1
|
Hema Sayee R, Hosamani M, Krishnaswamy N, Shanmuganathan S, Nagasupreeta SR, Sri Sai Charan M, Sheshagiri G, Gairola V, Basagoudanavar SH, Sreenivasa BP, Bhanuprakash V. Monoclonal antibody based solid phase competition ELISA to detect FMDV serotype A specific antibodies. J Virol Methods 2024; 328:114959. [PMID: 38788979 DOI: 10.1016/j.jviromet.2024.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
In Foot-and-mouth disease (FMD) enzootic countries, periodic vaccination is the key tool in controlling the disease incidence. Active seromonitoring of the vaccinated population is critical to assess the impact of vaccination. Virus neutralization test (VNT) and enzyme-linked immunosorbent assays (ELISA) are commonly used for antibody detection. Assays like liquid phase blocking ELISA (LPBE) or solid phase competition ELISA (SPCE) are preferred as they do not require handling of live FMDV and are routinely used for seromonitoring or for vaccine potency testing; however, false positives are high in LPBE. Here we report, a monoclonal antibody (mAb) based SPCE as a potential alternate assay for antibody titration. From a panel of 12 mAbs against FMDV serotype A, two mAbs were chosen for the development of SPCE. Based on a set of 453 sera, it was demonstrated that mAb 2C4G11, mAb 6E8D11and polyclonal antibody (pAb) based SPCE had a relative sensitivity of 86.1, 86.1 and 80.3 %; and specificity of 99.6, 99.1 and 99.1 %, respectively. The correlation, repeatability, and level of agreement of the assays were high demonstrating the potential use of mAb in large scale surveillance studies and regular vaccine potency testing.
Collapse
Affiliation(s)
- Rajamanickam Hema Sayee
- FMD QC laboratory, ICAR-Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka 560 024, India
| | - Madhusudan Hosamani
- FMD QC laboratory, ICAR-Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka 560 024, India.
| | - Narayanan Krishnaswamy
- FMD QC laboratory, ICAR-Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka 560 024, India
| | - Subramaniyan Shanmuganathan
- FMD QC laboratory, ICAR-Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka 560 024, India
| | - S R Nagasupreeta
- FMD QC laboratory, ICAR-Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka 560 024, India
| | - Manchikanti Sri Sai Charan
- FMD QC laboratory, ICAR-Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka 560 024, India
| | - Ganesh Sheshagiri
- FMD QC laboratory, ICAR-Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka 560 024, India
| | - Vivek Gairola
- FMD QC laboratory, ICAR-Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka 560 024, India
| | - Suresh H Basagoudanavar
- FMD QC laboratory, ICAR-Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka 560 024, India
| | - B P Sreenivasa
- FMD QC laboratory, ICAR-Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka 560 024, India
| | - Veerakyathappa Bhanuprakash
- FMD QC laboratory, ICAR-Indian Veterinary Research Institute, H A Farm, Hebbal, Bengaluru, Karnataka 560 024, India.
| |
Collapse
|
2
|
Sahoo M, Singh R, Kumar P, Kumar Mariappan A, Munnuswamy P, Singh K, Mani S, Dhama K, Kondabattula G, Das T, Thakor JC, Kashyap G, Sahoo NR. Novel pathologic findings and viral antigen distribution in cattle and buffalo calves naturally infected with Foot-and-Mouth disease virus. Vet Q 2023; 43:1-13. [PMID: 37733477 PMCID: PMC10548843 DOI: 10.1080/01652176.2023.2260435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The Foot-and-Mouth disease is highly contagious acute viral disease of livestock inflicting huge economic loss to the farmers. The limited knowledge regarding the pathological lesions vis-a-vis distribution of the FMDV in lesser explored endocrine glands and important vital organs other than the target organs of infected calves prompted us to take the present investigation to have detailed insight into the pathogenesis. The systematic necropsy of 37 dead calves (cattle-28 and buffalo-9) was conducted, and thin representative tissue pieces from the affected organs were collected in 10% neutral buffered formalin (NBF) for pathological and immunohistochemical investigations. The genomic detection and its serotyping were done by RT-PCR and multiplex-PCR, respectively. Necropsy examination in all cases showed myocardial lesions resembling 'tigroid heart appearance'. Other organ specific lesions include vesiculo-ulcerative stomatitis, edema of the lungs, petechial hemorrhages, edema of the endocrines, and gastroenteritis. Histopathological examination showed varying sizes of vesicles and ulcerations in stratified squamous epithelium of the tongue, acute necrotizing myocarditis, lymphoid depletion in lymphoid tissues, hepatitis, pancreatitis, thymic hyperplasia, thyroiditis, adrenitis, and enteritis. Positive immunolabeling for viral antigens was observed in endocrine glands, lymphoid organs, lungs, liver, kidneys, and intestine, in addition to other typical locations. The thyroid, adrenal glands, and pancreas, in addition to the tongue and heart, are the tissue of choice for sampling in the field during epidemics. Further, the viral genome and serotype A was confirmed in the affected tissues. This study provides insights into novel tissue tropism and pathogenesis in young calves naturally infected with FMDV.
Collapse
Affiliation(s)
- Monalisa Sahoo
- ICAR-National Institute on Foot-and-Mouth Disease (NIFMD), Bhubaneswar, India
- Division of Pathology, ICAR- Indian veterinary Research Institute (IVRI), Izatnagar, India
| | - Rajendra Singh
- Veterinary Pathology, Institute of Veterinary Science and Animal Husbandry, Siksha "O" Anusandhan, Bhubaneswar, India
| | - Pawan Kumar
- Division of Pathology, ICAR- Indian veterinary Research Institute (IVRI), Izatnagar, India
| | - Asok Kumar Mariappan
- Division of Pathology, ICAR- Indian veterinary Research Institute (IVRI), Izatnagar, India
| | - Palanivelu Munnuswamy
- Division of Pathology, ICAR- Indian veterinary Research Institute (IVRI), Izatnagar, India
| | - Karampal Singh
- CADRAD, ICAR- Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Saminathan Mani
- CADRAD, ICAR- Indian Veterinary Research Institute (IVRI), Izatnagar, India
| | - Kuldeep Dhama
- Veterinary Pathology, Institute of Veterinary Science and Animal Husbandry, Siksha "O" Anusandhan, Bhubaneswar, India
| | - Ganesh Kondabattula
- Quality control & Quality Assurance unit, ICAR-Indian Veterinary Research Institute (IVRI), Hebbal, India
| | - Tareni Das
- ICAR-National Institute on Foot-and-Mouth Disease (NIFMD), Bhubaneswar, India
| | | | - Gayatri Kashyap
- Division of Pathology, ICAR- Indian veterinary Research Institute (IVRI), Izatnagar, India
| | - Nihar Ranjan Sahoo
- ICAR-National Institute on Foot-and-Mouth Disease (NIFMD), Bhubaneswar, India
| |
Collapse
|
3
|
Mohapatra JK, Dahiya SS, Subramaniam S, Rout M, Biswal JK, Giri P, Nayak V, Singh RP. Emergence of a novel genetic lineage 'A/ASIA/G-18/2019' of foot and mouth disease virus serotype A in India: A challenge to reckon with. Virus Res 2023; 333:199140. [PMID: 37268276 PMCID: PMC10352718 DOI: 10.1016/j.virusres.2023.199140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Foot and mouth disease (FMD) has engendered large scale socioeconomic crises on numerous occasions owing to its extreme contagiousness, transboundary nature, complicated epidemiology, negative impact on productivity, trade embargo, and need for intensive surveillance and expensive control measures. Emerging FMD virus variants have been predicted to have originated and spread from endemic Pool 2, native to South Asia, to other parts of the globe. In this study, 26 Indian serotype A isolates sampled between the year 2015 and 2022 were sequenced for the VP1 region. BLAST and maximum likelihood phylogeny suggest emergence of a novel genetic group within genotype 18, named here as 'A/ASIA/G-18/2019' lineage, that is restricted so far only to India and its eastern neighbour, Bangladesh. The lineage subsequent to its first appearance in 2019 seems to have displaced all other prevalent strains, in support of the phenomenon of 'genotype/lineage turnover'. It has diversified into two distinct sub-clusters, reflecting a phase of active evolution. The rate of evolution of the VP1 region for the Indian serotype A dataset was estimated to be 6.747 × 10-3 substitutions/site/year. India is implementing a vaccination centric FMD control programme. The novel lineage showed good antigenic match with the proposed vaccine candidate A IND 27/2011 when tested in virus neutralization test, while the existing vaccine strain A IND 40/2000 showed homology with only 31% of the isolates. Therefore, in order to combat this challenge of antigenic divergence, A IND 27/2011 could be the preferred strain in the Indian vaccine formulations.
Collapse
Affiliation(s)
- Jajati Keshari Mohapatra
- ICAR-National Institute on Foot and Mouth Disease, International Centre for FMD, Arugul, Bhubaneswar 752050, Odisha, India.
| | - Shyam Singh Dahiya
- ICAR-National Institute on Foot and Mouth Disease, International Centre for FMD, Arugul, Bhubaneswar 752050, Odisha, India
| | - Saravanan Subramaniam
- ICAR-National Institute on Foot and Mouth Disease, International Centre for FMD, Arugul, Bhubaneswar 752050, Odisha, India
| | - Manoranjan Rout
- ICAR-National Institute on Foot and Mouth Disease, International Centre for FMD, Arugul, Bhubaneswar 752050, Odisha, India
| | - Jitendra Kumar Biswal
- ICAR-National Institute on Foot and Mouth Disease, International Centre for FMD, Arugul, Bhubaneswar 752050, Odisha, India
| | - Priyabrata Giri
- ICAR-National Institute on Foot and Mouth Disease, International Centre for FMD, Arugul, Bhubaneswar 752050, Odisha, India
| | - Vinayak Nayak
- ICAR-National Institute on Foot and Mouth Disease, International Centre for FMD, Arugul, Bhubaneswar 752050, Odisha, India
| | - Rabindra Prasad Singh
- ICAR-National Institute on Foot and Mouth Disease, International Centre for FMD, Arugul, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
4
|
Subramaniam S, Mohapatra JK, Sahoo NR, Sahoo AP, Dahiya SS, Rout M, Biswal JK, Ashok KS, Mallick S, Ranjan R, Jana C, Singh RP. Foot-and-mouth disease status in India during the second decade of the twenty-first century (2011-2020). Vet Res Commun 2022; 46:1011-1022. [PMID: 36190601 PMCID: PMC9527732 DOI: 10.1007/s11259-022-10010-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022]
Abstract
Foot-and-mouth disease (FMD) is a major disease of livestock in India and causes huge economic losses. The formal FMD control program started in 2003–04 in selected districts and was gradually expanded. The present study provides a descriptive review of the FMD outbreaks, prevalent serotypes, and genetic and antigenic features of the FMD virus (FMDV) that circulated in the country between 2011 and 2020. FMD outbreaks were regularly reported in cloven-hoofed domestic livestock and wildlife, with three serotypes including O, A, and Asia1. During the study period, a total of 2226 FMD outbreaks were documented and serotypes confirmed. FMDV serotype O dominated the outbreak scenario, accounting for about 92% of all outbreaks, followed by Asia1 (5% of all outbreaks) and A (3% of all outbreaks). Two major epidemics of FMD on an unprecedented scale during the years 2013 and 2018 by serotype O were recorded. The spatial distribution of FMD was characterized by a larger number of outbreaks in the southern region of the country. In an annual-scale analysis, 2020 was the year with the lowest outbreaks, and 2013 was the year with the highest. The month-scale analysis showed that outbreaks were reported throughout the year, with the highest numbers between October and March. The emergence of three major lineages (O/ME-SA/Ind2001d, O/ME-SA/Ind2001e, and O/ME-SA/Ind2018) of serotype O was observed during the period. In the cases of serotype A and Asia1, the appearance of at least one novel lineage/genetic group, including A/G-18/non-deletion/2019 and Asia1/Group-IX, was documented. While serotype A showed the advent of antigenic variants, serotypes O and Asia1 did not show any antigenic diversity. It was noticed during the course of an outbreak that animal movement contributes significantly to disease transmission. Except for 2018, when numerous FMD outbreaks were recorded, the number of annual outbreaks reported after 2016 has been lower than in the first half of the decade, probably due to mass vaccination and COVID-19 pandemic-linked movement restrictions. Even during outbreaks, disease symptoms in ruminant populations, including cattle, were found to be less severe. Regular six-monthly immunization certainly has a positive impact on the reduction of disease burden and should be followed without fail and delay, along with intensive disease surveillance.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Jajati Keshari Mohapatra
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Nihar Ranjan Sahoo
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Aditya Prasad Sahoo
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Shyam Singh Dahiya
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Manoranjan Rout
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Jitendra Kumar Biswal
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Khulape Sagar Ashok
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Smrutirekha Mallick
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Rajeev Ranjan
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Chandrakanta Jana
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India
| | - Rabindra Prasad Singh
- ICAR-Directorate of Foot-and-Mouth Disease, International Centre for FMD, Bhubaneswar, Khordha, Odisha, 752050, India.
| |
Collapse
|
5
|
Beeragere Parameshwaraiah S, Mohapatra JK, Jumanal V, Valia Valappil D, Subramaniam S, Patel BHM, Basagoudanavar SH, Hosamani M, Pattnaik B, Singh RK, Sanyal A. Assessment of fitness of foot-and-mouth disease virus A IND 27/2011 as candidate vaccine strain. Transbound Emerg Dis 2021; 69:2996-3000. [PMID: 34033238 DOI: 10.1111/tbed.14166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
Antigenic profiling of recent field outbreak strains of foot-and-mouth disease virus (FMDV) serotype A in India has revealed considerable antigenic drift from the vaccine strain, A IND 40/2000, necessitating the selection of a new strain. The complete genome sequence of A IND 27/2011 was analysed. Vaccine quality attributes of the new candidate strain including potency as an inactivated vaccine in cattle were evaluated. The capsid coding region of A IND 27/2011 showed variation at eight antigenically critical amino acid positions from that of A IND 40/2000. The strain suited well with traits required by a vaccine in terms of its adaptability to adherent and suspension cell line, its immunogenicity, and potency as an inactivated vaccine formulation in cattle. Complete protection was observed upon homologous virus challenge at 4 weeks post-vaccination. Taken together, these data demonstrate the suitability of A IND 27/2011 as an effective vaccine strain of FMDV serotype A.
Collapse
Affiliation(s)
| | | | - Veena Jumanal
- ICAR-Indian Veterinary Research Institute, Bengaluru, India
| | | | | | | | | | | | | | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute, Bengaluru, India.,ICAR-Directorate of Foot and Mouth Disease, Mukteswar, India
| | - Aniket Sanyal
- ICAR-Indian Veterinary Research Institute, Bengaluru, India
| |
Collapse
|
6
|
Islam MR, Rahman MS, Amin MA, Alam ASMRU, Siddique MA, Sultana M, Hossain MA. Evidence of combined effect of amino acid substitutions within G-H and B-C loops of VP1 conferring serological heterogeneity in foot-and-mouth disease virus serotype A. Transbound Emerg Dis 2020; 68:375-384. [PMID: 32543041 DOI: 10.1111/tbed.13687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/04/2020] [Accepted: 06/06/2020] [Indexed: 11/27/2022]
Abstract
Foot-and-mouth disease virus (FMDV) serotype A exhibits a higher degree of genetic and antigenic diversity resulting in frequent vaccine failure due to serological mismatch between the vaccine and heterologous strains. Currently, knowledge on the molecular basis of antigenic relationships among the FMDVs is limited; nevertheless, intratype antigenic variation due to mutation(s) is widely considered as the main hurdle to appropriate FMD vaccine development. Here, we studied genetic and antigenic variations of four FMDV serotype A isolates, BAN/GA/Sa-197/2013 (BAN-197), BAN/CH/Sa-304/2016 (BAN-304), BAN/DH/Sa-307/2016 (BAN-307) and BAN/DH/Sa-310/2017 (BAN-310) circulating in Bangladesh during 2013-2017. Initially, antigenic relationships (r1 -values) of the field isolates were evaluated by the two-dimensional microneutralization test (2D-MNT) using the hyperimmune antisera raised in cattle against the vaccine strain, BAN-304. Interesingly, the results showed protective serological cross-reactivity (r1 -values > 0.4) between the vaccine strain and the field isolates, BAN-307 and BAN-310, except BAN-197 that substantially mismatched (r1 = 0.129 ± 0.043) with the BAN-304. Although VP1-based phylogeny grouped all the isolates within the same sublineage C (a subgroup of VP3Δ59 variant) under the lineage A/ASIA/G-VII, strikingly, computational analyses of the viral capsid proteins demonstrated significant deviation at the VP1 G-H loop of BAN-197 from the vaccine strain, while VP(2-4) of both isolates were structurally conserved. To bridge the gap of how the distortion of the G-H loop and consequent antigenic hetergeneity occurred in BAN-197, we performed in silico combinatorial substitutions of the VP1 mutant amino acids (aa) of BAN-197 with the respective residues in BAN-304. Remarkably, our analyses revealed that two substitutions of distantly located aa at B-C (T48I:threonine → isoleucine) and G-H (A143V:alanine → valine) loops, in combination, distorted the VP1 G-H loop. Overall, this work contributes to understanding the molecular basis of antigenic relationships operating in serotype A FMDVs and the selection of suitable vaccine strain(s) for effective prophylaxis of FMD based on VP1-based analyses.
Collapse
Affiliation(s)
- M Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | - Md Al Amin
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - A S M Rubayet Ul Alam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Department of Microbiology, Jashore University of Science and Technology, Khulna, Bangladesh
| | - Mohammad Anwar Siddique
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Jashore University of Science and Technology, Khulna, Bangladesh
| |
Collapse
|
7
|
Foot-and-Mouth Disease Virus: Immunobiology, Advances in Vaccines and Vaccination Strategies Addressing Vaccine Failures-An Indian Perspective. Vaccines (Basel) 2019; 7:vaccines7030090. [PMID: 31426368 PMCID: PMC6789522 DOI: 10.3390/vaccines7030090] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
A mass vaccination campaign in India seeks to control and eventually eradicate foot-and-mouth disease (FMD). Biosanitary measures along with FMD monitoring are being conducted along with vaccination. The implementation of the FMD control program has drastically reduced the incidence of FMD. However, cases are still reported, even in regions where vaccination is carried out regularly. Control of FMD outbreaks is difficult when the virus remains in circulation in the vaccinated population. Various FMD risk factors have been identified that are responsible for FMD in vaccinated areas. The factors are discussed along with strategies to address these challenges. The current chemically inactivated trivalent vaccine formulation containing strains of serotype O, A, and Asia 1 has limitations including thermolability and induction of only short-term immunity. Advantages and disadvantages of several new-generation alternate vaccine formulations are discussed. It is unfeasible to study every incidence of FMD in vaccinated animals/areas in such a big country as India with its huge livestock population. However, at the same time, it is absolutely necessary to identify the precise reason for vaccination failure. Failure to vaccinate is one reason for the occurrence of FMD in vaccinated areas. FMD epidemiology, emerging and re-emerging virus strains, and serological status over the past 10 years are discussed to understand the impact of vaccination and incidences of vaccination failure in India. Other factors that are important in vaccination failure that we discuss include disrupted herd immunity, health status of animals, FMD carrier status, and FMD prevalence in other species. Recommendations to boost the search of alternate vaccine formulation, strengthen the veterinary infrastructure, bolster the real-time monitoring of FMD, as well as a detailed investigation and documentation of every case of vaccination failure are provided with the goal of refining the control program.
Collapse
|
8
|
Paton DJ, Reeve R, Capozzo AV, Ludi A. Estimating the protection afforded by foot-and-mouth disease vaccines in the laboratory. Vaccine 2019; 37:5515-5524. [PMID: 31405637 DOI: 10.1016/j.vaccine.2019.07.102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Foot-and-mouth disease (FMD) vaccines must be carefully selected and their application closely monitored to optimise their effectiveness. This review covers serological techniques for FMD vaccine quality control, including potency testing, vaccine matching and post-vaccination monitoring. It also discusses alternative laboratory procedures, such as antigen quantification and nucleotide sequencing, and briefly compares the approaches for FMD with those for measuring protection against influenza virus, where humoral immunity is also important. Serology is widely used to predict the protection afforded by vaccines and has great practical utility but also limitations. Animals differ in their responses to vaccines and in the protective mechanisms that they develop. Antibodies have a variety of properties and tests differ in what they measure. Antibody-virus interactions may vary between virus serotypes and strains and protection may be affected by the vaccination regime and the nature and timing of field virus challenge. Finally, tests employing biological reagents are difficult to standardise, whilst cross-protection data needed for test calibration and validation are scarce. All of this is difficult to reconcile with the desire for simple and universal criteria and thresholds for evaluating vaccines and vaccination responses and means that oversimplification of test procedures and their interpretation can lead to poor predictions. A holistic approach is therefore recommended, considering multiple sources of field, experimental and laboratory data. New antibody avidity and isotype tests seem promising alternatives to evaluate cross-protective, post-vaccination serological responses, taking account of vaccine potency as well as match. After choosing appropriate serological tests or test combinations and cut-offs, results should be interpreted cautiously and in context. Since opportunities for experimental challenge studies of cross-protection are limited and the approaches incompletely reflect real life, more field studies are needed to quantify cross-protection and its correlation to in vitro measurements.
Collapse
Affiliation(s)
- D J Paton
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.
| | - R Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - A V Capozzo
- Instituto de Virología, CICVyA, INTA, N Repetto y De Los Reseros s/n, Hurlingham (1686), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Godoy Cruz 2290 (C1454FQB), Buenos Aires, Argentina
| | - A Ludi
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
9
|
Ali MZ, Islam E, Giasuddin M. Outbreak investigation, molecular detection, and characterization of foot and mouth disease virus in the Southern part of Bangladesh. J Adv Vet Anim Res 2019; 6:346-354. [PMID: 31583231 PMCID: PMC6760506 DOI: 10.5455/javar.2019.f353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 11/12/2022] Open
Abstract
Objective: The objective of the study was to investigate Foot and Mouth Disease virus (FMDV) outbreak in cattle in the Sarankhola Upazila under Bagerhat district of Bangladesh with isolation, identification, and molecular characterization of FMDV during April 2018. Materials and Methods: This Upazila is located at southern border of Bangladesh and surrounded by mangrove forest Sundarban. The outbreak investigation team collected epidemiological data from outbreak location. In addition, the team collected a total of 30 (15 calves, 15 adult) tongue epithelial tissue samples from a clinically FMD-affected cattle. The confirmation of FMDV and its three serotypes (A, O, and Asia-1) was performed by Reverse Transcriptase Polymerase Chain Reaction (RT-PCR). An amplified product of the VP1 region of FMDV genome was sequenced by Sanger sequencing method after cultivation and reconfirmation of FMDV into the BHK21 cell line. Genetic variability was studied by constructing a phylogenetic tree. Results: The investigation survey was carried out in overall 8,393 (8,393/15,580; 53.89%) cases including 3,050 (3,050/8,393; 36.34%) cases in calf and 5,343 (5,343/8,393; 59.77%) cases in adult cattle. The overall case fatality rate (CFR) was recorded as 2.27% (354/15,580) with significantly highest CFR in the calf (71.46%; 253/354) compared to an adult. The collected all 30 samples found with FMDV positive and mixed infection of all samples with serotype Asia-1 and serotype O were observed. In BHK 21 cell line, the eight FMDV positive samples showed a typical cytopathic effect during the third passage. Finally, DNA sequence data of two isolates found closely related with the isolates of bordering country India and Myanmar. Conclusion: The investigation identified the risk factors involved in an outbreak of FMDV, namely, sharing the common paddy land after harvesting, no FMD vaccination, the interaction between cattle and wildlife, and cross bordering movement.
Collapse
Affiliation(s)
- Md Zulfekar Ali
- Animal Health Research Division, Bangladesh Livestock Research Institute (BLRI), Dhaka, Bangladesh
| | - Eusha Islam
- Animal Health Research Division, Bangladesh Livestock Research Institute (BLRI), Dhaka, Bangladesh
| | - Md Giasuddin
- Animal Health Research Division, Bangladesh Livestock Research Institute (BLRI), Dhaka, Bangladesh.,Research on FMD and PPR in Bangladesh, Bangladesh Livestock Research Institute (BLRI), Dhaka, Bangladesh
| |
Collapse
|