1
|
Liu X, Zhao T, Wang L, Yang Z, Luo C, Li M, Luo H, Sun C, Yan H, Shu Y. A mosaic influenza virus-like particles vaccine provides broad humoral and cellular immune responses against influenza A viruses. NPJ Vaccines 2023; 8:132. [PMID: 37679361 PMCID: PMC10485063 DOI: 10.1038/s41541-023-00728-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
The development of a universal influenza vaccine to elicit broad immune responses is essential in reducing disease burden and pandemic impact. In this study, the mosaic vaccine design strategy and genetic algorithms were utilized to optimize the seasonal influenza A virus (H1N1, H3N2) hemagglutinin (HA) and neuraminidase (NA) antigens, which also contain most potential T-cell epitopes. These mosaic immunogens were then expressed as virus-like particles (VLPs) using the baculovirus expression system. The immunogenicity and protection effectiveness of the mosaic VLPs were compared to the commercial quadrivalent inactivated influenza vaccine (QIV) in the mice model. Strong cross-reactive antibody responses were observed in mice following two doses of vaccination with the mosaic VLPs, with HI titers higher than 40 in 15 of 16 tested strains as opposed to limited cross HI antibody levels with QIV vaccination. After a single vaccination, mice also show a stronger level of cross-reactive antibody responses than the QIV. The QIV vaccinations only elicited NI antibodies to a small number of vaccine strains, and not even strong NI antibodies to its corresponding vaccine components. In contrast, the mosaic VLPs caused robust NI antibodies to all tested seasonal influenza virus vaccine strains. Here, we demonstrated the mosaic vaccines induces stronger cross-reactive antibodies and robust more T-cell responses compared to the QIV. The mosaic VLPs also provided protection against challenges with ancestral influenza A viruses of both H1 and H3 subtypes. These findings indicated that the mosaic VLPs were a promising strategy for developing a broad influenza vaccine in future.
Collapse
Affiliation(s)
- Xuejie Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Tianyi Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Zhuolin Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Minchao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China.
| | - Huacheng Yan
- Center for Disease Control and Prevention of Southern Military Theatre, 510610, Guangzhou, China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China.
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
2
|
Umemoto S, Nakahashi-Ouchida R, Yuki Y, Kurokawa S, Machita T, Uchida Y, Mori H, Yamanoue T, Shibata T, Sawada SI, Ishige K, Hirano T, Fujihashi K, Akiyoshi K, Kurashima Y, Tokuhara D, Ernst PB, Suzuki M, Kiyono H. Cationic-nanogel nasal vaccine containing the ectodomain of RSV-small hydrophobic protein induces protective immunity in rodents. NPJ Vaccines 2023; 8:106. [PMID: 37488116 PMCID: PMC10366164 DOI: 10.1038/s41541-023-00700-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of upper and lower respiratory tract infection, especially in children and the elderly. Various vaccines containing the major transmembrane surface proteins of RSV (proteins F and G) have been tested; however, they have either afforded inadequate protection or are associated with the risk of vaccine-enhanced disease (VED). Recently, F protein-based maternal immunization and vaccines for elderly patients have shown promising results in phase III clinical trials, however, these vaccines have been administered by injection. Here, we examined the potential of using the ectodomain of small hydrophobic protein (SHe), also an RSV transmembrane surface protein, as a nasal vaccine antigen. A vaccine was formulated using our previously developed cationic cholesteryl-group-bearing pullulan nanogel as the delivery system, and SHe was linked in triplicate to pneumococcal surface protein A as a carrier protein. Nasal immunization of mice and cotton rats induced both SHe-specific serum IgG and mucosal IgA antibodies, preventing viral invasion in both the upper and lower respiratory tracts without inducing VED. Moreover, nasal immunization induced greater protective immunity against RSV in the upper respiratory tract than did systemic immunization, suggesting a critical role for mucosal RSV-specific IgA responses in viral elimination at the airway epithelium. Thus, our nasal vaccine induced effective protection against RSV infection in the airway mucosa and is therefore a promising vaccine candidate for further development.
Collapse
Affiliation(s)
- Shingo Umemoto
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
| | - Rika Nakahashi-Ouchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc, Tokyo, Japan
| | - Shiho Kurokawa
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomonori Machita
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Yohei Uchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Hiromi Mori
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuya Ishige
- Biochemicals Division, Yamasa Corporation, Chiba, Japan
| | - Takashi Hirano
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yosuke Kurashima
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daisuke Tokuhara
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Peter B Ernst
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, CA, USA
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Masashi Suzuki
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA.
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan.
- HanaVax Inc, Tokyo, Japan.
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan.
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan.
| |
Collapse
|
3
|
Alhajjat AM, Redden CR, Langereis M, Papastefan ST, Ito JA, Ott KC, Turner LE, Kang HK, Shaaban AF. CD4 and IL-2 mediated NK cell responses after COVID-19 infection and mRNA vaccination in adults. Immunobiology 2023; 228:152304. [PMID: 36508885 PMCID: PMC9683520 DOI: 10.1016/j.imbio.2022.152304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
A detailed understanding of protective immunity against SARS-CoV-2 is incredibly important in fighting the pandemic. Central to protective immunity is the ability of the immune system to recall previous exposures. Although antibody and T cell immunity have gained considerable attention, the contribution of the NK cell compartment to immune recall and protection from SARS-CoV-2 has not been explored. In this study, we investigate the NK cell responses to stimulation with SARS-CoV-2 in previously exposed and non-exposed individuals. We show that NK cells demonstrate an enhanced CD4+ T cell dependent response when re-exposed to SARS-CoV-2 antigen. The enhanced response is dependent on T cells and correlates with the number of SARS-CoV-2 specific CD4 T cells. We find that IL-2 is a critical mediator of NK cell function. These findings suggest that NK cells contribute to the protective responses against SARS-CoV-2 through a cooperation with antigen-specific CD4 T cells and have significant implications on our understanding of protective immunity in SARS-CoV-2.
Collapse
|
4
|
Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022; 13:959379. [PMID: 36052083 PMCID: PMC9424642 DOI: 10.3389/fimmu.2022.959379] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.
Collapse
Affiliation(s)
- Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
- *Correspondence: Isabel Leroux-Roels,
| |
Collapse
|
5
|
Bliss CM, Freyn AW, Caniels TG, Leyva-Grado VH, Nachbagauer R, Sun W, Tan GS, Gillespie VL, McMahon M, Krammer F, Hill AVS, Palese P, Coughlan L. A single-shot adenoviral vaccine provides hemagglutinin stalk-mediated protection against heterosubtypic influenza challenge in mice. Mol Ther 2022; 30:2024-2047. [PMID: 34999208 PMCID: PMC9092311 DOI: 10.1016/j.ymthe.2022.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 11/15/2022] Open
Abstract
Conventional influenza vaccines fail to confer broad protection against diverse influenza A viruses with pandemic potential. Efforts to develop a universal influenza virus vaccine include refocusing immunity towards the highly conserved stalk domain of the influenza virus surface glycoprotein, hemagglutinin (HA). We constructed a non-replicating adenoviral (Ad) vector, encoding a secreted form of H1 HA, to evaluate HA stalk-focused immunity. The Ad5_H1 vaccine was tested in mice for its ability to elicit broad, cross-reactive protection against homologous, heterologous, and heterosubtypic lethal challenge in a single-shot immunization regimen. Ad5_H1 elicited hemagglutination inhibition (HI+) active antibodies (Abs), which conferred 100% sterilizing protection from homologous H1N1 challenge. Furthermore, Ad5_H1 rapidly induced H1-stalk-specific Abs with Fc-mediated effector function activity, in addition to stimulating both CD4+ and CD8+ stalk-specific T cell responses. This phenotype of immunity provided 100% protection from lethal challenge with a head-mismatched, reassortant influenza virus bearing a chimeric HA, cH6/1, in a stalk-mediated manner. Most importantly, 100% protection from mortality following lethal challenge with a heterosubtypic avian influenza virus, H5N1, was observed following a single immunization with Ad5_H1. In conclusion, Ad-based influenza vaccines can elicit significant breadth of protection in naive animals and could be considered for pandemic preparedness and stockpiling.
Collapse
Affiliation(s)
- Carly M Bliss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Alec W Freyn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Tom G Caniels
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Victor H Leyva-Grado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Gene S Tan
- Craig Venter Institute, La Jolla, CA 92037, USA; Division of Infectious Disease, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Virginia L Gillespie
- The Center for Comparative Medicine and Surgery (CCMS) Comparative Pathology Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adrian V S Hill
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
6
|
Cox A, Cevik H, Feldman HA, Canaday LM, Lakes N, Waggoner SN. Targeting natural killer cells to enhance vaccine responses. Trends Pharmacol Sci 2021; 42:789-801. [PMID: 34311992 PMCID: PMC8364504 DOI: 10.1016/j.tips.2021.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/21/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
Vaccination serves as a cornerstone of global health. Successful prevention of infection or disease by vaccines is achieved through elicitation of pathogen-specific antibodies and long-lived memory T cells. However, several microbial threats to human health have proven refractory to past vaccine efforts. These shortcomings have been attributed to either inefficient triggering of memory T and B cell responses or to the unfulfilled need to stimulate non-conventional forms of immunological memory. Natural killer (NK) cells have recently emerged as both key regulators of vaccine-elicited T and B cell responses and as memory cells that contribute to pathogen control. We discuss potential methods to modulate these functions of NK cells to enhance vaccine success.
Collapse
Affiliation(s)
- Andrew Cox
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Hilal Cevik
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Alex Feldman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Laura M Canaday
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nora Lakes
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
The Role of Fc Receptors on the Effectiveness of Therapeutic Monoclonal Antibodies. Int J Mol Sci 2021; 22:ijms22168947. [PMID: 34445651 PMCID: PMC8396266 DOI: 10.3390/ijms22168947] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Since the approval of the first monoclonal antibody (mAb) in 1986, a huge effort has been made to guarantee safety and efficacy of therapeutic mAbs. As of July 2021, 118 mAbs are approved for the European market for a broad range of clinical indications. In order to ensure clinical efficacy and safety aspects, (pre-)clinical experimental approaches evaluate the respective modes of action (MoA). In addition to antigen-specificity including binding affinity and -avidity, MoA comprise Fc-mediated effector functions such as antibody dependent cellular cytotoxicity (ADCC) and the closely related antibody dependent cellular phagocytosis (ADCP). For this reason, a variety of cell-based assays have been established investigating effector functions of therapeutic mAbs with different effector/target-cell combinations and several readouts including Fcγ receptor (FcγR)-mediated lysis, fluorescence, or luminescence. Optimized FcγR-mediated effector functions regarding clinical safety and efficacy are addressed with modification strategies such as point mutations, altered glycosylation patterns, combination of different Fc subclasses (cross isotypes), and Fc-truncation of the mAb. These strategies opened the field for a next generation of therapeutic mAbs. In conclusion, it is of major importance to consider FcγR-mediated effector functions for the efficacy of therapeutic mAbs.
Collapse
|