1
|
Sasaki T, Hisada S, Kanki H, Nunomura K, Lin B, Nishiyama K, Kawano T, Matsumura S, Mochizuki H. Modulation of Ca 2+ oscillation following ischemia and nicotinic acetylcholine receptors in primary cortical neurons by high-throughput analysis. Sci Rep 2024; 14:27667. [PMID: 39532929 PMCID: PMC11557898 DOI: 10.1038/s41598-024-77882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium oscillations in primary neuronal cultures and iPSCs have been employed to investigate arrhythmogenicity and epileptogenicity in drug development. Previous studies have demonstrated that Ca2+ influx via NMDA and nicotinic acetylcholine receptors (nAChRs) modulates Ca2+ oscillations. Nevertheless, there has been no comprehensive investigation into the impact of ischemia or nAChR-positive allosteric modulators (PAM) drugs on Ca2+ oscillations at a level that would facilitate high-throughput screening. We investigated the effects of ischemia and nAChR subtypes or nAChR PAM agonists on Ca2+ oscillations in high-density 2D and 3D-sphere primary neuronal cultures using 384-well plates with FDSS-7000. Ischemia for 1 and 2 h resulted in an increase in the frequency of Ca2+ oscillations and a decrease in their amplitude in a time-dependent manner. The NMDA and AMPA receptor inhibition significantly suppressed Ca2+ oscillation. Inhibition of NR2A or NR2B had the opposite effect on Ca oscillations. The potentiation of ischemia-induced Ca2+ oscillations was significantly inhibited by the NMDA receptor antagonist, MK-801, and the frequency of these oscillations was suppressed by the NR2B inhibitor, Ro-256981. In the 3D-neurosphere, the application of an α7nAChR agonist increased the frequency of Ca2+ oscillations, whereas the activation of α4β2 had no effect. The combination of nicotine and PNU-120596 (type II PAM) affected the frequency and amplitude of Ca2+ oscillations in a manner distinct from that of type I PAM. These systems may be useful not only for detecting epileptogenicity but also in the search for neuroprotective agents against cerebral ischemia.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Sunao Hisada
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tomohito Kawano
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shigenobu Matsumura
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, 583-8555, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Jia S, Diao Y, Li Y, Zhang J, Han H, Li G, Pei Y. Microbiological interpretation of weak ultrasound enhanced biological wastewater treatment - using Escherichia coli degrading glucose as model system. BIORESOURCE TECHNOLOGY 2024; 403:130873. [PMID: 38782192 DOI: 10.1016/j.biortech.2024.130873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The Escherichia coli (E.coli) degrading glucose irradiated by ultrasound irradiation (20 W, 14 min) was investigated as the model system, the glucose degradation increased by 13 % while the E.coli proliferation decreased by 10 % after culture for 18 h. It indicated a tradeoff effect between substrate degradation and cell proliferation, which drove the enhanced contaminants removal and excess sludge reduction in a weak ultrasound enhanced biological wastewater treatment. The enzymatic activities (catalase, superoxide dismutase, adenosine triphosphatases, lactic dehydrogenase, membrane permeability, intracellular reactive oxygen species and calcium ion of E. coli increased immediately by 12 %, 63 %, 124 %, 19 %, 15 %, 4-fold and 38-fold, respectively by ultrasound irradiation power of 20 W for 14 min. Furthermore, the membrane permeability of irradiated E. coli increased by 26 % even though the ultrasound stopped for 10 h. Additionally, pathways associated with glucose degradation and cell proliferation were continuously up-regulated and down-regulated, respectively.
Collapse
Affiliation(s)
- Shengyong Jia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfang Diao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Jingshen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guirong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanhu Pei
- Henan Qingshuiyuan Technology Co., Ltd, Jiyuan 454650, China
| |
Collapse
|
3
|
Lu HR, Seo M, Kreir M, Tanaka T, Yamoto R, Altrocchi C, van Ammel K, Tekle F, Pham L, Yao X, Teisman A, Gallacher DJ. High-Throughput Screening Assay for Detecting Drug-Induced Changes in Synchronized Neuronal Oscillations and Potential Seizure Risk Based on Ca 2+ Fluorescence Measurements in Human Induced Pluripotent Stem Cell (hiPSC)-Derived Neuronal 2D and 3D Cultures. Cells 2023; 12:cells12060958. [PMID: 36980298 PMCID: PMC10046961 DOI: 10.3390/cells12060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Drug-induced seizure liability is a significant safety issue and the basis for attrition in drug development. Occurrence in late development results in increased costs, human risk, and delayed market availability of novel therapeutics. Therefore, there is an urgent need for biologically relevant, in vitro high-throughput screening assays (HTS) to predict potential risks for drug-induced seizure early in drug discovery. We investigated drug-induced changes in neural Ca2+ oscillations, using fluorescent dyes as a potential indicator of seizure risk, in hiPSC-derived neurons co-cultured with human primary astrocytes in both 2D and 3D forms. The dynamics of synchronized neuronal calcium oscillations were measured with an FDSS kinetics reader. Drug responses in synchronized Ca2+ oscillations were recorded in both 2D and 3D hiPSC-derived neuron/primary astrocyte co-cultures using positive controls (4-aminopyridine and kainic acid) and negative control (acetaminophen). Subsequently, blinded tests were carried out for 25 drugs with known clinical seizure incidence. Positive predictive value (accuracy) based on significant changes in the peak number of Ca2+ oscillations among 25 reference drugs was 91% in 2D vs. 45% in 3D hiPSC-neuron/primary astrocyte co-cultures. These data suggest that drugs that alter neuronal activity and may have potential risk for seizures can be identified with high accuracy using an HTS approach using the measurements of Ca2+ oscillations in hiPSC-derived neurons co-cultured with primary astrocytes in 2D.
Collapse
Affiliation(s)
- Hua-Rong Lu
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Manabu Seo
- Elixirgen Scientific, Incorporated, Baltimore, MD 21205, USA
| | - Mohamed Kreir
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Tetsuya Tanaka
- Elixirgen Scientific, Incorporated, Baltimore, MD 21205, USA
| | - Rie Yamoto
- Healthcare Business Group, Drug Discovery Business Department, Ricoh Company Ltd., Tokyo 143-8555, Japan
| | - Cristina Altrocchi
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Karel van Ammel
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Fetene Tekle
- Statistics and Decision Sciences, Global Development, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - Ly Pham
- Computational Biology & Toxicology, Preclinical Sciences and Translational Safety, A Division of Janssen Pharmaceutica NV, San Diego, CA 921921, USA
| | - Xiang Yao
- Computational Biology & Toxicology, Preclinical Sciences and Translational Safety, A Division of Janssen Pharmaceutica NV, San Diego, CA 921921, USA
| | - Ard Teisman
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, A Division of Janssen Pharmaceutica NV, B-2340 Beerse, Belgium
| |
Collapse
|
4
|
Sakaguchi R, Nakamura S, Iha H, Tanaka M. Phenotypic screening using waveform analysis of synchronized calcium oscillations in primary cortical cultures. PLoS One 2023; 18:e0271782. [PMID: 37115794 PMCID: PMC10146483 DOI: 10.1371/journal.pone.0271782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
At present, in vitro phenotypic screening methods are widely used for drug discovery. In the field of epilepsy research, measurements of neuronal activities have been utilized for predicting efficacy of anti-epileptic drugs. Fluorescence measurements of calcium oscillations in neurons are commonly used for measurement of neuronal activities, and some anti-epileptic drugs have been evaluated using this assay technique. However, changes in waveforms were not quantified in previous reports. Here, we have developed a high-throughput screening system containing a new analysis method for quantifying waveforms, and our method has successfully enabled simultaneous measurement of calcium oscillations in a 96-well plate. Features of waveforms were extracted automatically and allowed the characterization of some anti-epileptic drugs using principal component analysis. Moreover, we have shown that trajectories in accordance with the concentrations of compounds in principal component analysis plots were unique to the mechanism of anti-epileptic drugs. We believe that an approach that focuses on the features of calcium oscillations will lead to better understanding of the characteristics of existing anti-epileptic drugs and allow to predict the mechanism of action of novel drug candidates.
Collapse
Affiliation(s)
- Richi Sakaguchi
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Kagasuno, Tokushima, Japan
| | - Saki Nakamura
- Department of Research Management, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Kagasuno, Tokushima, Japan
| | - Hiroyuki Iha
- Office of Bioinformatics, Department of Drug Discovery Strategy, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Kagasuno, Tokushima, Japan
| | - Masaki Tanaka
- Department of Lead Discovery Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Kagasuno, Tokushima, Japan
| |
Collapse
|
5
|
Spitznagel BD, Mishra NM, Qunies AM, Prael FJ, Du Y, Kozek KA, Lazarenko RM, Denton JS, Emmitte KA, Weaver CD. VU0606170, a Selective Slack Channels Inhibitor, Decreases Calcium Oscillations in Cultured Cortical Neurons. ACS Chem Neurosci 2020; 11:3658-3671. [PMID: 33143429 DOI: 10.1021/acschemneuro.0c00583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Malignant migrating partial seizures of infancy is a rare, devastating form of epilepsy most commonly associated with gain-of-function mutations in the potassium channel, Slack. Not only is this condition almost completely pharmacoresistant, there are not even selective drug-like tools available to evaluate whether inhibition of these overactivated, mutant Slack channels may represent a viable path forward toward new antiepileptic therapies. Therefore, we used a high-throughput thallium flux assay to screen a drug-like, 100 000-compound library in search of inhibitors of both wild-type and a disease-associated mutant Slack channel. Using this approach, we discovered VU0606170, a selective Slack channel inhibitor with low micromolar potency. Critically, VU0606170 also proved effective at significantly decreasing the firing rate in overexcited, spontaneously firing cortical neuron cultures. Taken together, our data provide compelling evidence that selective inhibition of Slack channel activity can be achieved with small molecules and that inhibition of Slack channel activity in neurons produces efficacy consistent with an antiepileptic effect. Thus, the identification of VU0606170 provides a much-needed tool for advancing our understanding of the role of the Slack channel in normal physiology and disease as well as its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Brittany D. Spitznagel
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Nigam M. Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Francis J. Prael
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Krystian A. Kozek
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Roman M. Lazarenko
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jerod S. Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
6
|
Asthana A, Ndyabawe K, Mendez D, Douglass M, Haidekker MA, Kisaalita WS. Calcium Oscillation Frequency Is a Potential Functional Complex Physiological Relevance Indicator for a Neuroblastoma-Based 3D Culture Model. ACS Biomater Sci Eng 2020; 6:4314-4323. [PMID: 33463347 DOI: 10.1021/acsbiomaterials.9b01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vitro screening for drugs that affect neural function in vivo is still primitive. It primarily relies on single cellular responses from 2D monolayer cultures that have been shown to be exaggerations of the in vivo response. For the 3D model to be physiologically relevant, it should express characteristics that not only differentiate it from 2D but also closely emulate those seen in vivo. These complex physiologically relevant (CPR) outcomes can serve as a standard for determining how close a 3D culture is to its native tissue or which out of a given number of 3D platforms is better suited for a given application. In this study, Fluo-4-based calcium fluorescence imaging was performed followed by automated image data processing to quantify the calcium oscillation frequency of SHSY5Y cells cultured in 2D and 3D formats. It was found that the calcium oscillation frequency is upregulated in traditional 2D cultures while it was comparable to in vivo in spheroid and microporous polymer scaffold-based 3D models, suggesting calcium oscillation frequency as a potential functional CPR indicator for neural cultures.
Collapse
|
7
|
Kou ZW, Mo JL, Wu KW, Qiu MH, Huang YL, Tao F, Lei Y, Lv LL, Sun FY. Vascular endothelial growth factor increases the function of calcium-impermeable AMPA receptor GluA2 subunit in astrocytes via activation of protein kinase C signaling pathway. Glia 2019; 67:1344-1358. [PMID: 30883902 PMCID: PMC6594043 DOI: 10.1002/glia.23609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 01/23/2019] [Accepted: 02/19/2019] [Indexed: 01/11/2023]
Abstract
Astrocytic calcium signaling plays pivotal roles in the maintenance of neural functions and neurovascular coupling in the brain. Vascular endothelial growth factor (VEGF), an original biological substance of vessels, regulates the movement of calcium and potassium ions across neuronal membrane. In this study, we investigated whether and how VEGF regulates glutamate-induced calcium influx in astrocytes. We used cultured astrocytes combined with living cell imaging to detect the calcium influx induced by glutamate. We found that VEGF quickly inhibited the glutamate/hypoxia-induced calcium influx, which was blocked by an AMPA receptor antagonist CNQX, but not D-AP5 or UBP310, NMDA and kainate receptor antagonist, respectively. VEGF increased phosphorylation of PKCα and AMPA receptor subunit GluA2 in astrocytes, and these effects were diminished by SU1498 or calphostin C, a PKC inhibitor. With the pHluorin assay, we observed that VEGF significantly increased membrane insertion and expression of GluA2, but not GluA1, in astrocytes. Moreover, siRNA-produced knockdown of GluA2 expression in astrocytes reversed the inhibitory effect of VEGF on glutamate-induced calcium influx. Together, our results suggest that VEGF reduces glutamate-induced calcium influx in astrocytes via enhancing PKCα-mediated GluA2 phosphorylation, which in turn promotes the membrane insertion and expression of GluA2 and causes AMPA receptors to switch from calcium-permeable to calcium-impermeable receptors, thereby inhibiting astrocytic calcium influx. The present study reveals that excitatory neurotransmitter glutamate-mediated astrocytic calcium influx can be regulated by vascular biological factor via activation of AMPA receptor GluA2 subunit and uncovers a novel coupling mechanism between astrocytes and endothelial cells within the neurovascular unit.
Collapse
Affiliation(s)
- Zeng-Wei Kou
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China.,Institute for Basic Research on Aging and Medicine of School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Jia-Lin Mo
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China.,Institute for Basic Research on Aging and Medicine of School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Kun-Wei Wu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China.,Department of System Biology for Medicine, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Mei-Hong Qiu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China.,Institute for Basic Research on Aging and Medicine of School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Ya-Lin Huang
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China.,Department of System Biology for Medicine, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas
| | - Yu Lei
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China.,Institute for Basic Research on Aging and Medicine of School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Ling-Ling Lv
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China.,Institute for Basic Research on Aging and Medicine of School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Feng-Yan Sun
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China.,Institute for Basic Research on Aging and Medicine of School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, PR China.,Department of System Biology for Medicine, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| |
Collapse
|
8
|
Quiniou C, Domínguez-Punaro M, Cloutier F, Erfani A, Ennaciri J, Sivanesan D, Sanchez M, Chognard G, Hou X, Rivera JC, Beauchamp C, Charron G, Vilquin M, Kuchroo V, Michnick S, Rioux JD, Lesage S, Chemtob S. Specific targeting of the IL-23 receptor, using a novel small peptide noncompetitive antagonist, decreases the inflammatory response. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1216-30. [DOI: 10.1152/ajpregu.00540.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IL-23 is part of the IL-12 family of cytokines and is composed of the p19 subunit specific to IL-23 and the p40 subunit shared with IL-12. IL-23 specifically contributes to the inflammatory process of multiple chronic inflammatory autoimmune disorders, including psoriasis, multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis. So far, one antibody targeting the shared p40 subunit of IL-12 and IL-23, Ustekinumab, is approved clinically to treat psoriasis. However, there are no treatments inhibiting specifically the IL-23 proinflammatory response. We have developed small IL-23R-specific antagonists by designing all D-peptides arising from flexible regions of IL-23R. Of these peptides, we selected 2305 (teeeqqly), since in addition to its soluble properties, it inhibited IL-23-induced STAT3 phosphorylation in spleen cells. Peptide 2305 specifically binds to IL-23R/IL-12Rβ1-expressing HEK-293 cells and not to cells devoid of the receptor. Peptide 2305 showed functional selectivity by modulating IL-23-induced gene expression in IL-23R/IL-12Rβ1-expressing cells and in Jurkat cells; 2305 does not inhibit IL-12-induced cytokine expression in IL-12Rβ-IL-12Rβ2-HEK-293 cells. Finally, compared with anti-p40 treatment, 2305 effectively and selectively inhibits IL-23-induced inflammation in three in vivo mouse models: IL-23-induced ear inflammation, anti-CD40-induced systemic inflammatory response, and collagen-induced arthritis. We, hereby, describe the discovery and characterization of a potent IL-23R small-peptide modulator, 2305 (teeeqqly), that is effective in vivo. 2305 may be more convenient, less cumbersome, less costly, and most importantly, more specific than current biologics for the treatment of inflammatory conditions, and conceivably complement the actual therapies for these chronic and debilitating inflammatory diseases.
Collapse
Affiliation(s)
- Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| | | | - Frank Cloutier
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| | - Atefeh Erfani
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| | - Jamila Ennaciri
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| | - Durgajini Sivanesan
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Mélanie Sanchez
- Department of Biochemistry, Université de Montréal, Montréal, Canada
| | - Gaëlle Chognard
- Maisonneuve-Rosemont Hospital, Research Center, Montreal, Canada
- Department of Microbiology and Immunology, Université de Montréal, Montréal, Canada
| | - Xin Hou
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| | | | | | | | - Marie Vilquin
- Maisonneuve-Rosemont Hospital, Research Center, Montreal, Canada
| | - Vijay Kuchroo
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Stephen Michnick
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - John D. Rioux
- Montreal Heart Institute, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital, Research Center, Montreal, Canada
- Department of Microbiology and Immunology, Université de Montréal, Montréal, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| |
Collapse
|
9
|
Pacico N, Mingorance-Le Meur A. New in vitro phenotypic assay for epilepsy: fluorescent measurement of synchronized neuronal calcium oscillations. PLoS One 2014; 9:e84755. [PMID: 24416277 PMCID: PMC3885603 DOI: 10.1371/journal.pone.0084755] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/18/2013] [Indexed: 12/20/2022] Open
Abstract
Research in the epilepsy field is moving from a primary focus on controlling seizures to addressing disease pathophysiology. This requires the adoption of resource- and time-consuming animal models of chronic epilepsy which are no longer able to sustain the testing of even moderate numbers of compounds. Therefore, new in vitro functional assays of epilepsy are needed that are able to provide a medium throughput while still preserving sufficient biological context to allow for the identification of compounds with new modes of action. Here we describe a robust and simple fluorescence-based calcium assay to measure epileptiform network activity using rat primary cortical cultures in a 96-well format. The assay measures synchronized intracellular calcium oscillations occurring in the population of primary neurons and is amenable to medium throughput screening. We have adapted this assay format to the low magnesium and the 4-aminopyridine epilepsy models and confirmed the contribution of voltage-gated ion channels and AMPA, NMDA and GABA receptors to epileptiform activity in both models. We have also evaluated its translatability using a panel of antiepileptic drugs with a variety of modes of action. Given its throughput and translatability, the calcium oscillations assay bridges the gap between simplified target-based screenings and compound testing in animal models of epilepsy. This phenotypic assay also has the potential to be used directly as a functional screen to help identify novel antiepileptic compounds with new modes of action, as well as pathways with previously unknown contribution to disease pathophysiology.
Collapse
Affiliation(s)
- Nathalie Pacico
- Neurosciences Therapeutic Area, New Medicines, UCB Pharma, Braine-L’Alleud, Belgium
| | - Ana Mingorance-Le Meur
- Neurosciences Therapeutic Area, New Medicines, UCB Pharma, Braine-L’Alleud, Belgium
- * E-mail:
| |
Collapse
|
10
|
Asthana A, Kisaalita WS. Biophysical microenvironment and 3D culture physiological relevance. Drug Discov Today 2012; 18:533-40. [PMID: 23270783 DOI: 10.1016/j.drudis.2012.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/29/2012] [Accepted: 12/12/2012] [Indexed: 12/30/2022]
Abstract
Force and substrate physical property (pliability) is one of three well established microenvironmental factors (MEFs) that may contribute to the formation of physiologically more relevant constructs (or not) for cell-based high-throughput screening (HTS) in preclinical drug discovery. In 3D cultures, studies of the physiological relevance dependence on material pliability are inconclusive, raising questions regarding the need to design platforms with materials whose pliability lies within the physiological range. To provide more insight into this question, we examine the factors that may underlie the studies inconclusiveness and suggest the elimination of redundant physical cues, where applicable, to better control other MEFs, make it easier to incorporate 3D cultures into state of the art HTS instrumentation, and reduce screening costs per compound.
Collapse
Affiliation(s)
- Amish Asthana
- Cellular Bioengineering Laboratory, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
11
|
Kawakami Z, Ikarashi Y, Kase Y. Isoliquiritigenin is a novel NMDA receptor antagonist in kampo medicine yokukansan. Cell Mol Neurobiol 2011; 31:1203-12. [PMID: 21691759 PMCID: PMC11498536 DOI: 10.1007/s10571-011-9722-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Effects of a traditional Japanese medicine, yokukansan, which is composed of seven medicinal herbs, on glutamate-induced cell death were examined using primary cultured rat cortical neurons. Yokukansan (10-300 μg/ml) inhibited the 100 μM glutamate-induced neuronal death in a concentration-dependent manner. Among seven constituent herbs, higher potency of protection was found in Uncaria thorn (UT) and Glycyrrhiza root (GR). A similar neuroprotective effect was found in four components (geissoschizine methyl ether, hirsuteine, hirsutine, and rhynchophylline) in UT and four components (glycycoumarin, isoliquiritigenin, liquiritin, and 18β-glycyrrhetinic acid) in GR. In the NMDA receptor binding and receptor-linked Ca(2+) influx assays, only isoliquiritigenin bound to NMDA receptors and inhibited the glutamate-induced increase in Ca(2+) influx. Glycycoumarin and 18β-glycyrrhetinic acid bound to NMDA receptors, but did not inhibit the Ca(2+) influx. The four UT-derived components did not bind to NMDA receptors. The present results suggest that neuroprotective components (isoliquiritigenin, glycycoumarin, liquiritin, and 18β-glycyrrhetinic acid in GR and geissoschizine methyl ether, hirsuteine, hirsutine, and rhynchophylline in UT) are contained in yokukansan, and isoliquiritigenin, which is one of them, is a novel NMDA receptor antagonist.
Collapse
Affiliation(s)
- Zenji Kawakami
- Tsumura Research Laboratories, Tsumura & Co, 3586 Yoshiwara, Ami-Machi, Inashiki-Gun, Ibaraki 300-1192, Japan.
| | | | | |
Collapse
|
12
|
Eglen R, Reisine T. Primary cells and stem cells in drug discovery: emerging tools for high-throughput screening. Assay Drug Dev Technol 2010; 9:108-24. [PMID: 21186936 DOI: 10.1089/adt.2010.0305] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many drug discovery screening programs employ immortalized cells, recombinantly engineered to express a defined molecular target. Several technologies are now emerging that render it feasible to employ more physiologically, and clinically relevant, cell phenotypes. Consequently, numerous approaches use primary cells, which retain many functions seen in vivo, as well as endogenously expressing the target of interest. Furthermore, stem cells, of either embryonic or adult origin, as well as those derived from differentiated cells, are now finding a place in drug discovery. Collectively, these cells are expanding the utility of authentic human cells, either as screening tools or as therapeutics, as well as providing cells derived directly from patients. Nonetheless, the growing use of phenotypically relevant cells (including primary cells or stem cells) is not without technical difficulties, particularly when their envisioned use lies in high-throughput screening (HTS) protocols. In particular, the limited availability of homogeneous primary or stem cell populations for HTS mandates that novel technologies be developed to accelerate their adoption. These technologies include detection of responses with very few cells as well as protocols to generate cell lines in abundant, homogeneous populations. In parallel, the growing use of changes in cell phenotype as the assay readout is driving greater use of high-throughput imaging techniques in screening. Taken together, the greater availability of novel primary and stem cell phenotypes as well as new detection technologies is heralding a new era of cellular screening. This convergence offers unique opportunities to identify drug candidates for disorders at which few therapeutics are presently available.
Collapse
Affiliation(s)
- Richard Eglen
- Bio-discovery, PerkinElmer, Waltham, Massachusetts 02451-1457, USA.
| | | |
Collapse
|
13
|
Jantas D, Szymanska M, Budziszewska B, Lason W. An involvement of BDNF and PI3-K/Akt in the anti-apoptotic effect of memantine on staurosporine-evoked cell death in primary cortical neurons. Apoptosis 2009; 14:900-12. [DOI: 10.1007/s10495-009-0370-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Morphine increases brain levels of ferritin heavy chain leading to inhibition of CXCR4-mediated survival signaling in neurons. J Neurosci 2009; 29:2534-44. [PMID: 19244528 DOI: 10.1523/jneurosci.5865-08.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study focuses on the effect of mu-opioid receptor agonists on CXCR4 signaling in neurons and the mechanisms involved in regulation of neuronal CXCR4 by opiates. The data show that CXCR4 is negatively modulated by long-term morphine treatments both in vitro and in vivo; CXCR4 inhibition is caused by direct stimulation of mu-opioid receptors in neurons, leading to alterations of ligand-induced CXCR4 phosphorylation and upregulation of protein ferritin heavy chain (FHC), a negative intracellular regulator of CXCR4. Reduced coupling of CXCR4 to G-proteins was found in the brain of morphine-treated rats, primarily cortex and hippocampus. CXCR4-induced G alpha(i)/G betagamma activities were suppressed after 24 h treatment of cortical neurons with morphine or the selective mu-opioid agonist DAMGO (D-Ala2-N-Me-Phe(4)-glycol(5)-enkephalin), as shown by analysis of downstream targets of CXCR4 (i.e., cAMP, Akt, and ERK1/2). These agonists also prevented CXCL12-induced phosphorylation of CXCR4, indicating a deficit of CXCR4 activation in these conditions. Indeed, morphine (or DAMGO) inhibited prosurvival signaling in neurons. These effects are not attributable to a reduction in CXCR4 expression or surface levels but rather to upregulation of FHC by opioids. The crucial role of FHC in inhibition of neuronal CXCR4 was confirmed by in vitro and in vivo RNA interference studies. Overall, these findings suggest that opiates interfere with normal CXCR4 function in the brain. By this mechanism, opiates could reduce the neuroprotective functions of CXCR4 and exacerbate neuropathology in opiate abusers who are affected by neuroinflammatory/infectious disorders, including neuroAIDS.
Collapse
|
15
|
Jantas D, Lason W. Protective effect of memantine against Doxorubicin toxicity in primary neuronal cell cultures: influence a development stage. Neurotox Res 2009; 15:24-37. [PMID: 19384585 DOI: 10.1007/s12640-009-9002-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/10/2008] [Accepted: 09/10/2008] [Indexed: 01/09/2023]
Abstract
One of the serious unwanted effects of the anthracycline anticancer drug doxorubicin (Dox, adriamycin) is its neurotoxicity, which can be evoked by the activation of extracellular (FAS/CD95/Apo-1) pathway of apoptosis in cells. Since memantine, a clinically used N-methyl-D: -aspartic acid (NMDA) receptor antagonist, shows antiapoptotic action in several models of neuronal cell damage, in this study we evaluated the effect of memantine on the cell death induced by Dox in primary neuronal cell cultures. First, we investigated the effect of different concentrations of Dox (0.1-5 microM) on mouse neocortical, hippocampal, striatal, and cerebellar neurons on 7- and 12-day in vitro (DIV). The 7 DIV neuronal cell cultures were more prone to Dox-induced cell death than 12 DIV cultures. The cerebellar neurons were the most resistant to Dox-induced apoptosis in comparison to neuronal cell cultures derived from the forebrain. Memantine (0.1-2 microM) attenuated the Dox-evoked lactate dehydrogenase release in 7 DIV neuronal cell cultures with no significant effect on 12 DIV cultures. The ameliorating effect of memantine on Dox-mediated cell death was also confirmed by an increase in cell viability measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. There was no effect of memantine on Dox-induced caspase-8 and -3 activity and Dox-evoked decrease in mitochondrial potential, although attenuation in the number of cells with apoptotic DNA fragmentation was observed. We also showed that the antiapoptotic effect of memantine in our model was NMDA receptor-independent, since two other antagonists of this receptor, MK-801 and AP-5, did not attenuate Dox-induced cell death. Furthermore, memantine did not influence the Dox-evoked increase in cytoplasmic Ca2+ level. The obtained data suggest developmental regulation of both, the Dox-mediated neurotoxicity and efficacy of memantine in alleviating the Dox-induced cell damage in neuronal cell cultures. Moreover, this neuroprotective effect of memantine seems not to be dependent on caspase-3 activity and on the antagonistic action on NMDA receptor.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland,
| | | |
Collapse
|
16
|
Quiniou C, Sapieha P, Lahaie I, Hou X, Brault S, Beauchamp M, Leduc M, Rihakova L, Joyal JS, Nadeau S, Heveker N, Lubell W, Sennlaub F, Gobeil F, Miller G, Pshezhetsky AV, Chemtob S. Development of a novel noncompetitive antagonist of IL-1 receptor. THE JOURNAL OF IMMUNOLOGY 2008; 180:6977-87. [PMID: 18453620 DOI: 10.4049/jimmunol.180.10.6977] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1 is a major proinflammatory cytokine which interacts with the IL-1 receptor I (IL-1RI) complex, composed of IL-1RI and IL-1R accessory protein subunits. Currently available strategies to counter pathological IL-1 signaling rely on a recombinant IL-1 receptor antagonist, which directly competes with IL-1 for its binding site. Presently, there are no small antagonists of the IL-1RI complex. Given this void, we derived 15 peptides from loops of IL-1R accessory protein, which are putative interactive sites with the IL-1RI subunit. In this study, we substantiate the merits of one of these peptides, rytvela (we termed "101.10"), as an inhibitor of IL-1R and describe its properties consistent with those of an allosteric negative modulator. 101.10 (IC(50) approximately 1 nM) blocked human thymocyte proliferation in vitro, and demonstrated robust in vivo effects in models of hyperthermia and inflammatory bowel disease as well as topically in contact dermatitis, superior to corticosteroids and IL-1ra; 101.10 did not bind to IL-1RI deficient cells and was ineffective in vivo in IL-1RI knockout mice. Importantly, characterization of 101.10, revealed noncompetitive antagonist actions and functional selectivity by blocking certain IL-1R pathways while not affecting others. Findings describe the discovery of a potent and specific small (peptide) antagonist of IL-1RI, with properties in line with an allosteric negative modulator.
Collapse
|
17
|
Tsuruwaka Y, Konishi T, Miyawaki A, Takagi M. Real-Time Monitoring of Dynamic Intracellular Ca2+Movement During Early Embryogenesis Through Expression of Yellow Cameleon. Zebrafish 2007; 4:253-60. [DOI: 10.1089/zeb.2007.0519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yusuke Tsuruwaka
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | - Takafumi Konishi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, Saitama, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| |
Collapse
|
18
|
Hagenacker T, Ledwig D, Büsselberg D. Feedback mechanisms in the regulation of intracellular calcium ([Ca2+]i) in the peripheral nociceptive system: role of TRPV-1 and pain related receptors. Cell Calcium 2007; 43:215-27. [PMID: 17673288 DOI: 10.1016/j.ceca.2007.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/17/2007] [Accepted: 05/30/2007] [Indexed: 11/21/2022]
Abstract
Multimodal stimuli like heat, cold, bacterial or mechanical events are able to elicit pain, which is necessary to guarantee survival. However, the control of pain is of major clinical importance. The perception and transduction of pain is differentially modulated in the peripheral and central nervous system (CNS): while peripheral structures modulate these signals, the perception of pain occurs in the CNS. In recent years major advances have been made in the understanding of the processes which are involved in pain sensation. For the peripheral pain reception, the importance of specific pain receptors of the transition receptor pore (TRP)-family (e.g. the TRPV-1 receptor) has been analyzed. These receptors/channels are localized at the cell membrane of nociceptive neurones as well as in membranes of intracellular calcium stores like the endoplasmic reticulum. While the associated channel conducts different ions, a major proportion is calcium. Therefore, this review focuses on (1) the modulations of intracellular calcium ([Ca2+]i) initiated by the activation of pain receptors and (2) the consequences of [Ca2+]i changes for the processing of pain signals at the peripheral side. The possible interference of TRPV-1 induced [Ca2+]i modulations to the function of other membrane receptors and channels, like voltage gated calcium, sodium or potassium channels, or co-expressed CB1-receptors will be discussed. The latter interactions are of specific interest since the analgetic properties of endo- and exo-cannabinoids are mediated by CB1 receptors and their activation significantly modulates the calcium induced release of pain related transmitters. Furthermore, multiple cross links between different pain modulating intracellular pathways and their dependence on [Ca2+]i modulations will be illuminated. Overall, this review will summarize new insights resulting in the understanding of the prominent influence of [Ca2+]i for processes which are involved in pain sensation.
Collapse
Affiliation(s)
- T Hagenacker
- Universitätsklinikum Essen, Institut für Physiologie, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | |
Collapse
|
19
|
Vetter I, Kapitzke D, Hermanussen S, Monteith GR, Cabot PJ. The effects of pH on beta-endorphin and morphine inhibition of calcium transients in dorsal root ganglion neurons. THE JOURNAL OF PAIN 2006; 7:488-99. [PMID: 16814688 DOI: 10.1016/j.jpain.2006.01.456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 12/23/2005] [Accepted: 01/26/2006] [Indexed: 11/27/2022]
Abstract
UNLABELLED During inflammation, immune cells migrate into inflamed tissue and release opioid peptides that activate opioid receptors on peripheral sensory neurons to reduce pain. A characteristic of the inflamed environment in which these opioids act is acidic pH. Activation of opioid receptors leads to a decrease in the calcium component of neuronal action potentials. We investigated the hypothesis that inhibitory effects of opioids on intracellular calcium transients in dorsal root ganglion neuronal cultures are potentiated at acidic extracellular pH. Intracellular calcium responses to stimulation with capsaicin were measured in untreated neurons or after preincubation with beta-endorphin or morphine. beta-Endorphin significantly inhibited calcium responses to 300 nmol/L capsaicin at the lowest experimental extracellular pH (6.1, 6.5, and 7.2), whereas morphine inhibited capsaicin (300 nmol/L) responses significantly at pH 6.1 with a trend of inhibition at pH 6.5. The effect of pH on morphine inhibition of K+ -evoked calcium responses was also assessed. Morphine inhibition of calcium responses was significantly enhanced at pH 6.8 compared with pH 7.2 and pH 7.6. The inhibitory effects were reversed by naloxone, an opioid receptor antagonist. In conclusion, low extracellular pH potentiated beta-endorphin and morphine inhibition of calcium transients and might contribute to improved opioid efficacy during inflammation. PERSPECTIVE The results of the current study suggest that acidic pH might contribute to increased opioid efficacy in inflamed tissue. This highlights the therapeutic potential of endogenous opioid analgesia, whereby opioid peptides are delivered locally in inflamed tissues, as well as the use of locally applied opioids in inflammatory conditions.
Collapse
Affiliation(s)
- Irina Vetter
- School of Pharmacy, University of Queensland, St. Lucia, Australia
| | | | | | | | | |
Collapse
|
20
|
Song Y, Wei EQ, Zhang WP, Ge QF, Liu JR, Wang ML, Huang XJ, Hu X, Chen Z. Minocycline protects PC12 cells against NMDA-induced injury via inhibiting 5-lipoxygenase activation. Brain Res 2006; 1085:57-67. [PMID: 16574083 DOI: 10.1016/j.brainres.2006.02.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 02/02/2006] [Accepted: 02/07/2006] [Indexed: 11/24/2022]
Abstract
Recently, we have reported that minocycline, a semi-synthetic tetracycline with neuroprotective effects, inhibits the in vitro ischemic-like injury and 5-lipoxygenase (5-LOX) activation in PC12 cells. In the present study, we further determined whether minocycline protects PC12 cells from excitotoxicity via inhibiting 5-LOX activation. We used N-methyl-d-aspartate (NMDA, 200 microM) to induce early (exposure for 6 h) and delayed (exposure for 6 h followed by 24 h recovery) injuries. We found that NMDA receptor antagonist ketamine, 5-LOX inhibitor caffeic acid and minocycline concentration dependently attenuated NMDA-induced early and delayed cell injuries (viability reduction and cell death). However, only ketamine (1 microM) inhibited NMDA-evoked elevation of intracellular calcium. In addition, immunohistochemical analysis showed that NMDA induced 5-LOX translocation to the nuclear membrane after 1- to 6-h exposure which was confirmed by Western blotting, indicating that 5-LOX was activated. Ketamine, caffeic acid and minocycline (each at 1 microM) inhibited 5-LOX translocation after early injury. After delayed injury, PC12 cells were shrunk, and 5-LOX was translocated to the nuclei and nuclear membrane; ketamine, caffeic acid and minocycline inhibited both cell shrinking and 5-LOX translocation. As a control, 12-LOX inhibitor baicalein showed a weak effect on cell viability and death, but no effect on 5-LOX translocation. Therefore, we conclude that the protective effect of minocycline on NMDA-induced injury is partly mediated by inhibiting 5-LOX activation.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310031, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|