1
|
Jia X, Deng JZ, Winters MA, Paulines MJ, Tong W, Cannon E, Biba M, Zhuang P. Characterization of pneumococcal conjugates in vaccine process development by multi-detection hydrodynamic chromatography. J Pharm Biomed Anal 2025; 261:116826. [PMID: 40121703 DOI: 10.1016/j.jpba.2025.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Pneumococcal conjugate vaccines (PCVs) are developed by conjugating pneumococcal polysaccharides to a carrier protein, such as CRM197. Size and molecular weight are important attributes of each monovalent conjugate in a PCV, making accurate monitoring of molecular weights crucial during the conjugation process. While size-exclusion chromatography (SEC) coupled with multi-angle light scattering (MALS), refractive index (RI), and ultraviolet (UV) detectors (SEC-MALS) is the gold standard used for absolute molecular weight characterization, this study presents the development of a multi-detection (MALS, UV and RI) hydrodynamic chromatography (HDC-MALS) method and its utility for comprehensive PCV characterization. The optimized HDC-MALS method is employed for in-depth understanding of vaccine conjugation process and effective characterization of heterogeneous, large conjugates through granular molar mass distribution analysis. Compared to other mild separation techniques such as field flow fractionation (FFF), HDC allows for high mobile phase flow rates without compromising separation efficiency, enabling faster run times that meet the demands of in-process control with rapid turn-around times.
Collapse
Affiliation(s)
- Xiujuan Jia
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, USA.
| | - James Z Deng
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Michael A Winters
- Process Research & Development, Merck & Co., Inc., West Point, PA, USA
| | | | - Weidong Tong
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Erin Cannon
- Vaccine Drug Product Development, Merck & Co., Inc., West Point, PA, USA
| | - Mirlinda Biba
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Ping Zhuang
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
2
|
Khoramabadi N, Doust RH, Mobarez AM, Shapouri R. Immunization of BALB/c mice with detoxified lipopolysaccharide and hydrolytic O-polysaccharide from Brucella melitensis either in combination with or conjugated to tetanus toxoid, enhances protective immune responses against the pathogen. Comp Immunol Microbiol Infect Dis 2025; 121:102357. [PMID: 40383101 DOI: 10.1016/j.cimid.2025.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Lipopolysaccharide (LPS) is the major surface antigen of Brucella, an intracellular pathogen that causes brucellosis in both animals and humans. A deeper understanding of the immune responses elicited by this key antigen may offer valuable insights for the development of effective vaccines for use in both humans and animals. In this study, detoxified LPS (d-LPS) and hydrolytic O-polysaccharide (OPS) from B. melitensis were prepared and separately conjugated to tetanus toxoid (TT) as a carrier protein. The resulting conjugates, d-LPS-TT and OPS-TT, as well as mixture of d-LPS+TT and OPS+TT, were used to immunize separate groups of BALB/c mice. The conjugated antigens induced significant IgG2a-specific serum responses targeting the polysaccharide components. Furthermore, mice immunized with d-LPS-TT and OPS-TT demonstrated elevated levels of IL-12 and IFN-γ following intraperitoneal challenge with B. melitensis 16 M. Notably, the strongest protective immune responses were observed in mice receiving the d-LPS-TT. Most previous studies have attributed protective responses primarily to specific serum antibodies. Although antibodies against Brucella polysaccharides typically associated with T-helper 2 (Th2) type responses, develop during infection, they are insufficient to eliminate the intracellular pathogen from the host. While the precise mechanism remain to be fully elucidated, our findings suggest that immunization with covalently conjugated polysaccharide antigens may promote T-helper 1(Th1) type cellular immunity, which appear to play a more pivotal role in protection against B. melitensis.
Collapse
Affiliation(s)
- Nima Khoramabadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Hosseini Doust
- Department of Medical Microbiology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Shapouri
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
3
|
Beresford NJ, De Benedetto G, Lockyer K, Gao F, Burkin K, Lalwani K, Bolgiano B. Further Insights into the Measurement of Free Polysaccharide in Meningococcal Conjugate Vaccines. Vaccines (Basel) 2025; 13:167. [PMID: 40006714 PMCID: PMC11861164 DOI: 10.3390/vaccines13020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives: The purpose of this study was to further characterize the ultrafiltration (UF) method for determining free saccharide levels in glycoconjugate vaccines and compare it with other methods used for the determination of free saccharide levels in meningococcal glycoconjugate vaccines. Methods: We performed experiments on both meningococcal glycoconjugates and capsular polysaccharides, and compared UF, deoxycholate (DOC) precipitation, and solid-phase extraction (SPE) methods. Meningococcal capsular polysaccharides from groups A (MenA), C (MenC), and W (MenW) were depolymerized and characterized using SEC-MALS (size-exclusion chromatography with multi-angle laser light scattering) to determine the molecular weight and hydrodynamic size and then subjected to UF. The free saccharide content was quantified using HPAEC-PAD (high-performance anion-exchange chromatography with pulsed amperometric detection). Results: The characterization of size-reduced group C polysaccharide revealed weight-average molecular mass (Mw) ranging from 22,200 g/mol to 287,300 g/mol and hydrodynamic radii of 3.7 to 19.5 nm. Pore size studies confirmed that polysaccharides with diameters up to 15 nm filtered through the 100 kDa cellulose membrane. The smallest PS fragment tested (22,200 g/mol, 7.4 nm diameter) was partially recovered from the 30 kDa membrane. For MenC-CRM197, DOC yielded the lowest free saccharide content (<1%), UF gave moderate results (7-8%), and SPE showed the highest and most variable values (up to 15%). For MenA- and MenW-CRM197, UF and DOC consistently provided low free saccharide levels (<2% and 3-11%, respectively). Conclusions: The upper limits on the size of free group C meningococcal polysaccharides that can be ultrafiltered were assessed. Differences in the relative amount of free saccharide were observed between various methods used to control meningococcal conjugate vaccines.
Collapse
Affiliation(s)
- Nicola J. Beresford
- Science, Research and Innovation Division, Medicines and Healthcare Products Regulatory Agency, South Mimms EN6 3QG, UK; (G.D.B.); (K.L.); (F.G.); (K.L.)
| | | | | | | | | | | | - Barbara Bolgiano
- Science, Research and Innovation Division, Medicines and Healthcare Products Regulatory Agency, South Mimms EN6 3QG, UK; (G.D.B.); (K.L.); (F.G.); (K.L.)
| |
Collapse
|
4
|
Khakhum N, Baruch-Torres N, Stockton JL, Chapartegui-González I, Badten AJ, Adam A, Wang T, Huerta-Saquero A, Yin YW, Torres AG. Decoration of Burkholderia Hcp1 protein to virus-like particles as a vaccine delivery platform. Infect Immun 2024; 92:e0001924. [PMID: 38353543 PMCID: PMC10929448 DOI: 10.1128/iai.00019-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024] Open
Abstract
Virus-like particles (VLPs) are protein-based nanoparticles frequently used as carriers in conjugate vaccine platforms. VLPs have been used to display foreign antigens for vaccination and to deliver immunotherapy against diseases. Hemolysin-coregulated proteins 1 (Hcp1) is a protein component of the Burkholderia type 6 secretion system, which participates in intracellular invasion and dissemination. This protein has been reported as a protective antigen and is used in multiple vaccine candidates with various platforms against melioidosis, a severe infectious disease caused by the intracellular pathogen Burkholderia pseudomallei. In this study, we used P22 VLPs as a surface platform for decoration with Hcp1 using chemical conjugation. C57BL/6 mice were intranasally immunized with three doses of either PBS, VLPs, or conjugated Hcp1-VLPs. Immunization with Hcp1-VLPs formulation induced Hcp1-specific IgG, IgG1, IgG2c, and IgA antibody responses. Furthermore, the serum from Hcp1-VLPs immunized mice enhanced the bacterial uptake and opsonophagocytosis by macrophages in the presence of complement. This study demonstrated an alternative strategy to develop a VLPs-based vaccine platform against Burkholderia species.
Collapse
Affiliation(s)
- Nittaya Khakhum
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Noe Baruch-Torres
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, Galveston, Texas, USA
| | - Jacob L. Stockton
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, Galveston, Texas, USA
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alejandro Huerta-Saquero
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Y. Whitney Yin
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
5
|
Optimization of the Process for Preparing Bivalent Polysaccharide Conjugates to Develop Multivalent Conjugate Vaccines against Streptococcus pneumoniae or Neisseria meningitidis and Comparison with the Corresponding Licensed Vaccines in Animal Models. Curr Med Sci 2023; 43:22-34. [PMID: 36680685 PMCID: PMC9862236 DOI: 10.1007/s11596-022-2652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/07/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study aimed to describe, optimize and evaluate a method for preparing multivalent conjugate vaccines by simultaneous conjugation of two different bacterial capsular polysaccharides (CPs) with tetanus toxoid (TT) as bivalent conjugates. METHODS Different molecular weights (MWs) of polysaccharides, activating agents and capsular polysaccharide/protein (CP/Pro) ratio that may influence conjugation and immunogenicity were investigated and optimized to prepare the bivalent conjugate bulk. Using the described method and optimized parameters, a 20-valent pneumococcal conjugate vaccine and a bivalent meningococcal vaccine were developed and their effectiveness was compared to that of corresponding licensed vaccines in rabbit or mouse models. RESULTS The immunogenicity test revealed that polysaccharides with lower MWs were better for Pn1-TT-Pn3 and MenA-TT-MenC, while higher MWs were superior for Pn4-TT-Pn14, Pn6A-TT-Pn6B, Pn7F-TT-Pn23F and Pn8-TT-Pn11A. For activating polysaccharides, 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) was superior to cyanogen bromide (CNBr), but for Pn1, Pn3 and MenC, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC) was the most suitable option. For Pn6A-TT-Pn6B and Pn8-TT-Pn11A, rabbits immunized with bivalent conjugates with lower CP/Pro ratios showed significantly stronger CP-specific antibody responses, while for Pn4-TT-Pn14, higher CP/Pro ratio was better. Instead of interfering with the respective immunological activity, our bivalent conjugates usually induced higher IgG titers than their monovalent counterparts. CONCLUSION The result indicated that the described conjugation technique was feasible and efficacious to prepare glycoconjugate vaccines, laying a solid foundation for developing extended-valent multivalent or combined conjugate vaccines without potentially decreased immune function.
Collapse
|
6
|
Deng JZ, Lin J, Chen M, Lancaster C, Zhuang P. Characterization of High Molecular Weight Pneumococcal Conjugate by SEC-MALS and AF4-MALS. Polymers (Basel) 2022; 14:3769. [PMID: 36145915 PMCID: PMC9501040 DOI: 10.3390/polym14183769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Infections by Streptococcus pneumoniae can cause serious pneumococcal diseases and other medical complications among patients. Polysaccharide-based vaccines have been successfully developed as prophylactic agents against such deadly bacterial infections. In the 1980s, PNEUMOVAX® 23 were introduced as the first pneumococcal polysaccharide vaccines (PPSV). Later, pneumococcal polysaccharides were conjugated to a carrier protein to improve immune responses. Pneumococcal conjugate vaccines (PCV) such as PREVNAR® and VAXNEUVANCE™ have been developed. Of the more than 90 pneumococcal bacteria serotypes, serotype 1 (ST-1) and serotype 4 (ST-4) are the two main types that cause invasive pneumococcal diseases (IPD) that could lead to morbidity and mortality. Development of a novel multi-valent PCV against these serotypes requires extensive biophysical and biochemical characterizations of each monovalent conjugate (MVC) in the vaccine. To understand and characterize these high molecular weight (Mw) polysaccharide protein conjugates, we employed the multi-angle light scattering (MALS) technique coupled with size-exclusion chromatography (SEC) separation and asymmetrical flow field flow fractionation (AF4). MALS analysis of MVCs from the two orthogonal separation mechanisms helps shed light on the heterogeneity in conformation and aggregation states of each conjugate.
Collapse
Affiliation(s)
- James Z. Deng
- Vaccine Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Jason Lin
- Wyatt Technology Corporation, Goleta, CA 93117, USA
| | | | - Catherine Lancaster
- Vaccine Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Ping Zhuang
- Vaccine Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
7
|
Deng JZ, Lancaster C, Winters MA, Phillips KM, Zhuang P, Ha S. Multi-attribute characterization of pneumococcal conjugate vaccine by Size-exclusion chromatography coupled with UV-MALS-RI detections. Vaccine 2022; 40:1464-1471. [DOI: 10.1016/j.vaccine.2022.01.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
|
8
|
Bazhenova A, Gao F, Bolgiano B, Harding SE. Glycoconjugate vaccines against Salmonella enterica serovars and Shigella species: existing and emerging methods for their analysis. Biophys Rev 2021; 13:221-246. [PMID: 33868505 PMCID: PMC8035613 DOI: 10.1007/s12551-021-00791-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
The global spread of enteric disease, the increasingly limited options for antimicrobial treatment and the need for effective eradication programs have resulted in an increased demand for glycoconjugate enteric vaccines, made with carbohydrate-based membrane components of the pathogen, and their precise characterisation. A set of physico-chemical and immunological tests are employed for complete vaccine characterisation and to ensure their consistency, potency, safety and stability, following the relevant World Health Organization and Pharmacopoeia guidelines. Variable requirements for analytical methods are linked to conjugate structure, carrier protein nature and size and O-acetyl content of polysaccharide. We investigated a key stability-indicating method which measures the percent free saccharide of Salmonella enterica subspecies enterica serovar Typhi capsular polysaccharide, by detergent precipitation, depolymerisation and HPAEC-PAD quantitation. Together with modern computational approaches, a more precise design of glycoconjugates is possible, allowing for improvements in solubility, structural conformation and stability, and immunogenicity of antigens, which may be applicable to a broad spectrum of vaccines. More validation experiments are required to establish the most effective and suitable methods for glycoconjugate analysis to bring uniformity to the existing protocols, although the need for product-specific approaches will apply, especially for the more complex vaccines. An overview of current and emerging analytical approaches for the characterisation of vaccines against Salmonella Typhi and Shigella species is described in this paper. This study should aid the development and licensing of new glycoconjugate vaccines aimed at the prevention of enteric diseases.
Collapse
Affiliation(s)
- Aleksandra Bazhenova
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Fang Gao
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Barbara Bolgiano
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Stephen E. Harding
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
- Museum of Cultural History, University of Oslo, Postboks 6762 St. Olavs plass, 0130 Oslo, Norway
| |
Collapse
|
9
|
Nuriev R, Galvidis I, Burkin M. Immunochemical characteristics of Streptococcus pneumoniae type 3 capsular polysaccharide glycoconjugate constructs correlate with its immunogenicity in mice model. Vaccine 2020; 38:8292-8301. [PMID: 33213929 DOI: 10.1016/j.vaccine.2020.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022]
Abstract
A panel of derivatives were prepared from Streptococcus pneumoniae polysaccharide type 3 (Ps3) modified with adipic acid dihydrazide (ADH). The degree of coupling between Ps3-adh derivatives and diphtheria (DTd) or tetanus (TTd) toxoids was varied by ADH linker loading. A series of Ps3 derivatives and the resultant glycoconjugates (GC) were tested for their immunochemical activity in an ELISA. Antigenic properties of components in GCs were estimated by interaction with serotype-specific and toxin-neutralizing antibodies to confirm the preservation of native protective epitopes both of Ps3 and DTd. After immunization of mice, a correlation was established between immunochemical activity and immunogenicity of these GCs. A correlation model developed for Ps3-DTd conjugates allowed to predict the immunogenicity of similar design Ps3-TTd conjugates based on ELISA testing data. The plausibility of this prediction was confirmed by the test immunization of mice with Ps3-TTds. The proposed immunochemical approach to the assessment and control of native structural and functional antigenic elements in GCs is important for the optimization of vaccine design and is an adequate alternative to extensive physicochemical characterization for assessing immunogenicity.
Collapse
Affiliation(s)
- Rinat Nuriev
- I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064 Russia; I.M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - Inna Galvidis
- I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064 Russia
| | - Maksim Burkin
- I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064 Russia.
| |
Collapse
|