, 1.8% (30) cleared the initial carriage, and 90.3% (1495) remained carriage free. At both surveys, nongenogroupable meningococci predominated, followed by genogroups Y, B, W, and C. On multinomial analysis, risk factors for carriage acquisition included attending nightclubs (adjusted relative risk ratio [aRRR], 2.1; 95% CI, 1.1-4.0), having intimate kissing partners (aRRR, 1.8; 95% CI, 1.1-2.9) and HIV (aRRR, 5.0; 95% CI, 1.1-24.4). CONCLUSIONS Meningococcal carriage among first-year university students increased after 2 months. Sociobehavioral risk factors were associated with increased carriage for all analyses. HIV was associated with carriage acquisition. Until vaccination programs become mandatory in South African universities, data suggest that students with HIV could benefit most from meningococcal vaccination.
Collapse
Affiliation(s)
- Susan Meiring
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Linda de Gouveia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Karistha Ganesh
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Vanessa Quan
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Drew RJ, Bennett D, O'Donnell S, Mulhall R, Cunney R. Risk factors for carriage of meningococcus in third-level students in Ireland: an unsupervised machine learning approach. Hum Vaccin Immunother 2021; 17:3702-3709. [PMID: 34165378 DOI: 10.1080/21645515.2021.1940651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The aim of this study was to examine the risk factors for pharyngeal carriage of meningococci in third-level students using an unsupervised machine learning approach. Data were gathered as part of meningococcal prevalence studies conducted by the Irish Meningitis and Sepsis Reference Laboratory (IMSRL). Pharyngeal swab cultures for meningococcal carriage were taken from each student once they had completed a single-page anonymous questionnaire addressing basic demographics, social behaviors, living arrangements, vaccination, and antibiotic history. Data were analyzed using multiple correspondence analysis through a machine learning approach.In total, 16,285 students who had a pharyngeal throat swab taken returned a fully completed questionnaire. Overall, meningococcal carriage rate was 20.6%, and the carriage of MenW was 1.9% (n = 323). Young Irish adults aged under 20 years and immunized with the meningococcal C vaccine had a higher MenW colonization rate (n = 171/1260, 13.5%) compared with non-Irish adults aged 20 years or older without the MenC vaccine (n = 5/81, 6%, chi-square = 3.6, p = .05). Unsupervised machine learning provides a useful technique to explore meningococcal carriage risk factors. The issue is very complex, and asked risk factors only explain a small proportion of the carriage. This technique could be used on other conditions to explore reasons for carriage.
Collapse
Affiliation(s)
- Richard J Drew
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland.,Clinical Innovation Unit, Rotunda Hospital, Dublin, Ireland.,Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Desirée Bennett
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Sinéad O'Donnell
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Robert Mulhall
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Robert Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland.,Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
17
|
Genetic Diversity of Meningococcal Serogroup B Vaccine Antigens among Carriage Isolates Collected from Students at Three Universities in the United States, 2015-2016. mBio 2021; 12:mBio.00855-21. [PMID: 34006659 PMCID: PMC8262942 DOI: 10.1128/mbio.00855-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Carriage evaluations were conducted during 2015 to 2016 at two U.S. universities in conjunction with the response to disease outbreaks caused by Neisseria meningitidis serogroup B and at a university where outbreak and response activities had not occurred. All eligible students at the two universities received the serogroup B meningococcal factor H binding protein vaccine (MenB-FHbp); 5.2% of students (181/3,509) at one university received MenB-4C. A total of 1,514 meningococcal carriage isolates were obtained from 8,905 oropharyngeal swabs from 7,001 unique participants. Whole-genome sequencing data were analyzed to understand MenB-FHbp’s impact on carriage and antigen genetic diversity and distribution. Of 1,422 isolates from carriers with known vaccination status (726 [51.0%] from MenB-FHbp-vaccinated, 42 [3.0%] from MenB-4C-vaccinated, and 654 [46.0%] from unvaccinated participants), 1,406 (98.9%) had intact fHbp alleles (716 from MenB-FHbp-vaccinated participants). Of 726 isolates from MenB-FHbp-vaccinated participants, 250 (34.4%) harbored FHbp peptides that may be covered by MenB-FHbp. Genogroup B was detected in 122/1,422 (8.6%) and 112/1,422 (7.9%) isolates from MenB-FHbp-vaccinated and unvaccinated participants, respectively. FHbp subfamily and peptide distributions between MenB-FHbp-vaccinated and unvaccinated participants were not statistically different. Eighteen of 161 MenB-FHbp-vaccinated repeat carriers (11.2%) acquired a new strain containing one or more new vaccine antigen peptides during multiple rounds of sample collection, which was not statistically different (P = 0.3176) from the unvaccinated repeat carriers (1/30; 3.3%). Our findings suggest that lack of MenB vaccine impact on carriage was not due to missing the intact fHbp gene; MenB-FHbp did not affect antigen genetic diversity and distribution during the study period.
Collapse
|
18
|
BOCCALINI SARA, PANATTO DONATELLA, MENNINI FRANCESCOSAVERIO, MARCELLUSI ANDREA, BINI CHIARA, AMICIZIA DANIELA, LAI PIEROLUIGI, MICALE ROSANNATINDARA, FRUMENTO DAVIDE, AZZARI CHIARA, RICCI SILVIA, BONITO BENEDETTA, DI PISA GIULIA, IOVINE MARIASILVIA, LODI LORENZO, GIOVANNINI MATTIA, MOSCADELLI ANDREA, PAOLI SONIA, PENNATI BEATRICEMARINA, PISANO LAURA, BECHINI ANGELA, BONANNI PAOLO. [ Health Technology Assessment (HTA) of the introduction of additional cohorts for anti-meningococcal vaccination with quadrivalent conjugate vaccines in Italy]. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E1-E128. [PMID: 34622076 PMCID: PMC8452280 DOI: 10.15167/2421-4248/jpmh2021.62.1s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- SARA BOCCALINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
- Autore corrispondente: Sara Boccalini, Dipartimento di Scienze della Salute, Università degli Studi di Firenze, 50134 Firenze, Italia - Tel.: 055-2751084 E-mail:
| | - DONATELLA PANATTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - FRANCESCO SAVERIO MENNINI
- Economic Evaluation and HTA - CEIS (EEHTA - CEIS), Facoltà di Economia, Università di Roma "Tor Vergata"
- Institute for Leadership and Management in Health, Kingston University, London, UK
| | - ANDREA MARCELLUSI
- Economic Evaluation and HTA - CEIS (EEHTA - CEIS), Facoltà di Economia, Università di Roma "Tor Vergata"
| | - CHIARA BINI
- Economic Evaluation and HTA - CEIS (EEHTA - CEIS), Facoltà di Economia, Università di Roma "Tor Vergata"
| | - DANIELA AMICIZIA
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - PIERO LUIGI LAI
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | | | - DAVIDE FRUMENTO
- Dipartimento di Scienze della Salute, Università degli Studi di Genova
| | - CHIARA AZZARI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - SILVIA RICCI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - BENEDETTA BONITO
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - GIULIA DI PISA
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | | | - LORENZO LODI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - MATTIA GIOVANNINI
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - ANDREA MOSCADELLI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - SONIA PAOLI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | | | - LAURA PISANO
- Immunologia, Clinica Pediatrica II, AOU Meyer, Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - ANGELA BECHINI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| | - PAOLO BONANNI
- Dipartimento di Scienze della Salute, Università degli Studi di Firenze
| |
Collapse
|
19
|
Kanayama A, Sasahara T, Takahashi H, Kamiya H, Morisawa Y, Kaku K. Carriage Rate and Characteristics of Neisseria meningitidis Among Dormitory Students. Jpn J Infect Dis 2021; 74:487-490. [PMID: 33518627 DOI: 10.7883/yoken.jjid.2020.890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Japan, several meningococcal disease outbreaks have recently been reported among adolescent dormitory residents of schools. However, little is known about meningococcal carriage dynamics among healthy individuals. The purpose of this study was to investigate the carriage rate over time and characteristics of Neisseria meningitidis strains among dormitory students. The survey was conducted twice between November 2018 and January 2019 for first to third year students (N=376) in a medical school dormitory. The two surveys yielded carriage rates of 0.4% (one positive among 257 students) and 2.1% (two positive among 97 students, including 90 re-participants), respectively. No transmission or persistence of a specific strain was found during the two months. A limited number of students had a history of potential risk behaviors for carriage, such as smoking (3.0%, six among 202 aged ≥ 20 years; 5.2%, four among 77 aged ≥ 20 years) and attending parties more than once a week (4.3% [11/257], 2.1% [2/97]). Two isolates were unencapsulated, consistent with the participants being asymptomatic.
Collapse
Affiliation(s)
- Atsuhiro Kanayama
- Division of Infectious Diseases Epidemiology and Control, National Defense Medical College Research Institute, Japan
| | - Teppei Sasahara
- Division of Infectious Diseases, Jichi Medical University Hospital, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Japan
| | - Hajime Kamiya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan
| | - Yuji Morisawa
- Division of Infectious Diseases, Jichi Medical University Hospital, Japan
| | - Koki Kaku
- Division of Infectious Diseases Epidemiology and Control, National Defense Medical College Research Institute, Japan
| |
Collapse
|
20
|
A meta-analytic evaluation of sex differences in meningococcal disease incidence rates in 10 countries. Epidemiol Infect 2020; 148:e246. [PMID: 33004098 PMCID: PMC7592104 DOI: 10.1017/s0950268820002356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The magnitude and consistency of the sex differences in meningococcal disease incidence rates (IR) have not been systematically examined in different age groups, countries and time periods. We obtained national data on meningococcal disease IR by sex, age group and time period, from 10 countries. We used meta-analytic methods to combine the male to female incidence rate ratios (IRRs) by country and year for each age group. Meta-regression analysis was used to assess the contribution of age, country and time period to the variation in the IRRs. The pooled male to female IRRs (with 95% CI) for ages 0–1, 1–4, 5–9, 10–14 and 15–44, were 1.25 (1.19–1.32), 1.24 (1.20–1.29), 1.13 (1.07–1.20), 1.21 (1.13–1.29) and 1.15 (1.10–1.21), respectively. In the age groups 45−64 and over 65, the IR were lower in males with IRRs of 0.83 (0.78–0.88) and 0.64 (0.60–0.69), respectively. Sensitivity analysis and meta-regression confirmed that the results were robust. The excess meningococcal IR in young males and the higher rates in females at older ages were consistent in all countries, except the Czech Republic. While behavioural factors could explain some of the sex differences in the older age groups, the excess rates in very young males suggest that genetic and hormonal differences could be important.
Collapse
|
21
|
Mbaeyi SA, Bozio CH, Duffy J, Rubin LG, Hariri S, Stephens DS, MacNeil JR. Meningococcal Vaccination: Recommendations of the Advisory Committee on Immunization Practices, United States, 2020. MMWR Recomm Rep 2020; 69:1-41. [PMID: 33417592 PMCID: PMC7527029 DOI: 10.15585/mmwr.rr6909a1] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This report compiles and summarizes all recommendations from CDC's Advisory Committee on Immunization Practices (ACIP) for use of meningococcal vaccines in the United States. As a comprehensive summary and update of previously published recommendations, it replaces all previously published reports and policy notes. This report also contains new recommendations for administration of booster doses of serogroup B meningococcal (MenB) vaccine for persons at increased risk for serogroup B meningococcal disease. These guidelines will be updated as needed on the basis of availability of new data or licensure of new meningococcal vaccines. ACIP recommends routine vaccination with a quadrivalent meningococcal conjugate vaccine (MenACWY) for adolescents aged 11 or 12 years, with a booster dose at age 16 years. ACIP also recommends routine vaccination with MenACWY for persons aged ≥2 months at increased risk for meningococcal disease caused by serogroups A, C, W, or Y, including persons who have persistent complement component deficiencies; persons receiving a complement inhibitor (e.g., eculizumab [Soliris] or ravulizumab [Ultomiris]); persons who have anatomic or functional asplenia; persons with human immunodeficiency virus infection; microbiologists routinely exposed to isolates of Neisseria meningitidis; persons identified to be at increased risk because of a meningococcal disease outbreak caused by serogroups A, C, W, or Y; persons who travel to or live in areas in which meningococcal disease is hyperendemic or epidemic; unvaccinated or incompletely vaccinated first-year college students living in residence halls; and military recruits. ACIP recommends MenACWY booster doses for previously vaccinated persons who become or remain at increased risk.In addition, ACIP recommends routine use of MenB vaccine series among persons aged ≥10 years who are at increased risk for serogroup B meningococcal disease, including persons who have persistent complement component deficiencies; persons receiving a complement inhibitor; persons who have anatomic or functional asplenia; microbiologists who are routinely exposed to isolates of N. meningitidis; and persons identified to be at increased risk because of a meningococcal disease outbreak caused by serogroup B. ACIP recommends MenB booster doses for previously vaccinated persons who become or remain at increased risk. In addition, ACIP recommends a MenB series for adolescents and young adults aged 16-23 years on the basis of shared clinical decision-making to provide short-term protection against disease caused by most strains of serogroup B N. meningitidis.
Collapse
|
22
|
Steurer LM, Hetzmannseder M, Willinger B, Starzengruber P, Mikula C, Kormann-Klement A, Weber M, Berger A, Grill A. Pharyngeal carriage rates of Neisseria meningitidis in health care professionals at a tertiary university pediatric hospital. Eur J Clin Microbiol Infect Dis 2020; 39:1703-1709. [PMID: 32333221 PMCID: PMC7427699 DOI: 10.1007/s10096-020-03894-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
Abstract
Pharyngeal carriage is the reservoir for Neisseria meningitidis in the population and the first step in disease transmission. Especially in young infants and adolescents, N. meningitidis can cause serious invasive infection with high fatality rates and high rates of long-term sequelae among survivors. The aim of this study was to determine N. meningitidis colonization rates in asymptomatic health care professionals at a tertiary university pediatric hospital and to identify risk factors for carriage. This cross-sectional meningococcal carriage survey was conducted between April and October 2018 at the Medical University of Vienna. Individuals working as nurses, pediatricians, or medical students were enrolled. Oropharyngeal swabs were directly plated onto selective agar plates and conventional culture was used for bacterial identification. Meningococcal isolates were further characterized using whole-genome sequencing. A total of 437 oropharyngeal specimens were collected. Overall, meningococcal carriage prevalence was 1.14% (5/437), with 0.7% (3/437) for capsular genotype B, and 0.5% (2/437) for capsular genotype W. Mean age of carriers was significantly lower than of non-carriers (24.2 vs. 35.8; p = 0.004). The highest carriage rate of 4.4% (4/91) was found in the age group 18–25. Carriage was negatively associated with age and timespan working in pediatrics. This is the first study evaluating the prevalence of Neisseria meningitidis carriage in health care professionals working in Pediatrics and Adolescent Medicine. Carriage was in general lower than expected for all age groups, implicating a low risk of meningococcal transmission via this population.
Collapse
Affiliation(s)
- Lisa-Maria Steurer
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Medical University of Vienna, Vienna, Austria.
| | - Mathias Hetzmannseder
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | - Birgit Willinger
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Peter Starzengruber
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Claudia Mikula
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Andrea Kormann-Klement
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Michael Weber
- Section for Medical Statistics, CeMSIIS, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | - Agnes Grill
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Le TT, Tran TX, Trieu LP, Austin CM, Nguyen HM, Quyen DV. Genotypic characterization and genome comparison reveal insights into potential vaccine coverage and genealogy of Neisseria meningitidis in military camps in Vietnam. PeerJ 2020; 8:e9502. [PMID: 32742791 PMCID: PMC7380270 DOI: 10.7717/peerj.9502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background Neisseria meningitidis remains the main cause of sporadic meningitis and sepsis in military camps in Vietnam. Yet, very limited molecular data of their genotypic and epidemiological characteristics are available from Vietnam, and particularly the military environment. Whole genome sequencing (WGS) has proven useful for meningococcal disease surveillance and guiding preventative vaccination programs. Previously, we characterized key genetic and epidemiological features of an invasive N. meningitidis B isolate from a military unit in Vietnam. Here, we extend these findings by sequencing two additional invasive N. meningitidis B isolated from cerebrospinal fluid (CSF) of two meningitis cases at another military unit and compared their genomic sequences and features. We also report the sequence types and antigenic profiles of 25 historical and more recently emerged N. meningitidis isolates from these units and other units in proximity. Methods Strains were sequenced using the Illumina HiSeq platform, de novo assembled and annotated. Genomes were compared within and between military units, as well as against the global N. meningitidis collection and other isolates from the Southeast Asia region using PubMLST. Variations at the nucleotide level were determined, and phylogenetic relationships were estimated. Antigenic genotypes and vaccine coverage were analyzed using gMATS and PubMLST. Susceptibility of isolates against commonly used antibiotic agents was examined using E-test. Results Genome comparison revealed a high level of similarity among isolates both within and between units. All isolates showed resistance to chloramphenicol and carried identical catP gene with other Southeast Asian isolates, suggesting a common lineage. Their antigenic genotypes predicted no coverage by either Bexsero®or Trumenba®, and nucleotide variation analysis revealed diverse new, unassigned alleles at multiple virulence loci of all strains. Groups of singleton and unique novel sequence types extending beyond individual camps were found from epidemiological data of 25 other isolates. Our results add to the sparse published molecular data of N. meningitidis in the military units in Vietnam, highlight their diversity, distinct genetic features and antibiotic resistance pattern, and emphasize the need for further studies on the molecular characteristics of N. meningitidis in Vietnam.
Collapse
Affiliation(s)
- Trang Thu Le
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thach Xuan Tran
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Long Phi Trieu
- Laboratory of Microbiology, Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Christopher M Austin
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Huong Minh Nguyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dong Van Quyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
24
|
Alderfer J, Isturiz RE, Srivastava A. Lessons from mass vaccination response to meningococcal B outbreaks at US universities. Postgrad Med 2020; 132:614-623. [DOI: 10.1080/00325481.2020.1766265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Justine Alderfer
- Medical Development, Scientific & Clinical Affairs, Pfizer Vaccines, Pfizer Inc, Collegeville, PA, USA
| | - Raul E. Isturiz
- Medical Development, Scientific & Clinical Affairs, Pfizer Vaccines, Pfizer Inc, Collegeville, PA, USA
| | - Amit Srivastava
- Medical Development, Scientific & Clinical Affairs, Pfizer Vaccines, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
25
|
The epidemiology of invasive meningococcal disease and the utility of vaccination in Malta. Eur J Clin Microbiol Infect Dis 2020; 39:1885-1897. [PMID: 32418063 PMCID: PMC7229431 DOI: 10.1007/s10096-020-03914-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/22/2020] [Indexed: 12/03/2022]
Abstract
Invasive meningococcal disease (IMD) is a vaccine-preventable devastating infection that mainly affects infants, children and adolescents. We describe the population epidemiology of IMD in Malta in order to assess the potential utility of a meningococcal vaccination programme. All cases of microbiologically confirmed IMD in the Maltese population from 2000 to 2017 were analysed to quantify the overall and capsular-specific disease burden. Mean overall crude and age-specific meningococcal incidence rates were calculated to identify the target age groups that would benefit from vaccination. Over the 18-year study period, 111 out of the 245 eligible notified cases were confirmed microbiologically of which 70.3% had septicaemia, 21.6% had meningitis, and 6.3% had both. The mean overall crude incidence rate was 1.49/100,000 population with an overall case fatality rate of 12.6%. Meningococcal capsular groups (Men) B followed by C were the most prevalent with W and Y appearing over the last 6 years. Infants had the highest meningococcal incidence rate of 18.9/100,000 followed by 6.1/100,000 in 1–5 year olds and 3.6/100,000 in 11–15 year old adolescents. The introduction of MenACWY and MenB vaccines on the national immunization schedule in Malta would be expected to reduce the disease burden of meningococcal disease in children and adolescents in Malta.
Collapse
|
26
|
Joseph SJ, Topaz N, Chang HY, Whaley MJ, Vuong JT, Chen A, Hu F, Schmink SE, Jenkins LT, Rodriguez-Rivera LD, Thomas JD, Acosta AM, McNamara L, Soeters HM, Mbaeyi S, Wang X. Insights on Population Structure and Within-Host Genetic Changes among Meningococcal Carriage Isolates from U.S. Universities. mSphere 2020; 5:e00197-20. [PMID: 32269159 PMCID: PMC7142301 DOI: 10.1128/msphere.00197-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 01/15/2023] Open
Abstract
In 2015 and 2016, meningococcal carriage evaluations were conducted at two universities in the United States following mass vaccination campaigns in response to Neisseria meningitidis serogroup B (NmB) disease outbreaks. A simultaneous carriage evaluation was also conducted at a university near one of the outbreaks, where no NmB cases were reported and no mass vaccination occurred. A total of ten cross-sectional carriage evaluation rounds were conducted, resulting in 1,514 meningococcal carriage isolates collected from 7,001 unique participants; 1,587 individuals were swabbed at multiple time points (repeat participants). All isolates underwent whole-genome sequencing. The most frequently observed clonal complexes (CC) were CC198 (27.3%), followed by CC1157 (17.4%), CC41/44 (9.8%), CC35 (7.4%), and CC32 (5.6%). Phylogenetic analysis identified carriage isolates that were highly similar to the NmB outbreak strains; comparative genomics between these outbreak and carriage isolates revealed genetic changes in virulence genes. Among repeat participants, 348 individuals carried meningococcal bacteria during at least one carriage evaluation round; 50.3% retained N. meningitidis carriage of a strain with the same sequence type (ST) and CC across rounds, 44.3% only carried N. meningitidis in one round, and 5.4% acquired a new N. meningitidis strain between rounds. Recombination, point mutations, deletions, and simple sequence repeats were the most frequent genetic mechanisms found in isolates collected from hosts carrying a strain of the same ST and CC across rounds. Our findings provide insight on the dynamics of meningococcal carriage among a population that is at higher risk for invasive meningococcal disease than the general population.IMPORTANCE U.S. university students are at a higher risk of invasive meningococcal disease than the general population. The responsible pathogen, Neisseria meningitidis, can be carried asymptomatically in the oropharynx; the dynamics of meningococcal carriage and the genetic features that distinguish carriage versus disease states are not completely understood. Through our analyses, we aimed to provide data to address these topics. We whole-genome sequenced 1,514 meningococcal carriage isolates from individuals at three U.S. universities, two of which underwent mass vaccination campaigns following recent meningococcal outbreaks. We describe the within-host genetic changes among individuals carrying a strain with the same molecular type over time, the primary strains being carried in this population, and the genetic differences between closely related outbreak and carriage strains. Our results provide detailed information on the dynamics of meningococcal carriage and the genetic differences in carriage and outbreak strains, which can inform future efforts to reduce the incidence of invasive meningococcal disease.
Collapse
Affiliation(s)
| | | | | | - Melissa J Whaley
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jeni T Vuong
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alexander Chen
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Fang Hu
- IHRC Inc., Atlanta, Georgia, USA
| | - Susanna E Schmink
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Laurel T Jenkins
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Jennifer D Thomas
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anna M Acosta
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lucy McNamara
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Heidi M Soeters
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah Mbaeyi
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
27
|
A clinical update on vaccines: focus on determinants of under-immunization and special considerations for adolescents. Curr Opin Pediatr 2020; 32:328-335. [PMID: 32068599 DOI: 10.1097/mop.0000000000000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The current article reviews recent literature related to pediatric and adolescent vaccination, specifically focusing on social determinants of under-immunization, expanding adolescent immunization rates, and new recommendations surrounding the meningococcal serotype B vaccine (MenB). RECENT FINDINGS Vaccine refusals and vaccine-preventable diseases have been rising in some parts of the world, and appear to be linked to household factors, such as a family's socioeconomic status. Adolescents have lower immunization rates than younger children. Newer vaccines targeted at adolescents, such as the MenB vaccine, have yet to be widely accepted by pediatric providers, parents, and patients. SUMMARY Pediatric healthcare providers should attempt to increase local immunization rates by vaccinating children at all eligible office visits and utilizing electronic health record decision-support tools. Although the number of families who choose not to vaccinate their children may be rising, providers can be innovative (e.g. incorporate digital vaccine reminder systems) and increase their familiarity with new vaccine recommendations to continue to prevent serious vaccine-preventable diseases.
Collapse
|
28
|
Watle SV, Caugant DA, Tunheim G, Bekkevold T, Laake I, Brynildsrud OB, Næss LM. Meningococcal carriage in Norwegian teenagers: strain characterisation and assessment of risk factors. Epidemiol Infect 2020; 148:e80. [PMID: 32228726 PMCID: PMC7189347 DOI: 10.1017/s0950268820000734] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 11/24/2022] Open
Abstract
Teenagers have a higher risk of invasive meningococcal disease (IMD) than the general population. This cross-sectional study aimed to characterise strains of Neisseria meningitidis circulating among Norwegian teenagers and to assess risk factors for meningococcal carriage. Oropharyngeal swabs were collected from secondary-school students in southeastern Norway in 2018-2019. Meningococcal isolates were characterised using whole genome sequencing. Risk factors for meningococcal carriage were assessed from questionnaire data. Samples were obtained from 2296 12-24-year-olds (majority 13-19-year-olds). N. meningitidis was identified in 167 (7.3%) individuals. The highest carriage rate was found among 18-year-olds (16.4%). Most carriage isolates were capsule null (40.1%) or genogroup Y (33.5%). Clonal complexes cc23 (35.9%) and cc198 (32.3%) dominated and 38.9% of carriage strains were similar to invasive strains currently causing IMD in Norway. Use of Swedish snus (smokeless tobacco) (OR 1.56, 95% CI 1.07-2.27), kissing >two persons/month (OR 2.76, 95% CI 1.49-5.10) and partying >10 times/3months (OR 3.50, 95% CI 1.45-8.48) were associated with carriage, while age, cigarette smoking, sharing of drinking bottles and meningococcal vaccination were not. The high meningococcal carriage rate among 18-year-olds is probably due to risk-related behaviour. Use of Swedish snus is possibly a new risk factor for meningococcal carriage. Almost 40% of circulating carriage strains have invasive potential.
Collapse
Affiliation(s)
- S. V. Watle
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway
- Faculty of Medicine, Institute of Health and Society, University of Oslo, P.O. Box 1078 Blindern, 0316 Oslo, Norway
| | - D. A. Caugant
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway
- Faculty of Medicine, Institute of Health and Society, University of Oslo, P.O. Box 1078 Blindern, 0316 Oslo, Norway
| | - G. Tunheim
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway
| | - T. Bekkevold
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway
| | - I. Laake
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway
| | - O. B. Brynildsrud
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway
| | - L. M. Næss
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway
| |
Collapse
|
29
|
Ferreira VM, Ferreira ÍE, Chang HY, Nunes AMPB, Topaz N, Pimentel ER, Moura ARSS, Ribeiro GS, Feitosa CA, Reis MG, Wang X, Campos LC. Meningococcal carriage in young adults six years after meningococcal C conjugate (MCC) vaccine catch-up campaign in Salvador, Brazil. Vaccine 2020; 38:2995-3002. [PMID: 32115294 DOI: 10.1016/j.vaccine.2020.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Abstract
Meningococcal carriage studies are important to improve the knowledge of disease epidemiology as well as to support appropriate vaccination strategies. We conducted a cross-sectional study to determine the prevalence and genotypic characteristics of meningococci collected from young adults in Salvador, Brazil six years after a meningococcal C conjugate vaccine catch-up campaign. From August through November 2016, oropharyngeal swabs were collected from 407 students aged 1824 years attending a private college in Salvador, Brazil. Neisseria meningitidis was identified by standard microbiology methods and real time PCR. Genetic characteristics of meningococci were assessed by rt-PCR and/or whole genome sequencing. We also investigated potential factors associated with carriage. N. meningitidis was detectable in 50 students, 39 by both culture and rt-PCR, 7 by culture alone and 4 by rt-PCR alone, resulting in an overall meningococcal carriage prevalence of 12.3% (50/407). Carriage was independently associated with male sex (adjusted PR: 1.97; 95% CI: 1.12-3.46; p = 0.018) and attending bars or parties at least once per month (aPR: 3.31; 95% CI: 1.49-7.38; p = 0.003). Molecular tests identified 92% (46/50) N. meningitidis as non-groupable, of which 63% (29/46) had the capsule null genotype; 14 NG isolates contained disrupted capsule backbones and belonged to the following genogroups: 7 B, 3 Z, 3 E and 1 W. One isolate belonged to genogroup C tested only by PCR; 3 isolates contained a complete B capsule backbones, 2 of which were determined to be NG by slide agglutination serogrouping. While most meningococcal carriage isolates were non-groupable, there was a high degree of genetic diversity present in the collection, as evidenced by 25 unique STs being detected. The carriage prevalence of meningococcal serogroup C was low among young adults. Continuous vaccination is important to maintain reduced meningococcal carriage and transmission, inducing herd protection.
Collapse
Affiliation(s)
- Viviane Matos Ferreira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | | | - How-Yi Chang
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Nadav Topaz
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Guilherme Sousa Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Mitermayer Galvão Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States
| | - Xin Wang
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
30
|
Alderfer JT, Moran MM, Srivastava A, Isturiz RE. Meningococcal vaccination: a discussion with all adolescents, whether college-bound or not. Postgrad Med 2019; 131:551-554. [PMID: 31575310 DOI: 10.1080/00325481.2019.1671667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Adolescents and young adults are the primary reservoirs and transmitters of meningococci. In the US, meningococcal serogroup B (MenB) disease predominates over A, C, W, and Y; ACIP-recommended MenACWY and MenB vaccines are available. We investigated invasive meningococcal disease (IMD) burden and vaccination among non-college adolescents.Methods: IMD incidence by college attendance status and vaccination rates were analyzed using publicly available surveillance data.Results: 64/158 IMD cases occurred in non-college 18-24-year-olds during 2015-2017. Among non-college cases, the MenACWY vaccination rates were 38%-57% vs 90%-100% among college cases when vaccination status was known; MenB vaccination was 0% vs 0%-7%, respectively. In 2018, 17.2% of all 17-year-olds received ≥1 dose of multidose MenB vaccines; ≤50% completed the series.Conclusion: Meningococcal vaccination is emphasized for college-bound adolescents, but non-college adolescents bear much of the disease burden. Low vaccine receipt preserves their risk, underscoring the need to protect all adolescents through vaccination.
Collapse
Affiliation(s)
- Justine T Alderfer
- Pfizer Vaccines Medical Development & Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Mary M Moran
- Pfizer Vaccines Medical Development & Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Amit Srivastava
- Pfizer Vaccines Medical Development & Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Raul E Isturiz
- Pfizer Vaccines Medical Development & Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
31
|
Santos-Neto JF, Ferreira VM, Feitosa CA, Martinez-Silveira MS, Campos LC. Carriage prevalence of Neisseria meningitidis in the Americas in the 21st century: a systematic review. Braz J Infect Dis 2019; 23:254-267. [PMID: 31344352 PMCID: PMC9427833 DOI: 10.1016/j.bjid.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 01/13/2023] Open
Abstract
Neisseria meningitidis is a bacterium that colonizes the human nasopharynx and is transmitted by respiratory droplets from asymptomatic or symptomatic carriers. Occasionally, the pathogen invades the mucosa and enters the bloodstream, causing invasive meningococcal disease, a life-threatening infection. While meningococcal colonization is the first step in the development of invasive disease, the risk factors that predict progression from asymptomatic to symptomatic status are not well-known. The present report aimed to describe the prevalence of N. meningitidis carriers throughout the Americas, emphasizing the risk factors associated with carrier status, as well as the most prevalent serogroups in each studied population. We conducted a systematic review by searching for original studies in the MEDLINE/PubMed, Embase, LILACS and SciELO databases, published between 2001 and 2018. Exclusion criteria were articles published in a review format, case studies, case control studies, investigations involving animal models, and techniques or publications that did not address the prevalence of asymptomatic carriers in an American country. A total of 784 articles were identified, of which 23 were selected. The results indicate that the highest prevalence rates are concentrated in Cuba (31.9%), the United States (24%), and Brazil (21.5%), with increased prevalence found among adolescents and young adults, specifically university students and males. The present systematic review was designed to support epidemiological surveillance and prevention measures to aid in the formulation of strategies designed to control the transmission of meningococci in a variety of populations and countries throughout the Americas.
Collapse
Affiliation(s)
- José Francisco Santos-Neto
- Instituto Gonçalo Moniz - FIOCRUZ, Salvador, BA, Brazil; Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brazil
| | - Viviane Matos Ferreira
- Instituto Gonçalo Moniz - FIOCRUZ, Salvador, BA, Brazil; Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brazil
| | | | | | | |
Collapse
|
32
|
Marshall GS, Dempsey AF, Srivastava A, Isturiz RE. US College Students Are at Increased Risk for Serogroup B Meningococcal Disease. J Pediatric Infect Dis Soc 2019; 9:244-247. [PMID: 31077326 PMCID: PMC7192401 DOI: 10.1093/jpids/piz024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
Publicly available surveillance data, Centers for Disease Control and Prevention reports, and other sources suggest that college students in the United States are at increased risk for meningococcus serogroup B (MenB) disease. US surveillance data from 2015 to 2017 show that the incidence of invasive meningococcal disease (IMD) was greater among college students than among those not attending college; the average annual incidence of MenB disease was >5-fold higher among college students, and all college IMD outbreaks between 2011 and March 2019 were caused by MenB.
Collapse
Affiliation(s)
- Gary S Marshall
- Department of Pediatrics, University of Louisville, Louisville, Kentucky,Correspondence: G. S. Marshall, MD, University of Louisville School of Medicine, 571 S. Floyd St, Suite 321, Louisville, KY 40202 ()
| | - Amanda F Dempsey
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Amit Srivastava
- Pfizer Vaccines Medical Development, Scientific and Clinical Affairs, Collegeville, Pennsylvania
| | - Raul E Isturiz
- Pfizer Vaccines Medical Development, Scientific and Clinical Affairs, Collegeville, Pennsylvania
| |
Collapse
|
33
|
Tran TX, Le TT, Trieu LP, Austin CM, Van Quyen D, Nguyen HM. Whole-genome sequencing and characterization of an antibiotic resistant Neisseria meningitidis B isolate from a military unit in Vietnam. Ann Clin Microbiol Antimicrob 2019; 18:16. [PMID: 31060558 PMCID: PMC6501280 DOI: 10.1186/s12941-019-0315-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/27/2019] [Indexed: 12/30/2022] Open
Abstract
Background Invasive meningococcal disease (IMD) persists in military units in Vietnam despite the availability of antibiotics and vaccines. A hindrance to reducing the incidence of IMD in Vietnam is a lack of molecular data from isolates of the causative agent, Neisseria meningitidis from this country. Here, we characterized key genetic and epidemiological features of an invasive N. meningitidis isolate from a military unit in Vietnam using whole-genome sequencing. Methods Neisseria meningitidis was isolated from a conscript admitted for meningitis and tested against seven antibiotics. DNA from the isolate was extracted and sequenced using the Illumina HiSeq platform. Denovo assembly and scaffolding were performed to construct a draft genome assembly, from which genes were predicted and functionally annotated. Genome analysis included epidemiological characterization, genomic composition and identification of antibiotic resistance genes. Results Susceptibility testing of the isolate showed high levels of resistance to chloramphenicol and diminished susceptibility to ampicillin and rifampicin. A draft genome of ~ 2.1 Mb was assembled, containing 2451 protein coding sequences, 49 tRNAs and 3 rRNAs. Fifteen coding sequences sharing ≥ 84% identity with known antibiotic resistance genes were identified. Genome analysis revealed abundant repetitive DNAs and two prophages. Epidemiological typing revealed newly described sequence type, antigenic finetype and Bexsero® Antigen Sequence Typing (BAST). The BAST profile showed no coverage by either Bexsero® or Trumenba®. Conclusions Our results present the first genome assembly of an invasive N. meningitidis isolate from a military unit in Vietnam. This study illustrates the usefulness of whole genome sequencing (WGS) analysis for epidemiological and antibiotic resistance studies and surveillance of IMD in Vietnam.
Collapse
Affiliation(s)
- Thach Xuan Tran
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
| | - Trang Thu Le
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
| | - Long Phi Trieu
- Laboratory of Microbiology, Military Institute of Preventive Medicine, 21 Trung Liet Street, Dong Da District, Hanoi, Vietnam
| | - Christopher M Austin
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Rd, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Dong Van Quyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam. .,Pharmacological, Medical and Agronomical Biotechnology (PMAB) Department, University of Science and Technology of Hanoi, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam.
| | - Huong Minh Nguyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam.
| |
Collapse
|
34
|
Peterson ME, Li Y, Shanks H, Mile R, Nair H, Kyaw MH. Serogroup-specific meningococcal carriage by age group: a systematic review and meta-analysis. BMJ Open 2019; 9:e024343. [PMID: 31005910 PMCID: PMC6500331 DOI: 10.1136/bmjopen-2018-024343] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/03/2018] [Accepted: 02/26/2019] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Neisseria meningitidis carriage prevalence has known variation across the lifespan, but it is unclear whether carriage varies among meningococcal capsular groups. Therefore, we aimed to characterise group-specific meningococcal carriage by age group and world region from 2007 to 2016. DESIGN Systematic review and meta-analysis. DATA SOURCES MEDLINE, Embase, Global Health Database, WHO Global Health Library, Web of Science, Current Contents Connects, China National Knowledge Infrastructure and Wanfang were systematically searched. Database searches were conducted through July 2018 and Google Scholar forward searches of included studies were conducted through August 2018. References of included studies and relevant conference abstracts were also searched to identify additional articles for inclusion. ELIGIBILITY CRITERIA Studies were eligible for inclusion if they reported capsular group-specific meningococcal carriage in a healthy population of a specified age group and geographical region. For this review, only studies conducted between 2007 and 2016 were included. DATA EXTRACTION AND SYNTHESIS Data were independently extracted by two authors into Microsoft Access. Studies were assessed for risk of bias using the Joanna Briggs Institute Critical Appraisal Checklist for Studies Reporting Prevalence Data. Studies eligible for inclusion in quantitative analyses by pre-specified age groups were pooled using random effects meta-analyses. Results are reported by capsular group, age group and WHO region. Where meta-analyses were not appropriate, study results were discussed narratively. RESULTS 7511 articles were identified and 65 were eligible for inclusion. Adolescents and young adults were the focus of many studies (n=24), especially in the Americas and Europe. Studies from China and Africa, typically, included data from a wider age range. The overall carriage prevalence varied markedly by age group and region. Based on the available data, 21 studies were included in meta-analyses reporting serogroup carriage for: all ages in Africa, 18-24-year olds in the Americas, and 11-17 and 18-24-year olds in Europe. Capsular groups W, X, Y and 'other' (non-ABCWXY, including non-groupable) were the most prevalent in Africa, and 5-17-year olds had higher carriage prevalence than other age groups. 'Other' serogroups (11.5%, 95% CI 1.6% to 16.1%) were the most common among 18-24-year olds from the Americas. In Europe, 18-24-year old were carriers more frequently than 11-17-year olds, and groups B (5.0%, 95% CI 3.0% to 7.5%), Y (3.9%, 95% CI 1.3% to 7.8%) and 'other' (6.4%, 95% CI 3.1% to 10.8%) were the most commonly carried in the older age group. CONCLUSIONS Of the age groups included in the analysis, carriage patterns by age were similar across capsular groups within a region but differed between regions. Data gaps remain for age- and capsular group-specific carriage in many regions, especially in the Eastern Mediterranean and South-East Asia. As such, clear and robust conclusions about the variation of capsular group-specific carriage by age group and WHO region were unable to be determined. PROSPERO REGISTRATION NUMBER CRD42017074671.
Collapse
Affiliation(s)
- Meagan E Peterson
- Centre for Global Health Research, University of Edinburgh School of Molecular Genetic and Population Health Sciences, Edinburgh, UK
| | - You Li
- Centre for Global Health Research, University of Edinburgh School of Molecular Genetic and Population Health Sciences, Edinburgh, UK
| | - Heather Shanks
- Centre for Global Health Research, University of Edinburgh School of Molecular Genetic and Population Health Sciences, Edinburgh, UK
| | - Rebecca Mile
- Centre for Global Health Research, University of Edinburgh School of Molecular Genetic and Population Health Sciences, Edinburgh, UK
| | - Harish Nair
- University of Edinburgh School of Molecular Genetic and Population Health Sciences, Edinburgh, UK
| | - Moe H Kyaw
- Sanofi Pasteur, Inc., Swiftwater, Pennsylvania, USA
| |
Collapse
|
35
|
McMillan M, Walters L, Mark T, Lawrence A, Leong LEX, Sullivan T, Rogers GB, Andrews RM, Marshall HS. B Part of It study: a longitudinal study to assess carriage of Neisseria meningitidis in first year university students in South Australia. Hum Vaccin Immunother 2019; 15:987-994. [PMID: 30513251 PMCID: PMC6605849 DOI: 10.1080/21645515.2018.1551672] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objectives:N. meningitidis carriage in Australia is poorly understood. This study aimed to estimate prevalence and risk factors for carriage of N. meningitidis in South Australian university students. We also sought to identify whether delayed freezing of oropharyngeal samples altered PCR positivity, cycle threshold, or culture positivity. Methods: Oropharyngeal swabs were taken from first year university students and repeated after 3 months, with risk factor questionnaires completed at both visits. Specimens were subjected to real-time PCR screening for the presence of specific meningococcal DNA. Results: The study enrolled 421 individuals, 259 returned at 3 months. At baseline, 56% of participants were female and 1.9% smokers. Carriage of N. meningitidis at baseline was 6.2% (95% CI, [4.2%, 8.9%]). Visiting a bar more than once a week (OR 9.07; [2.44, 33.72]) and intimate kissing (OR 4.37; [1.45, 13.14]) were associated with increased carriage. After imputing missing data, the point estimate for carriage at 3 months was 8.6% compared to 6.2% at baseline (OR 1.42; 0.91 to 2.20). Recovery of N. meningitidis on selective agar was significantly reduced in cryovials frozen at 48 hours compared to 6 hours (24/26, 92.3% vs. 14/26, 53.9%, p = 0.002). Conclusion: Attending bars and engaging in intimate kissing is associated with oropharyngeal carriage in South Australian university students. Adolescent meningococcal vaccine programs should be implemented at school, prior to increased attendance at bars, intimate contact, and carriage acquisition. Delaying freezing of oropharyngeal specimens longer than 16 hours reduces yield of N. meningitidis by culture but not PCR detection.
Collapse
Affiliation(s)
- Mark McMillan
- a Vaccinology and Immunology Research Trials Unit , Women's and Children's Health Network , Adelaide , SA , Australia.,b Robinson Research Institute and Adelaide Medical School , The University of Adelaide , Adelaide , SA , Australia
| | - Luke Walters
- c Microbiology and Infectious Diseases Directorate , SA Pathology , Adelaide , SA , Australia
| | - Turra Mark
- c Microbiology and Infectious Diseases Directorate , SA Pathology , Adelaide , SA , Australia
| | - Andrew Lawrence
- c Microbiology and Infectious Diseases Directorate , SA Pathology , Adelaide , SA , Australia
| | - Lex E X Leong
- d South Australian Health & Medical Research Institute (SAHMRI) , Adelaide , SA , Australia
| | - Thomas Sullivan
- e School of Public Health , The University of Adelaide , Adelaide , SA , Australia
| | - Geraint B Rogers
- d South Australian Health & Medical Research Institute (SAHMRI) , Adelaide , SA , Australia
| | - Ross M Andrews
- f Menzies School of Health Research , Charles Darwin University , Darwin , Northern Territory , Australia.,g National Centre for Epidemiology & Population Health , Australian National University , Canberra , Australian Capital Territory , Australia
| | - Helen S Marshall
- a Vaccinology and Immunology Research Trials Unit , Women's and Children's Health Network , Adelaide , SA , Australia.,b Robinson Research Institute and Adelaide Medical School , The University of Adelaide , Adelaide , SA , Australia
| |
Collapse
|
36
|
Mbaeyi SA, Joseph SJ, Blain A, Wang X, Hariri S, MacNeil JR. Meningococcal Disease Among College-Aged Young Adults: 2014-2016. Pediatrics 2019; 143:peds.2018-2130. [PMID: 30598460 DOI: 10.1542/peds.2018-2130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED : media-1vid110.1542/5839998266001PEDS-VA_2018-2130Video Abstract BACKGROUND: Freshman college students living in residence halls have previously been identified as being at an increased risk for meningococcal disease. In this evaluation, we assess the incidence and characteristics of meningococcal disease in college-aged young adults in the United States. METHODS The incidence and relative risk (RR) of meningococcal disease among college students compared with noncollege students aged 18 to 24 years during 2014-2016 were calculated by using data from the National Notifiable Diseases Surveillance System and enhanced meningococcal disease surveillance. Differences in demographic characteristics and clinical features of meningococcal disease cases were assessed. Available meningococcal isolates were characterized by using slide agglutination, polymerase chain reaction, and whole genome sequencing. RESULTS From 2014 to 2016, 166 cases of meningococcal disease occurred in persons aged 18 to 24 years, with an average annual incidence of 0.17 cases per 100 000 population. Six serogroup B outbreaks were identified on college campuses, accounting for 31.7% of serogroup B cases in college students during this period. The RR of serogroup B meningococcal (MenB) disease in college students versus noncollege students was 3.54 (95% confidence interval: 2.21-5.41), and the RR of serogroups C, W, and Y combined was 0.56 (95% confidence interval: 0.27-1.14). The most common serogroup B clonal complexes identified were CC32/ET-5 and CC41/44 lineage 3. CONCLUSIONS Although the incidence is low, among 18- to 24-year-olds, college students are at an increased risk for sporadic and outbreak-associated MenB disease. Providers, college students, and parents should be aware of the availability of MenB vaccines.
Collapse
Affiliation(s)
- Sarah A Mbaeyi
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sandeep J Joseph
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Amy Blain
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Xin Wang
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Susan Hariri
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R MacNeil
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
37
|
Wang B, Santoreneos R, Afzali H, Giles L, Marshall H. Costs of Invasive Meningococcal Disease: A Global Systematic Review. PHARMACOECONOMICS 2018; 36:1201-1222. [PMID: 29948965 DOI: 10.1007/s40273-018-0679-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Invasive meningococcal disease remains a public health concern because of its rapid onset and significant risk of death and long-term disability. New meningococcal serogroup B and combination serogroup ACWY vaccines are being considered for publicly funded immunization programs in many countries. Contemporary costing data associated with invasive meningococcal disease are required to inform cost-effectiveness analyses. OBJECTIVE The objective of this study was to estimate costs and resource utilization associated with acute infection and the long-term care of invasive meningococcal disease. DATA SOURCES AND METHODS PubMed, EMBASE, The Cochrane Library, health economic databases, and electronically available conference abstracts were searched. Studies reporting any costs associated with acute infection and long-term sequelae of invasive meningococcal disease in English were included. All costs were converted into purchasing power parity-adjusted estimates [international dollars (I$)] using the Campbell and Cochrane Economics Methods Group and the Evidence for Policy and Practice Information and Coordinating Centre cost converter. RESULTS Fourteen studies met our eligibility criteria and were included. The mean costs of acute admission ranged from I$1629 to I$50,796, with an incremental cost of I$16,378. The mean length of hospital stay was reported to be 6-18 days in multiple studies. The average costs reported for readmissions ranged from I$7905 to I$15,908. Key variables such as the presence of sequelae were associated with higher hospitalization costs and longer inpatient stay. No studies estimated direct non-healthcare costs and productivity loss. Ten studies reported only unadjusted mean values without using appropriate statistical methods for adjustment. CONCLUSIONS Invasive meningococcal disease can result in substantial costs to healthcare systems. However, costing data on long-term follow-up and indirect costs used to populate health economic models are lacking.
Collapse
Affiliation(s)
- Bing Wang
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia.
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Hospital, North Adelaide, SA, Australia.
| | | | - Hossein Afzali
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Lynne Giles
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Helen Marshall
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Hospital, North Adelaide, SA, Australia
| |
Collapse
|
38
|
Meningococcal carriage in high-risk settings: A systematic review. Int J Infect Dis 2018; 73:109-117. [DOI: 10.1016/j.ijid.2018.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 11/19/2022] Open
|
39
|
Dretler AW, Rouphael NG, Stephens DS. Progress toward the global control of Neisseria meningitidis: 21st century vaccines, current guidelines, and challenges for future vaccine development. Hum Vaccin Immunother 2018; 14:1146-1160. [PMID: 29543582 PMCID: PMC6067816 DOI: 10.1080/21645515.2018.1451810] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/21/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
The control of meningitis, meningococcemia and other infections caused by Neisseria meningitidis is a significant global health challenge. Substantial progress has occurred in the last twenty years in meningococcal vaccine development and global implementation. Meningococcal protein-polysaccharide conjugate vaccines to serogroups A, C, W, and Y (modeled after the Haemophilus influenzae b conjugate vaccines) provide better duration of protection and immunologic memory, and overcome weak immune responses in infants and young children and hypo-responsive to repeated vaccine doses seen with polysaccharide vaccines. ACWY conjugate vaccines also interfere with transmission and reduce nasopharyngeal colonization, thus resulting in significant herd protection. Advances in serogroup B vaccine development have also occurred using conserved outer membrane proteins with or without OMV as vaccine targets. Challenges for meningococcal vaccine research remain including developing combination vaccines containing ACYW(X) and B, determining the ideal booster schedules for the conjugate and MenB vaccines, and addressing issues of waning effectiveness.
Collapse
Affiliation(s)
- A. W. Dretler
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - N. G. Rouphael
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - D. S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|