1
|
Mao X, Li H, Zheng J. Effects of xenobiotics on CYP1 enzyme-mediated biotransformation and bioactivation of estradiol. Drug Metab Rev 2023; 55:1-49. [PMID: 36823774 DOI: 10.1080/03602532.2023.2177671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Endogenous estradiol (E2) exerts diverse physiological and pharmacological activities, commonly used for hormone replacement therapy. However, prolonged and excessive exposure to E2 potentially increases estrogenic cancer risk. Reportedly, CYP1 enzyme-mediated biotransformation of E2 is largely concerned with its balance between detoxification and carcinogenic pathways. Among the three key CYP1 enzymes (CYP1A1, CYP1A2, and CYP1B1), CYP1A1 and CYP1A2 mainly catalyze the formation of nontoxic 2-hydroxyestradiol (2-OH-E2), while CYP1B1 specifically catalyzes the formation of genotoxic 4-hydroxyestradiol (4-OH-E2). 4-OH-E2 can be further metabolized to electrophilic quinone intermediates accompanied by the generation of reactive oxygen species (ROS), triggering DNA damage. Since abnormal alterations in CYP1 activities can greatly affect the bioactivation process of E2, regulatory effects of xenobiotics on CYP1s are essential for E2-associated cancer development. To date, thousands of natural and synthetic compounds have been found to show potential inhibition and/or induction actions on the three CYP1 members. Generally, these chemicals share similar planar polycyclic skeletons, the structural motifs and substituent groups of which are important for their inhibitory/inductive efficiency and selectivity toward CYP1 enzymes. This review comprehensively summarizes these known inhibitors and/or inductors of E2-metabolizing CYP1s based on chemical categories and discusses their structure-activity relationships, which would contribute to better understanding of the correlation between xenobiotic-regulated CYP1 activities and estrogenic cancer susceptibility.
Collapse
Affiliation(s)
- Xu Mao
- Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China
| | - Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
De Matteis V, Cascione M, Rizzello L, Manno DE, Di Guglielmo C, Rinaldi R. Synergistic Effect Induced by Gold Nanoparticles with Polyphenols Shell during Thermal Therapy: Macrophage Inflammatory Response and Cancer Cell Death Assessment. Cancers (Basel) 2021; 13:3610. [PMID: 34298823 PMCID: PMC8303381 DOI: 10.3390/cancers13143610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent decades, gold nanoparticle (Au NP)-based cancer therapy has been heavily debated. The physico-chemical properties of AuNPs can be exploited in photothermal therapy, making them a powerful tool for selectively killing cancer cells. However, the synthetic side products and capping agents often induce a strong activation of the inflammatory pathways of macrophages, thus limiting their further applications in vivo. METHODS Here, we described a green method to obtain stable polyphenol-capped AuNPs (Au NPs@polyphenols), as polyphenols are known for their anti-inflammatory and anticancer properties. These NPs were used in human macrophages to test key inflammation-related markers, such as NF-κB, TNF-α, and interleukins-6 and 8. The results were compared with similar NPs obtained by a traditional chemical route (without the polyphenol coating), proving the potential of Au NPs@polyphenols to strongly promote the shutdown of inflammation. This was useful in developing them for use as heat-synergized tools in the thermal treatment of two types of cancer cells, namely, breast cancer (MCF-7) and neuroblastoma (SH-SY5Y) cells. The cell viability, calcium release, oxidative stress, HSP-70 expression, mitochondrial, and DNA damage, as well as cytoskeleton alteration, were evaluated. RESULTS Our results clearly demonstrate that the combined strategy markedly exerts anticancer effects against the tested cancer cell, while neither of the single treatments (only heat or only NPs) induced significant changes. CONCLUSIONS Au NP@polyphenols may be powerful agents in cancer treatment.
Collapse
Affiliation(s)
- Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (D.E.M.); (R.R.)
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (D.E.M.); (R.R.)
| | - Loris Rizzello
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via G. Balzaretti 9, 20133 Milan, Italy;
- National Institute of Molecular Genetics (INGM), Via F. Sforza 35, 20122 Milan, Italy
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain;
| | - Daniela Erminia Manno
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (D.E.M.); (R.R.)
| | - Claudia Di Guglielmo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (D.E.M.); (R.R.)
| |
Collapse
|
3
|
Maneerat Y, Prasongsukarn K, Benjathummarak S, Dechkhajorn W. PPBP and DEFA1/DEFA3 genes in hyperlipidaemia as feasible synergistic inflammatory biomarkers for coronary heart disease. Lipids Health Dis 2017; 16:80. [PMID: 28420383 PMCID: PMC5395883 DOI: 10.1186/s12944-017-0471-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is an important complication of atherosclerosis. Biomarkers, which associate with CHD development, are potential to predict CHD risk. To determine whether genes showing altered expression in hyperlipidaemia (H) and coronary heart disease (CHD) patients compared with controls could be CHD risk biomarkers. METHODS Control, H, and CHD groups represented atherosclerosis to CHD development. Gene profiling was investigated in peripheral blood mononuclear cells using DNA microarrays. Eight selected genes expressed only in H and CHD groups were validated by real-time quantitative reverse transcription PCR and plasma protein determination. RESULTS α-defensin (DEFA1/DEFA3), pro-platelet basic protein (PPBP), and beta and alpha2 hemoglobin mRNA expression was significantly increased in H and CHD groups compared with controls, but only plasma PPBP and α-defensin proteins were correspondingly increased. CONCLUSION PPBP and DEFA1/DEFA3 could be potential CHD biomarkers in Thai hyperlipidaemia patients.
Collapse
Affiliation(s)
- Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | | | - Surachet Benjathummarak
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wilanee Dechkhajorn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
4
|
Dinu D, Chu C, Veith A, Lingappan K, Couroucli X, Jefcoate CR, Sheibani N, Moorthy B. Mechanistic role of cytochrome P450 (CYP)1B1 in oxygen-mediated toxicity in pulmonary cells: A novel target for prevention of hyperoxic lung injury. Biochem Biophys Res Commun 2016; 476:346-351. [PMID: 27235555 DOI: 10.1016/j.bbrc.2016.05.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
Supplemental oxygen, which is routinely administered to preterm infants with pulmonary insufficiency, contributes to bronchopulmonary dysplasia (BPD) in these infants. Hyperoxia also contributes to the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in adults. The mechanisms of oxygen-mediated pulmonary toxicity are not completely understood. Recent studies have suggested an important role for cytochrome P450 (CYP)1A1/1A2 in the protection against hyperoxic lung injury. The role of CYP1B1 in oxygen-mediated pulmonary toxicity has not been studied. In this investigation, we tested the hypothesis that CYP1B1 plays a mechanistic role in oxygen toxicity in pulmonary cells in vitro. In human bronchial epithelial cell line BEAS-2B, hyperoxic treatment for 1-3 days led to decreased cell viability by about 50-80%. Hyperoxic cytotoxicity was accompanied by an increase in levels of reactive oxygen species (ROS) by up to 110%, and an increase of TUNEL-positive cells by up to 4.8-fold. Western blot analysis showed hyperoxia to significantly down-regulate CYP1B1 protein level. Also, there was a decrease of CYP1B1 mRNA by up to 38% and Cyp1b1 promoter activity by up to 65%. On the other hand, CYP1B1 siRNA appeared to rescue the cell viability under hyperoxia stress, and overexpression of CYP1B1 significantly attenuated hyperoxic cytotoxicity after 48 h of incubation. In immortalized lung endothelial cells derived from Cyp1b1-null and wild-type mice, hyperoxia increased caspase 3/7 activities in a time-dependent manner, but endothelial cells lacking the Cyp1b1 gene showed significantly decreased caspase 3/7 activities after 48 and 72 h of incubation, implying that CYP1B1 might promote apoptosis in wild type lung endothelial cells under hyperoxic stress. In conclusion, our results support the hypothesis that CYP1B1 plays a mechanistic role in pulmonary oxygen toxicity, and CYP1B1-mediated apoptosis could be one of the mechanisms of oxygen toxicity. Thus, CYP1B1 could be a novel target for preventative and/or therapeutic interventions against BPD in infants and ALI/ARDS in adults.
Collapse
Affiliation(s)
- Daniela Dinu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chun Chu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alex Veith
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krithika Lingappan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xanthi Couroucli
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Abstract
In 2007, three scientists, Drs. Mario R. Capecchi, Martin J. Evans, and Oliver Smithies, received the Nobel Prize in Physiology or Medicine for their contributions of introducing specific gene modifications into mice. This technology, commonly referred to as gene targeting or knockout, has proven to be a powerful means for precisely manipulating the mammalian genome and has generated great impacts on virtually all phases of mammalian biology and basic biomedical research. Of note, germline mutations of many genes, especially tumor suppressors, often result in lethality during embryonic development or at developmental stages before tumor formation. This obstacle has been effectively overcome by the use of conditional knockout technology in conjunction with Cre-LoxP- or Flp-Frt-mediated temporal and/or spatial systems to generate genetic switches for precise DNA recombination. Currently, numerous conditional knockout mouse models have been successfully generated and applied in studying tumor initiation, progression, and metastasis. This review summarizes some conditional mutant mouse models that are widely used in cancer research and our understanding of the possible mechanisms underlying tumorigenesis.
Collapse
Affiliation(s)
- Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
6
|
Rajaraman G, Chen J, Chang TKH. Ginkgolide A contributes to the potentiation of acetaminophen toxicity by Ginkgo biloba extract in primary cultures of rat hepatocytes. Toxicol Appl Pharmacol 2006; 217:225-33. [PMID: 17045319 DOI: 10.1016/j.taap.2006.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 11/18/2022]
Abstract
The present cell culture study investigated the effect of Ginkgo biloba extract pretreatment on acetaminophen toxicity and assessed the role of ginkgolide A and cytochrome P450 3A (CYP3A) in hepatocytes isolated from adult male Long-Evans rats provided ad libitum with a standard diet. Acetaminophen (7.5-25 mM for 24 h) conferred hepatocyte toxicity, as determined by the lactate dehydrogenase (LDH) assay. G. biloba extract alone increased LDH leakage in hepatocytes at concentrations > or =75 mug/ml and > or =750 mug/ml after a 72 h and 24 h treatment period, respectively. G. biloba extract (25 or 50 mug/ml once every 24 h for 72 h) potentiated LDH leakage by acetaminophen (10 mM for 24 h; added at 48 h after initiation of extract pretreatment). The effect was confirmed by a decrease in [(14)C]-leucine incorporation. At the level present in a modulating concentration (50 mug/ml) of the extract, ginkgolide A (0.55 mug/ml), which increased CYP3A23 mRNA levels and CYP3A-mediated enzyme activity, accounted for part but not all of the potentiating effect of the extract on acetaminophen toxicity. This occurred as a result of CYP3A induction by ginkgolide A because triacetyloleandomycin (TAO), a specific inhibitor of CYP3A catalytic activity, completely blocked the effect of ginkgolide A. Ginkgolide B, ginkgolide C, ginkgolide J, quercetin, kaempferol, isorhamnetin, and isorhamnetin-3-O-rutinoside did not alter the extent of LDH leakage by acetaminophen. In summary, G. biloba pretreatment potentiated acetaminophen toxicity in cultured rat hepatocytes and ginkgolide A contributed to this novel effect of the extract by inducing CYP3A.
Collapse
Affiliation(s)
- Ganesh Rajaraman
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
7
|
Berrada H, Soriano JM, Picó Y, Mañes J. Quantification of Listeria monocytogenes in salads by real time quantitative PCR. Int J Food Microbiol 2006; 107:202-6. [PMID: 16289408 DOI: 10.1016/j.ijfoodmicro.2005.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Accepted: 07/13/2005] [Indexed: 11/27/2022]
Abstract
A real time quantitative PCR (RTQ-PCR) was carried out purifying DNA extracts of Listeria monocytogenes using a High Pure Listeria Sample Preparation Kit and quantifying in a LightCycler system with hybridisation probes. A standard curve was constructed with serial dilutions. A range linear relationship, from 10 to 10(5)L. monocytogenes colony forming units (CFU), was observed between threshold cycle (Ct) and logarithmic concentration of the serial dilutions. The assay was linear in a range from 10 to 10(5)L. monocytogenes CFU and the coefficient of determination (r2) was >0.98. RTQ-PCR presented an efficiency of >85%. The accuracy of the PCR-based assay, expressed as % bias, ranged from 9% to 26% and the precision, expressed as % CV, ranged 9-22%. Intraday and interday variabilities were studied at 10(2) CFU/g and resulted in 12% and 14%, respectively. The proposed RTQ-PCR method and classical cultural methods were applied to analyse 77 salads from restaurants in Valencia (Spain). All culture positive samples were also RTQ-PCR positive.
Collapse
Affiliation(s)
- H Berrada
- University of Valencia, Faculty of Pharmacy, Laboratory of Bromatology and Toxicology, Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
8
|
Chang TKH, Chen J, Teng XW. Distinct role of bilobalide and ginkgolide A in the modulation of rat CYP2B1 and CYP3A23 gene expression by Ginkgo biloba extract in cultured hepatocytes. Drug Metab Dispos 2006; 34:234-42. [PMID: 16258077 DOI: 10.1124/dmd.105.005751] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the present study, primary cultures of rat hepatocytes were treated for 48 h with one of several extracts of Ginkgo biloba (10, 100, or 1000 microg/ml). Maximal increase in CYP2B1 and CYP3A23 mRNA levels was obtained at 100 microg/ml. This concentration of G. biloba extract also increased CYP3A2 and CYP3A18 mRNA expression in addition to CYP2B-mediated 7-benzyloxyresorufin O-dealkylation (BROD) and CYP3A-mediated testosterone 6beta-hydroxylation. In other experiments, cultured hepatocytes were treated for 48 h with bilobalide, ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, kaempferol, quercetin, isorhamnetin, or a flavonol diglycoside at a concentration that represented the level present in a 100 microg/ml concentration of an extract. Only bilobalide (2.8 microg/ml) increased CYP2B1 mRNA expression, and the -fold increase (7.9 +/- 0.5; mean +/- S.E.M.) was similar to that (8.3 +/- 1.7) by the extract. By comparison, only ginkgolide A (1.1 microg/ml) increased CYP3A23 mRNA expression, but the extent (2.6 +/- 0.5-fold) was less than the 5.3 +/- 1.7-fold increase by the extract. A greater concentration (5 microg/ml) of ginkgolide A was required to elevate CYP3A2 and CYP3A18 mRNA expression. Over the range of 1 to 5 microg/ml, bilobalide increased CYP2B1 mRNA and BROD, but not CYP3A23 mRNA or testosterone 6beta-hydroxylation, whereas ginkgolide A increased CYP3A23 mRNA and testosterone 6beta-hydroxylation, but not CYP2B1 mRNA or BROD. Overall, our novel results indicate a distinct role of bilobalide and ginkgolide A in the modulation of CYP2B1 and CYP3A23 gene expression and enzyme activities by G. biloba extract in primary cultures of rat hepatocytes.
Collapse
Affiliation(s)
- Thomas K H Chang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3, Canada.
| | | | | |
Collapse
|
9
|
Doré S. Unique Properties of Polyphenol Stilbenes in the Brain: More than Direct Antioxidant Actions; Gene/Protein Regulatory Activity. Neurosignals 2005; 14:61-70. [PMID: 15956815 DOI: 10.1159/000085386] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 03/01/2005] [Indexed: 11/19/2022] Open
Abstract
The 'French Paradox' has been typically associated with moderate consumption of wine, especially red wine. A polyphenol 3,4',5-trihydroxy-trans-stilbene (a member of the non-flavonoids family), better known as resveratrol, has been purported to have many health benefits. A number of these valuable properties have been attributed to its intrinsic antioxidant capabilities, although the potential level of resveratrol in the circulation is likely not enough to neutralize free radical scavenging. The brain and the heart are uniquely vulnerable to hypoxic conditions and oxidative stress injuries. Recently, evidence suggests that resveratrol could act as a signaling molecule within tissues and cells to modulate the expression of genes and proteins. Stimulation of such proteins and enzymes could explain some the intracellular antioxidative properties. The modulation of genes could suffice as an explanation of some of resveratrol's cytoprotective actions, as well as its influence on blood flow, cell death, and inflammatory cascades. Resveratrol stimulation of the expression of heme oxygenase is one example. Increased heme oxygenase activity has led to significant protection against models of in vitro and in vivo oxidative stress injury. Resveratrol could provide cellular resistance against insults; although more work is necessary before it is prescribed as a potential prophylactic in models of either acute or chronic conditions, such as stroke, amyotrophic lateral sclerosis, Parkinson, Alzheimer, and a variety of age-related vascular disorders.
Collapse
Affiliation(s)
- Sylvain Doré
- Johns Hopkins University, School of Medicine, ACCM Department, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Yu CT, Chen J, Teng XW, Tong V, Chang TKH. Lack of evidence for induction of CYP2B1, CYP3A23, and CYP1A2 gene expression by Panax ginseng and Panax quinquefolius extracts in adult rats and primary cultures of rat hepatocytes. Drug Metab Dispos 2005; 33:19-22. [PMID: 15466162 DOI: 10.1124/dmd.104.001917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Treatment of rats with a single oral dose (10-30 mg/kg) of a crude Panax ginseng extract of unknown ginsenoside content has been reported to modestly increase hepatic microsomal cytochrome P450-mediated aminopyrine N-demethylation activity. In the present study, we compared the effect of P. ginseng and Panax quinquefolius extracts on rat hepatic CYP2B1, CYP3A23, and CYP1A2 gene expression. Adult male Sprague-Dawley rats (250-275 g) received, by oral gavage or i.p., P. ginseng extract [4% (w/w) total ginsenosides; 30 or 100 mg/kg/day for 1 or 4 days], P. quinquefolius extract [10% (w/w) total ginsenosides; 100 or 400 mg/kg/day for 21 consecutive days), or an equivalent volume (2 ml/kg) of the vehicle (0.9% NaCl or 0.3% carboxymethylcellulose) and were terminated 1 day after the last dose. P. ginseng and P. quinquefolius extracts did not affect body weight gain, absolute or relative liver weight, hepatic CYP2B1, CYP3A23, or CYP1A2 mRNA expression, or microsomal CYP2B-mediated 7-benzyloxyresorufin O-dealkylation (BROD) or CYP1A-mediated 7-ethoxyresorufin O-dealkylation (EROD) activity. In contrast, results from positive control experiments indicated that phenobarbital increased CYP2B1 mRNA and BROD activity, dexamethasone increased CYP3A23 mRNA, and beta-naphthoflavone increased CYP1A2 mRNA and EROD activity levels. Treatment of primary cultures of rat hepatocytes with either of the ginseng extracts (0.1-1000 microg/ml for 2 days) also did not affect CYP2B1 or CYP3A23 mRNA expression. Overall, our data indicate that P. ginseng and P. quinquefolius extracts do not increase rat hepatic CYP2B1, CYP3A23, or CYP1A2 gene expression.
Collapse
Affiliation(s)
- Chia-Ting Yu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, B. C. V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|