1
|
Peng R, Wang M, Shahar S, Xiong G, Zhang Q, Pang L, Wang H, Kong X, Li D, Duan Z. Epidemiological, molecular, and evolutionary characteristics of G1P[8] rotavirus in China on the eve of RotaTeq application. Front Cell Infect Microbiol 2024; 14:1453862. [PMID: 39717546 PMCID: PMC11666228 DOI: 10.3389/fcimb.2024.1453862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction This study, conducted in China prior to RotaTeq's launch, examined the epidemiological, molecular, and evolutionary features of the G1P[8] genotype RVA in children admitted with diarrhea, to aid in evaluating its efficacy and impact on G1P[8] RVA in China. Methods Data from the Chinese viral diarrhea surveillance network were collected from January 2016 to December 2018. RVA strains identified as the G1P[8] genotype were subjected to whole-genome sequencing. Neutralizing epitope, amino acid selection pressure, and evolution dynamics analyses on VP7 and VP4 were performed using BioEdit v.7.0.9.0 and PyMOL v.2.5.2, four algorithms (MEME, SLAC, FEL, and FUBAR) in the Datamonkey online software, and the MCMC model in BEAST v. 1.10.4, respectively. Phylogenetic and identity features of 11 genes were assessed by DNAStar and MEGA v.7. Results Results showed that the detection rate of G1P[8] in China from 2016 to 2018 was generally low with significant seasonality. The whole genome of G1P[8] of four 2016 childhood diarrhea specimens was successfully sequenced. Phylogenetic and neutralizing epitope analysis showed that Rotavin-M1 might have better protection on G1P[8] prevalent in China than Rotarix and RotaTeq. Two conserved N-glycosylation sites on VP7 of Chinese G1P[8] might affect the protective effect of the vaccine. Evolution rate and selection pressure analysis identified the possibility of rapidly evolving and adapting to the new environment introduced by vaccines of G1P[8], whereas positive selection specific to VP4 indicated the potential tendency to select for dominant traits. Identity and phylogeny analysis showed that Chinese G1P[8] from before 2018 was generally stable with possible genetic recombination among local strains. Discussion These findings not only are of great significance for predicting the prevalence of G1P [8] in China, but also provide data reference for evaluating rotavirus vaccine efficacy.
Collapse
Affiliation(s)
- Rui Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Biosciences, Faculty of Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Mengxuan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Saleha Shahar
- Department of Biosciences, Faculty of Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Guangping Xiong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lili Pang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangyu Kong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dandi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaojun Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Potgieter RL, Mwangi PN, Mogotsi MT, Uwimana J, Mutesa L, Muganga N, Murenzi D, Tusiyenge L, Seheri ML, Steele AD, Mwenda JM, Nyaga MM. Genomic Analysis of Rwandan G9P[8] Rotavirus Strains Pre- and Post-RotaTeq ® Vaccine Reveals Significant Distinct Sub-Clustering in a Post-Vaccination Cohort. Viruses 2023; 15:2321. [PMID: 38140562 PMCID: PMC10747556 DOI: 10.3390/v15122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Although the introduction of rotavirus vaccines has substantially contributed to the reduction in rotavirus morbidity and mortality, concerns persist about the re-emergence of variant strains that might alter vaccine effectiveness in the long term. The G9 strains re-emerged in Africa during the mid-1990s and have more recently become predominant in some countries, such as Ghana and Zambia. In Rwanda, during the 2011 to 2015 routine surveillance period, G9P[8] persisted during both the pre- and post-vaccine periods. The pre-vaccination cohort was based on the surveillance period of 2011 to 2012, and the post-vaccination cohort was based on the period of 2013 to 2015, excluding 2014. The RotaTeq® vaccine that was first introduced in Rwanda in 2012 is genotypically heterologous to Viral Protein 7 (VP7) G9. This study elucidated the whole genome of Rwandan G9P[8] rotavirus strains pre- and post-RotaTeq® vaccine introduction. Fecal samples from Rwandan children under the age of five years (pre-vaccine n = 23; post-vaccine n = 7), conventionally genotyped and identified as G9P[8], were included. Whole-genome sequencing was then performed using the Illumina® MiSeq platform. Phylogenetic analysis and pair-wise sequence analysis were performed using MEGA6 software. Distinct clustering of three post-vaccination study strains was observed in all 11 gene segments, compared to the other Rwandan G9P[8] study strains. Specific amino acid differences were identified across the gene segments of these three 2015 post-vaccine strains. Important amino acid differences were identified at position N242S in the VP7 genome segment of the three post-vaccine G9 strains compared to the other G9 strains. This substitution occurs at a neutralization epitope site and may slightly affect protein interaction at that position. These findings indicate that the Rwandan G9P[8] strains revealed a distinct sub-clustering pattern among post-vaccination study strains circulating in Rwanda, with changes at neutralization epitopes, which may play a role in neutralization escape from vaccine candidates. This emphasizes the need for continuous whole-genome surveillance to better understand the evolution and epidemiology of the G9P[8] strains post-vaccination.
Collapse
Affiliation(s)
- Robyn-Lee Potgieter
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| | - Peter N. Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| | - Jeannine Uwimana
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Leon Mutesa
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
- Centre for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Narcisse Muganga
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Didier Murenzi
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Lisine Tusiyenge
- Department of Pediatrics, Kigali University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda; (J.U.); (L.M.); (N.M.); (D.M.); (L.T.)
| | - Mapaseka L. Seheri
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (M.L.S.); (A.D.S.)
| | - A. Duncan Steele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; (M.L.S.); (A.D.S.)
| | - Jason M. Mwenda
- World Health Organization, Regional Office for Africa, Brazzaville P.O. Box 06, Congo;
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (R.-L.P.); (P.N.M.); (M.T.M.)
| |
Collapse
|
3
|
Amit LN, John JL, Mori D, Chin AZ, Mosiun AK, Ahmed K. Increase in rotavirus prevalence with the emergence of genotype G9P[8] in replacement of genotype G12P[6] in Sabah, Malaysia. Arch Virol 2023; 168:173. [PMID: 37269384 DOI: 10.1007/s00705-023-05803-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 06/05/2023]
Abstract
Rotaviruses are major causative agents of acute diarrhea in children under 5 years of age in Malaysia. However, a rotavirus vaccine has not been included in the national vaccination program. To date, only two studies have been carried out in the state of Sabah, Malaysia, although children in this state are at risk of diarrheal diseases. Previous studies showed that 16%-17% of cases of diarrhea were caused by rotaviruses and that equine-like G3 rotavirus strains are predominant. Because the prevalence of rotaviruses and their genotype distribution vary over time, this study was conducted at four government healthcare facilities from September 2019 through February 2020. Our study revealed that the proportion of rotavirus diarrhea increased significantly to 37.2% (51/137) after the emergence of the G9P[8] genotype in replacement of the G12P[8] genotype. Although equine-like G3P[8] strains remain the predominant rotaviruses circulating among children, the Sabahan G9P[8] strain belonged to lineage VI and was phylogenetically related to strains from other countries. A comparison of the Sabahan G9 strains with the G9 vaccine strains used in the RotaSiil and Rotavac vaccines revealed several mismatches in neutralizing epitopes, indicating that these vaccines might not be effective in Sabahan children. However, a vaccine trial may be necessary to understand the precise effects of vaccination.
Collapse
Affiliation(s)
- Lia Natasha Amit
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jecelyn Leaslie John
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Daisuke Mori
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Abraham Zefong Chin
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Andau Konodan Mosiun
- Kunak District Health Office, Ministry of Health Malaysia, Kunak, Sabah, Malaysia
| | - Kamruddin Ahmed
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|