1
|
Piesche R, Cazaban C, Frizzo da Silva L, Ramírez-Martínez L, Hufen H, Beer M, Harder T, Grund C. Immunogenicity and Protective Efficacy of Five Vaccines Against Highly Pathogenic Avian Influenza Virus H5N1, Clade 2.3.4.4b, in Fattening Geese. Vaccines (Basel) 2025; 13:399. [PMID: 40333332 PMCID: PMC12031072 DOI: 10.3390/vaccines13040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives: The risk of the introduction of highly pathogenic avian influenza virus (HPAIV) in geese breeding and fattening flocks is heightened due to the necessity of free-range access to grazing grounds. This study aimed to evaluate the safety, immunogenicity, and protective efficacy of five commercial vaccines against HPAIV subtype H5N1 (clade 2.3.4.4b) in subadult fattening geese. Methods: A prime-boost vaccination trial was conducted using five commercial vaccines, including H5 expressing vaccines of novel technology (subunit, vector, RNA) and whole inactivated virus (WIV) vaccines. Based on serological results, one RNA and one WIV vaccine were selected for a homologous challenge experiment. Results: Two vaccines of novel technology (vector, RNA) required a booster dose to raise specific antibodies titers above a threshold of four log2 using a hemagglutination inhibition (HI) assay, whereas a subunit vaccine and two WIV vaccines induced seroconversion after primary vaccination. In the challenge experiment, all unvaccinated control geese succumbed to infection by day four. In contrast, all vaccinated geese that had seroconverted exhibited full clinical protection. Although sterile immunity was not achieved, viral excretion was significantly reduced in the vaccinated groups compared to controls. Conclusions: Vaccination substantially mitigated the impact of HPAIV H5N1, clade 2.3.4.4b infection in geese, greatly improving animal welfare by preventing severe disease. Additionally, there was a significant reduction in viral burden. Further studies are necessary to verify the potential of these vaccines to reduce susceptibility to infection and virus excretion in order to achieve suppression of the between-flock reproduction number to < 1 in geese flocks at high risk of infection.
Collapse
Affiliation(s)
- Ronja Piesche
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, 17493 Greifswald, Germany; (R.P.); (M.B.)
| | | | | | | | - Heike Hufen
- Boehringer Ingelheim Vetmedica GmbH, 55218 Ingelheim am Rhein, Germany;
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, 17493 Greifswald, Germany; (R.P.); (M.B.)
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, 17493 Greifswald, Germany; (R.P.); (M.B.)
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, 17493 Greifswald, Germany; (R.P.); (M.B.)
| |
Collapse
|
2
|
Wang J, Cui J, Li G, Yu L. Research advances in replication-deficient viral vector vaccines. Front Vet Sci 2025; 12:1535328. [PMID: 40098886 PMCID: PMC11911334 DOI: 10.3389/fvets.2025.1535328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
In recent years, replication-deficient viral vector vaccines have attracted much attention in the field of vaccine research and development due to their high safety and immunogenicity. These vaccines use genetic modifications to engineer viral vectors that make them unable to replicate but effective in expressing recombinant proteins and induce immune responses. Currently, replication-deficient adenovirus vectors and poxvirus vectors are widely used in vaccine R&D for a variety of infectious diseases in humans and animals, including AIDS, hepatitis B, pseudorabies, avian influenza, infectious bronchitis in poultry, and foot-and-mouth disease. Replication-deficient viral vaccines have been shown to effectively induce neutralizing antibodies and cellular immune responses, thereby providing effective immune protection. Future development of genetic engineering technology and continuous in-depth research on viral vectors should lead to replication-deficient viral vector platforms that have an essential role in preventing and controlling existing and emerging infectious diseases.
Collapse
Affiliation(s)
- Junna Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jin Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
3
|
Zhang X, Zhang F, Chen N, Cui X, Guo X, Sun Z, Guo P, Liao M, Li X. A Rationally Designed H5 Hemagglutinin Subunit Vaccine Provides Broad-Spectrum Protection against Various H5Nx Highly Pathogenic Avian Influenza Viruses in Chickens. Vaccines (Basel) 2024; 12:932. [PMID: 39204055 PMCID: PMC11359994 DOI: 10.3390/vaccines12080932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
The evolution of the H5 highly pathogenic avian influenza (HPAI) viruses has led to the emergence of distinct groups with genetically similar clusters of hemagglutinin (HA) sequences. In this study, a consensus H5 HA sequence was cloned into the baculovirus expression system. The HA protein was expressed in baculovirus-infected insect cells and utilized as the antigen for the production of an oil emulsion-based H5 avian influenza vaccine (rBacH5Con5Mut). Twenty-one-day-old SPF chickens were immunized with this vaccine and then challenged at 21 days post-vaccination with clade 2.3.2.1, clade 2.3.4.4, and clade 7.2 of H5 HPAI viruses. The sera of vaccinated chickens exhibited high hemagglutination inhibition (HI) titers against the rBacH5 vaccine antigen, while lower HI titers were observed against the different challenge virus H5 hemagglutinins. Furthermore, the rBacH5Con5Mut vaccine provided 100% protection from mortality and clinical signs. Virus isolation results showed that oropharyngeal and cloacal shedding was prevented in 100% of the vaccinated chickens when challenged with clade 2.3.2.1 and clade 2.3.4.4 H5 viruses. When the rBacH5Con5Mut vaccine candidate was administrated at one day of age, 100% protection was demonstrated against the challenge of clade 2.3.4.4 virus at three weeks of age, indicating the potential of this vaccine for hatchery vaccination. Overall, A single immunization of rBacH5Con5Mut vaccine candidate with a consensus HA antigen can protect chickens against different clades of H5 HPAI viruses throughout the rearing period of broiler chickens without a boost, thus fulfilling the criteria for an efficacious broad-spectrum H5 avian influenza vaccine.
Collapse
Affiliation(s)
- Xuxiao Zhang
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| | - Fushou Zhang
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| | - Xiaoping Cui
- Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd, Duluth, GA 30096, USA;
| | - Xiaoqin Guo
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| | - Zhi Sun
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| | - Pengju Guo
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Animal Science and Technology, Zhongkai University of Agricultural and Engineering, Guangzhou 510550, China
| | - Xin Li
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., Taizhou 225300, China; (X.Z.); (F.Z.); (X.G.); (Z.S.); (P.G.)
| |
Collapse
|
4
|
Lee J, Lee CW, Suarez DL, Lee SA, Kim T, Spackman E. Efficacy of commercial recombinant HVT vaccines against a North American clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus in chickens. PLoS One 2024; 19:e0307100. [PMID: 39012858 PMCID: PMC11251577 DOI: 10.1371/journal.pone.0307100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
The outbreak of clade 2.3.4.4b H5 highly pathogenic avian influenza (HPAI) in North America that started in 2021 has increased interest in applying vaccination as a strategy to help control and prevent the disease in poultry. Two commercially available vaccines based on the recombinant herpes virus of turkeys (rHVT) vector were tested against a recent North American clade 2.3.4.4b H5 HPAI virus isolate: A/turkey/Indiana/22-003707-003/2022 H5N1 in specific pathogen free white leghorn (WL) chickens and commercial broiler chickens. One rHVT-H5 vaccine encodes a hemagglutinin (HA) gene designed by the computationally optimized broadly reactive antigen method (COBRA-HVT vaccine). The other encodes an HA gene of a clade 2.2 virus (2.2-HVT vaccine). There was 100% survival of both chicken types COBRA-HVT vaccinated groups and in the 2.2-HVT vaccinated groups there was 94.8% and 90% survival of the WL and broilers respectively. Compared to the 2.2-HVT vaccinated groups, WL in the COBRA-HVT vaccinated group shed significantly lower mean viral titers by the cloacal route and broilers shed significantly lower titers by the oropharyngeal route than broilers. Virus titers detected in oral and cloacal swabs were otherwise similar among both vaccine groups and chicken types. To assess antibody-based tests to identify birds that have been infected after vaccination (DIVA-VI), sera collected after the challenge were tested with enzyme-linked lectin assay-neuraminidase inhibition (ELLA-NI) for N1 neuraminidase antibody detection and by commercial ELISA for detection of antibodies to the NP protein. As early as 7 days post challenge (DPC) 100% of the chickens were positive by ELLA-NI. ELISA was less sensitive with a maximum of 75% positive at 10DPC in broilers vaccinated with 2.2-HVT. Both vaccines provided protection from challenge to both types of chickens and ELLA-NI was sensitive at identifying antibodies to the challenge virus therefore should be evaluated further for DIVA-VI.
Collapse
MESH Headings
- Animals
- Chickens/virology
- Chickens/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Influenza in Birds/immunology
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- North America
- Vaccination
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Poultry Diseases/immunology
- Herpesvirus 1, Meleagrid/immunology
- Herpesvirus 1, Meleagrid/genetics
Collapse
Affiliation(s)
- Jiho Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Chang-Won Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - David L. Suarez
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Scott A. Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Taejoong Kim
- U.S. Department of Agriculture, Endemic Poultry Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Erica Spackman
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| |
Collapse
|
5
|
Wang H, Tian J, Zhao J, Zhao Y, Yang H, Zhang G. Current Status of Poultry Recombinant Virus Vector Vaccine Development. Vaccines (Basel) 2024; 12:630. [PMID: 38932359 PMCID: PMC11209050 DOI: 10.3390/vaccines12060630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Inactivated and live attenuated vaccines are the mainstays of preventing viral poultry diseases. However, the development of recombinant DNA technology in recent years has enabled the generation of recombinant virus vector vaccines, which have the advantages of preventing multiple diseases simultaneously and simplifying the vaccination schedule. More importantly, some can induce a protective immune response in the presence of maternal antibodies and offer long-term immune protection. These advantages compensate for the shortcomings of traditional vaccines. This review describes the construction and characterization of primarily poultry vaccine vectors, including fowl poxvirus (FPV), fowl adenovirus (FAdV), Newcastle disease virus (NDV), Marek's disease virus (MDV), and herpesvirus of turkey (HVT). In addition, the pathogens targeted and the immunoprotective effect of different poultry recombinant virus vector vaccines are also presented. Finally, this review discusses the challenges in developing vector vaccines and proposes strategies for improving immune efficacy.
Collapse
Affiliation(s)
- Haoran Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huiming Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Ingrao F, Ngabirano E, Rauw F, Dauphin G, Lambrecht B. Immunogenicity and protective efficacy of a multivalent herpesvirus vectored vaccine against H9N2 low pathogenic avian influenza in chicken. Vaccine 2024; 42:3410-3419. [PMID: 38641498 DOI: 10.1016/j.vaccine.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs. The ex vivo H9-specific stimulation of splenic and pulmonary T cells in the vaccinated group demonstrated the ability of vaccination to induce systemic and local cellular responses. The clinical protection against a challenge using a LPAIV H9N2 strain of the G1 lineage isolated in Morocco in 2016 was associated with a shorter duration of shedding along with reduced viral genome load in the upper respiratory tract and reduced cloacal shedding compared to unvaccinated controls.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/genetics
- Chickens/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Virus Shedding/immunology
- Specific Pathogen-Free Organisms
- Newcastle disease virus/immunology
- Newcastle disease virus/genetics
- Poultry Diseases/prevention & control
- Poultry Diseases/immunology
- Poultry Diseases/virology
- Immunity, Cellular
- Herpesvirus 1, Meleagrid/immunology
- Herpesvirus 1, Meleagrid/genetics
- Vaccination/methods
- Immunity, Humoral
- Genetic Vectors/immunology
- Immunogenicity, Vaccine
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
Collapse
Affiliation(s)
- Fiona Ingrao
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium.
| | - Eva Ngabirano
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium
| | - Fabienne Rauw
- Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium
| | - Gwenaëlle Dauphin
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | | |
Collapse
|