1
|
Praveen C, Bhatia SS, Alaniz RC, Droleskey RE, Cohen ND, Jesudhasan PR, Pillai SD. Assessment of microbiological correlates and immunostimulatory potential of electron beam inactivated metabolically active yet non culturable (MAyNC) Salmonella Typhimurium. PLoS One 2021; 16:e0243417. [PMID: 33861743 PMCID: PMC8051754 DOI: 10.1371/journal.pone.0243417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/23/2020] [Indexed: 12/02/2022] Open
Abstract
This study investigates the microbiological and immunological basis underlying the efficacy of electron beam-inactivated immune modulators. The underlying hypothesis is that exposure to eBeam-based ionization reactions inactivate microorganisms without modifying their antigenic properties and thereby creating immune modulators. The immunological correlates of protection induced by such eBeam based Salmonella Typhimurium (EBST) immune modulators in dendritic cell (DC) (in vitro) and mice (in vivo) models were assessed. The EBST stimulated innate pro inflammatory response (TNFα) and maturation (MHC-II, CD40, CD80 and CD86) of DC. Immuno-stimulatory potential of EBST was on par with both a commercial Salmonella vaccine, and live Salmonella cells. The EBST cells did not multiply under permissive in vitro and in vivo conditions. However, EBST cells remained metabolically active. EBST immunized mice developed Salmonella-specific CD4+ T-cells that produced the Th1 cytokine IFNγ at a level similar to that induced by the live attenuated vaccine (AroA- ST) formulation. The EBST retained stable immunogenic properties for several months at room temperature, 4°C, and -20°C as well as after lyophilization. Therefore, such eBeam-based immune modulators have potential as vaccine candidates since they offer the safety of a “killed” vaccine, while retaining the immunogenicity of an “attenuated” vaccine. The ability to store eBeam based immune modulators at room temperature without loss of potency is also noteworthy.
Collapse
Affiliation(s)
- Chandni Praveen
- National Center for Electron Beam Research-an International Atomic Energy Agency (IAEA) Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX, United States of America
| | - Sohini S. Bhatia
- National Center for Electron Beam Research-an International Atomic Energy Agency (IAEA) Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX, United States of America
| | - Robert C. Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, TX, United States of America
- * E-mail: (SDP); (RCA)
| | - Robert E. Droleskey
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Palmy R. Jesudhasan
- Poultry Production and Product Safety, USDA-ARS, University of Arkansas, Fayetteville, AR, United States of America
| | - Suresh D. Pillai
- National Center for Electron Beam Research-an International Atomic Energy Agency (IAEA) Collaborating Centre for Electron Beam Technology, Texas A&M University, College Station, TX, United States of America
- * E-mail: (SDP); (RCA)
| |
Collapse
|
2
|
Wang Y, Guo W, Wu X, Zhang Y, Mannion C, Brouchkov A, Man YG, Chen T. Oncolytic Bacteria and their potential role in bacterium-mediated tumour therapy: a conceptual analysis. J Cancer 2019; 10:4442-4454. [PMID: 31528208 PMCID: PMC6746139 DOI: 10.7150/jca.35648] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
As the human microbiota has been confirmed to be of great significance in maintaining health, the dominant bacteria in them have been applied as probiotics to treat various diseases. After the detection of bacteria in tumours, which had previously been considered a sterile region, these bacteria have been isolated and genetically modified for use in tumour therapy. In this review, we sum up the main types of bacteria used in tumour therapy and reveal the mechanisms of both wild type and engineered bacteria in eliminating tumour cells, providing potential possibilities for newly detected, genetically modified, tumour-associated bacteria in anti-tumour therapy.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenxuan Guo
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - XiaoLi Wu
- JiangXi university of traditional Chinese medicine, College of basic medicine, Nanchang 330000, PR China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ciaran Mannion
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Anatoli Brouchkov
- Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Tyumen State University, Volodarskogo 6, Tyumen 625003, Russia
| | - Yan-Gao Man
- Department of Pathology, Hackensack Meridian Health-Hackensack University Medical Center, NJ, USA
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
3
|
Cinobufagin enhances the protective efficacy of formalin-inactivated Salmonella typhimurium vaccine through Th1 immune response. Microb Pathog 2016; 99:264-270. [PMID: 27574776 DOI: 10.1016/j.micpath.2016.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/23/2022]
Abstract
Cinobufagin (CBG), one active ingredient isolated from Venenum Bufonis, has been demonstrated to have immunoregulatory effect. The aim of this study was to investigate whether CBG can enhance the protective efficacy of formalin-inactivated Salmonella typhimurium (FIST) in mice. ICR mice were immunized with FIST (106 CFU/mouse) alone or mixed with CBG (10, 20, and 40 μg) or alum (200 μg) on day 1 and day 15. Two weeks after the second immunization, serum and spleen were sampled for measuring FIST-specific antibody levels, cytokine levels, and splenocyte proliferation. The results showed that CBG enhanced FIST-specific IgG and IgG2a, the levels of interferon-gamma (IFNγ) and nitric oxide (NO), and the splenocyte proliferation response induced by concanavalin A, lipopolysaccharide, and FIST. In vivo protection studies showed that CBG significantly decreased the bacterial burdens in the spleen and prolonged the survival time of FIST-immunized mice challenged with live Salmonella typhimurium. In vivo IFNγ neutralization led to a significant reduction in FIST-specific IgG2a and IFNγ levels, and in the protective efficacy in CBG/FIST-immunized mice. In conclusion, CBG enhances the protective efficacy of formalin-inactivated Salmonella typhimurium vaccine by promoting the Th1 immune response.
Collapse
|
4
|
Gibson AJ, Woodman S, Pennelegion C, Patterson R, Stuart E, Hosker N, Siviter P, Douglas C, Whitehouse J, Wilkinson W, Pegg SA, Villarreal-Ramos B, Werling D. Differential macrophage function in Brown Swiss and Holstein Friesian cattle. Vet Immunol Immunopathol 2016; 181:15-23. [PMID: 26961672 PMCID: PMC5145809 DOI: 10.1016/j.vetimm.2016.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022]
Abstract
There is strong evidence that high yielding dairy cows are extremely susceptible to infectious diseases, and that this has severe economic consequences for the dairy industry and welfare implications. Here we present preliminary functional evidence showing that the innate immune response differs between cow breeds. The ability of macrophages (MØ) to kill pathogens depends in part on oxygen-dependent and independent mechanisms. The oxygen-dependent mechanisms rely on the generation of reactive oxygen and nitrogen species (ROS/RNS, respectively). ROS production has been shown to activate the inflammasome complex in MØ leading to increased production of the pro-inflammatory cytokine Interleukin-1β (IL-1β). Conversely RNS inhibits inflammasome mediated IL-1β activation, indicating a division between inflammasome activation and RNS production. In the present study MØ from Brown Swiss (BS) cattle produce significantly more RNS and less IL-1β when compared to cells from Holstein Friesian (HF) cattle in response to bacterial or fungal stimuli. Furthermore, BS MØ killed ingested Salmonella typhimurium more efficiently, supporting anecdotal evidence of increased disease resistance of the breed. Inhibition of autophagy by 3-methyladenine (3-MA) stimulated IL-1β secretion in cells from both breeds, but was more pronounced in HF MØ. Blocking RNS production by l-arginase completely abolished RNS production but increased IL-1β secretion in BS MØ. Collectively these preliminary data suggest that the dichotomy of inflammasome activation and RNS production exists in cattle and differs between these two breeds. As pattern recognition receptors and signaling pathways are involved in the assessed functional differences presented herein, our data potentially aid the identification of in vitro predictors of appropriate innate immune response. Finally, these predictors may assist in the discovery of candidate genes conferring increased disease resistance for future use in combination with known production traits.
Collapse
Affiliation(s)
- Amanda Jane Gibson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Sally Woodman
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Christopher Pennelegion
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Robert Patterson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Emma Stuart
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Naomi Hosker
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Peter Siviter
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Chloe Douglas
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Jessica Whitehouse
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Will Wilkinson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Sherri-Anne Pegg
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | | | - Dirk Werling
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA, UK.
| |
Collapse
|
5
|
Pan D, Rostagno MH, Ebner PD, Eicher SD. Differential innate immune responses of bovine peripheral blood leukocytes to Salmonella enterica serovars Dublin, Typhimurium, and Enteritidis. Vet Immunol Immunopathol 2015; 165:14-21. [PMID: 25847354 DOI: 10.1016/j.vetimm.2015.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 02/16/2015] [Accepted: 03/12/2015] [Indexed: 11/18/2022]
Abstract
The majority of Salmonella serovars cause no clinical disease in cattle, while some are associated with severe disease. The objective of the current study was to determine the innate immune responses of bovine peripheral blood leukocytes exposed to Salmonella enterica serovar Dublin (bovine-specific), Salmonella typhimurium (murine adapted, but zoonotic), and Salmonella enteritidis (poultry host-adapted) in 3-week-old calves. All Salmonella exposures increased cell surface CD14 and CD18 regardless of serovar. The greatest CD14 marker mean fluorescence was in monocytes and the greatest mean fluorescent of the marker mean was in neutrophils. Phagocytosis increased with all serovars, but was not different among them. Neutrophils had the greatest marker mean fluorescence for phagocytosis, with all serovars being equal. Oxidative burst increased in all serovars compared to control cells, but were not different among the serovars. Neutrophils and monocytes were similar in the oxidative burst, with limited oxidative burst detected in the primarily lymphocyte population. mRNA expression of TNF-α, IL-8, and IL-12, increased above the control cells whereas none of these serovars affected mRNA expression of TLR4. TNF-α was greatest in S. enterica and S. typhimurium, compared to Salmonella dublin. In contrast, IL-8 was expressed more in S. dublin than S. typhiurium, with S. Enteriditus intermediary. These results show while cell surface markers, phagocytosis, and oxidative burst were largely unaffected by serovar, cytokine and chemokine expression differed among the Salmonella serovars. It appears that internal responses of the cells differ, rather than cell recognition, creating pathogenicity differences among of the serovars, even in the neonate with developing immunity.
Collapse
Affiliation(s)
- Deng Pan
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA; Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, USA
| | | | - Paul D Ebner
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Susan D Eicher
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Nandre R, Matsuda K, Lee JH. Efficacy for a New Live AttenuatedSalmonellaEnteritidis Vaccine Candidate to Reduce Internal Egg Contamination. Zoonoses Public Health 2013; 61:55-63. [DOI: 10.1111/zph.12042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Indexed: 11/30/2022]
Affiliation(s)
- R. Nandre
- College of Veterinary Medicine; Chonbuk National University; Jeonju Korea
| | - K. Matsuda
- College of Veterinary Medicine; Chonbuk National University; Jeonju Korea
| | - J. H. Lee
- College of Veterinary Medicine; Chonbuk National University; Jeonju Korea
| |
Collapse
|
7
|
Daw K, Baghdayan AS, Awasthi S, Shankar N. Biofilm and planktonic Enterococcus faecalis elicit different responses from host phagocytes in vitro. ACTA ACUST UNITED AC 2012; 65:270-82. [PMID: 22333034 DOI: 10.1111/j.1574-695x.2012.00944.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 12/12/2022]
Abstract
Enterococcus faecalis is a commensal organism of the gastrointestinal tract but can also cause serious opportunistic infections. In addition to high levels of antibiotic resistance, the ability to form biofilms on abiotic surfaces and on in-dwelling devices within the host complicates treatment strategies and successful outcomes of antibiotic therapy. Despite rapid advances made in recent years in understanding the genomics and virulence of this organism, much remains to be learned regarding the host response to enterococcal infections. In this study, we investigated the interaction of RAW264.7 macrophages and JAWS II dendritic cells with biofilm and planktonic E. faecalis, in vitro. Specifically, we compared phagocytosis, intracellular survival, secretion of proinflammatory cytokines, and the activation and maturation of phagocytes. Our results revealed that both macrophages and dendritic cells phagocytize biofilm mode cells at levels equal to or better than their planktonic counterparts. Internalized biofilm bacteria showed relatively greater survival at 24 h in macrophages than in dendritic cells and led to slightly higher expression of phagocyte activation markers. Macrophages infected with biofilm cells also secreted lower levels of proinflammatory cytokines studied. Overall, these results suggest that biofilm E. faecalis may be better adapted to overcome host defenses in vivo.
Collapse
Affiliation(s)
- Kasturee Daw
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA
| | | | | | | |
Collapse
|
8
|
Olivier M, Foret B, Le Vern Y, Guilloteau LA. Capacities of migrating CD1b+ lymph dendritic cells to present Salmonella antigens to naive T cells. PLoS One 2012; 7:e30430. [PMID: 22279590 PMCID: PMC3261196 DOI: 10.1371/journal.pone.0030430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/20/2011] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells (DCs) are well known as professional antigen-presenting cells (APC) able to initiate specific T-cell responses to pathogens in lymph nodes (LN) draining the site of infection. However, the respective contribution of migratory and LN-resident DCs in this process remains unclear. As DC subsets represent important targets for vaccination strategies, more precise knowledge of DC subsets able to present vaccine antigens to T cells efficiently is required. To investigate the capacities of DCs migrating in the lymph (L-DCs) to initiate a specific T-cell response, we used physiologically generated DCs collected from a pseudoafferent lymphatic cannulation model in sheep. The CD1b+ L-DCs were assessed for presenting antigens from the vaccine attenuated strain of Salmonella enterica serovar Abortusovis. CD1b+ L-DCs were able to phagocytose, process and to present efficiently Salmonella antigens to effector/memory T cells in vitro. They were shown to be efficient APC for the priming of allogeneic naive T cells associated with inducing both IFN-γ and IL-4 responses. They were also efficient in presenting Salmonella antigens to autologous naive T cells associated with inducing both IFN-γ and IL-10 responses. The capacities of L-DCs to process and present Salmonella antigens to T cells were investigated in vivo after conjunctival inoculation of Salmonella. The CD1b+ L-DCs collected after inoculation were able to induce the proliferative response of CD4+ T cells suggesting the in vivo capture of Salmonella antigens by the CD1b+ L-DCs, and their potential to present them directly to CD4+ T cells. In this study, CD1b+ L-DCs present potential characteristics of APC to initiate by themselves T cell priming in the LN. They could be used as target cells for driving immune activation in vaccinal strategies.
Collapse
Affiliation(s)
- Michel Olivier
- UR1282 Infectiologie Animale et Santé Publique, Institut National de la Recherche Agronomique, Nouzilly, France
| | - Benjamin Foret
- UR1282 Infectiologie Animale et Santé Publique, Institut National de la Recherche Agronomique, Nouzilly, France
| | - Yves Le Vern
- UR1282 Infectiologie Animale et Santé Publique, Institut National de la Recherche Agronomique, Nouzilly, France
| | - Laurence A. Guilloteau
- UR1282 Infectiologie Animale et Santé Publique, Institut National de la Recherche Agronomique, Nouzilly, France
- * E-mail:
| |
Collapse
|
9
|
Mackenzie-Dyck S, Attah-Poku S, Juillard V, Babiuk LA, van Drunen Littel-van den Hurk S. The synthetic peptides bovine enteric β-defensin (EBD), bovine neutrophil β-defensin (BNBD) 9 and BNBD 3 are chemotactic for immature bovine dendritic cells. Vet Immunol Immunopathol 2011; 143:87-107. [PMID: 21764462 DOI: 10.1016/j.vetimm.2011.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/11/2011] [Accepted: 06/17/2011] [Indexed: 11/17/2022]
Abstract
Human and murine immature DCs (iDCs) are highly efficient in antigen capture and processing, while as mature cells they present antigen and are potent initiators of cell-mediated immune responses. Consequently, iDCs are logical targets for vaccine antigens. Originally discovered for their antimicrobial activity, and thought of as strictly part of the innate immune system, studies with defensins such as human β (beta)-defensin 2 (hBD2) and murine β-defensin 2 (mBD2) have shown that they can function as chemo-attractant for iDCs and, in vaccination strategies, can enhance antigen-specific adaptive immune responses. Most studies to date have been conducted in mice. In contrast, little is known about defensins in cattle. To expand our understanding of the role of defensins in modulating immune responses in cattle, DCs were generated from bovine monocytes and the immature state of these bovine DCs was characterized phenotypically and through functional assays. By day 3 (DC3), bovine monocyte-derived DCs stained positively for DC-specific receptors CD1, CD80/86, CD205, DC-Lamp and MMR. When compared to conventional 6-day DC cultures or DCs cultured for 10 days with and without maturation factors, these DC3 were functionally at their most immature stage. Fourteen of the 16 known bovine β-defensins were synthesized and the synthetic peptides were screened for their ability to attract bovine iDCs. Bovine DC3 were consistently attracted to BNBD3, an analog of BNBD3 (aBNBD3), BNBD9 and bovine EBD in vitro and to aBNBD3 in vivo. These results are the first to describe chemotactic ability of synthetic bovine β-defensins for immature bovine monocyte-derived DCs.
Collapse
Affiliation(s)
- Sarah Mackenzie-Dyck
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
10
|
Enhancement of immune responses by an attenuated Salmonella enterica serovar Typhimurium strain secreting an Escherichia coli heat-labile enterotoxin B subunit protein as an adjuvant for a live Salmonella vaccine candidate. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:203-9. [PMID: 21159921 DOI: 10.1128/cvi.00407-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A plasmid harboring eltB, the gene encoding heat-labile enterotoxin (LTB), was constructed by insertion of eltB into an Asd(+) β-lactamase signal plasmid (pMMP65). This was introduced into the Δlon ΔcpxR Δasd Salmonella enterica serovar Typhimurium strain and designated the LTB adjuvant strain. LTB protein production and secretion from the strain were demonstrated with an immunoblot assay and enzyme-linked immunosorbent assay. The LTB strain was evaluated for enhancement of immunity and protection efficacy induced by a previously constructed live Salmonella vaccine candidate. In addition, immunization strategies using the LTB strain were optimized for effective salmonellosis protection. Seventy female BALB/c mice were divided into seven groups (A to G; n = 10 mice per group). Mice were primed at 6 weeks of age and boosted at 9 weeks of age. All mice were orally challenged with a virulent wild-type strain at week 3 postbooster. Serum IgG and IgA titers from mice immunized with the LTB strain alone or with a mixture of the LTB strain and the vaccine candidate were significantly increased. The secretory IgA titers from mice immunized with the LTB strain alone or with the mixture were at least 2.2 times greater than those of control mice. In addition, all group E mice (primed with the vaccine-LTB mixture and boosted with the vaccine candidate) were free of clinical signs of salmonellosis and survived a virulent challenge. In contrast, death due to the challenge was 100% in control mice, 80% in group A mice (single immunization with the vaccine candidate), 60% in group B mice (primed and boosted with the vaccine candidate), 40% in group C mice (single immunization with the LTB strain), 30% in group D mice (primed and boosted with the LTB strain), and 30% in group F mice (primed and boosted with the vaccine-LTB mixture). These results suggest that vaccination with the LTB strain, especially when added at the prime stage only, effectively enhances immune responses and protection against salmonellosis.
Collapse
|
11
|
Hur J, Song SO, Lim JS, Chung IK, Lee JH. Efficacy of a novel virulence gene-deleted Salmonella Typhimurium vaccine for protection against Salmonella infections in growing piglets. Vet Immunol Immunopathol 2010; 139:250-6. [PMID: 20869776 DOI: 10.1016/j.vetimm.2010.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 08/02/2010] [Accepted: 08/30/2010] [Indexed: 10/19/2022]
Abstract
We have previously developed a novel attenuated Salmonella Typhimurium (S. Typhimurium) ΔcpxR Δlon vaccine. This study was carried out to examine whether this vaccine could effectively protect growing piglets against Salmonella infection. Attenuated S. Typhimurium secreting the B subunit of Escherichia coli heat-labile enterotoxin was also used as a mucosal adjuvant. Pregnant sows in groups A and B were primed and boosted with the vaccine and mucosal adjuvant, whereas sows in groups C, D and E received PBS. Piglets in groups A and C were intramuscularly primed with formalin-inactivated vaccine and orally boosted with live vaccine, while piglets in groups B, D and E received PBS. Piglets in groups A, B, C, and D were challenged with a wild type virulent S. Typhimurium at the 11th weeks of age. Colostrum sIgA and IgG titers in vaccinated groups A and B sows were approximately 50 and 40 times higher than those of non-vaccinated groups C, D and E sows (P<0.001). Serum IgG titers of group A piglets were also significantly higher than those of groups D and E piglets during the study (P<0.001). Furthermore, no clinical signs were observed in group A piglets during the entire experimental period after the challenge, while diarrhea was observed in many of the piglets in groups B, C, and D. No Salmonella was isolated from fecal samples of the groups A and C piglets on day 14 after challenge, whereas the challenge strain was isolated from several piglets in groups B and D. These results indicate that vaccination of the piglets with the vaccine and mucosal adjuvant in addition to vaccination of their sows induced effective protection against Salmonella infections in the growing piglets.
Collapse
Affiliation(s)
- Jin Hur
- College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, South Korea
| | | | | | | | | |
Collapse
|
12
|
Michalak-Stoma A, Tabarkiewicz J, Olender A, Juszkiewicz-Borowiec M, Stoma F, Pietrzak A, Pozarowski P, Bartkowiak-Emeryk M. The effect of Propionibacterium acnes on maturation of dendritic cells derived from acne patients' peripherial blood mononuclear cells. Folia Histochem Cytobiol 2008; 46:535-9. [PMID: 19141410 DOI: 10.2478/v10042-008-0064-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Propionibacterium acnes (P. acnes) has been implicated in the pathogenesis of acne vulgaris which is the most common cutaneous disorder. It has a proinflammatory activity and takes part in immune reactions modulating the Th1/Th2 cellular response. The exposure of dendritic cells (DCs) to whole bacteria, their components, cytokines or other inflammatory stimuli and infectious agents induces differentiation from immature DCs into antigen-presenting mature DCs. The aim of the study was to evaluate the capability of P. acnes to induce the maturation of DCs. We stimulated monocyte derived dendritic cells (Mo-DCs) from acne patients with various concetrations of heat-killed P. acnes (10(6)-10(8) bacteria/ml) cultured from acne lesions. The results showed an increase in CD80+/CD86+/DR+ and CD83+/CD1a+/DR+ cells percentage depending on the concetration of P. acnes. The expression of CD83 and CD80 (shown as the mean fluorescence intensity - MFI) increased with higher concetrations of P. acnes. There were also significant correlations between MFI of CD83, CD80, CD86 and concetration of P. acnes. The study showed that P. acnes in the concetration of 10(8) bacteria/ml is most effective in the induction of Mo-DCs maturation. Futher studies concerning the influence on the function of T cells are needed.
Collapse
|
13
|
Zaharik ML, Nayar T, White R, Ma C, Vallance BA, Straka N, Jiang X, Rey-Ladino J, Shen C, Brunham RC. Genetic profiling of dendritic cells exposed to live- or ultraviolet-irradiated Chlamydia muridarum reveals marked differences in CXC chemokine profiles. Immunology 2006; 120:160-72. [PMID: 17073942 PMCID: PMC2265850 DOI: 10.1111/j.1365-2567.2006.02488.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide for which an effective vaccine is being actively pursued. Current vaccine efforts will be aided by elucidating the interaction between Chlamydia and dendritic cells (DCs). Protective immunity appears to develop slowly following natural infection in humans, and early vaccine trials using inactivated C. trachomatis resulted in partial, short-lived protection with possible enhanced inflammatory pathology during re-infection. Thus, immunity following natural infection with live chlamydia may differ fundamentally from immune responses induced by immunization with inactivated chlamydia. We explored this conjecture by studying the response of DCs exposed to either viable or inactivated [ultraviolet (UV) -irradiated] chlamydia elementary bodies (EBs; designated as Live-EB and UV-EB, respectively) using Affymetrix GeneChip microarrays. Thirty-one immunologically characterized genes were differentially expressed by DCs following exposure to Live-EB or UV-EB, including two glutamic acid-leucine-arginine cysteine-X-cysteine (ELR CXC) neutrophil chemoattractant chemokines, Cxcl1 (KC), and Cxcl2 (MIP-2). Up-regulation of these genes by Live-EB as compared to UV-EB was verified by quantitative reverse transcription-polymerase chain reaction and increased chemokine secretion was confirmed by enzyme-linked immunosorbent assay both in vitro and in vivo. Immunofluorescence and fluorescence-activated cell sorter analysis of chlamydia-infected lung tissue confirmed that Live-EB but not UV-EB induced significant DC and neutrophil infiltration during infection. These observations demonstrate that the development of an antichlamydial immune response is dramatically influenced by chlamydial viability. This has implications as to why early inactivated chlamydial vaccines were ineffective and suggests that new vaccine design efforts may benefit from in vitro DC screening for ELR chemokine expression profiles.
Collapse
Affiliation(s)
- Michelle L Zaharik
- University of British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Thaxton JP, Cutler SA, Griffith R, Scanes CG. Changes in Tissue Nitrite Concentration in the Crop of the Turkey Poult in Response to Salmonella Typhimurium Challenge. Poult Sci 2006; 85:1015-9. [PMID: 16776469 DOI: 10.1093/ps/85.6.1015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present study examines whether Salmonella typhimurium colonization of the crop of young turkeys influences nitrite concentration in the component tissues of the crop. Nitric oxide (NO) is the principal compound in biological samples that is converted into nitrites and NO is known to be a component of the early host response to infection. Challenge with S. typhimurium increased the concentration of nitrite in the crop wall of 3-wk-old turkey poults. The magnitude of the response was reduced at 8 h and absent at 48 h after challenge. As would be expected, S. typhimurium concentrations in the crop were markedly increased following challenge, and were nondetectable in control poults.
Collapse
Affiliation(s)
- J P Thaxton
- Department of Poultry Science, Mississippi State University, 39762, USA.
| | | | | | | |
Collapse
|
15
|
Hu L, Bray MD, Osorio M, Kopecko DJ. Campylobacter jejuni induces maturation and cytokine production in human dendritic cells. Infect Immun 2006; 74:2697-705. [PMID: 16622206 PMCID: PMC1459697 DOI: 10.1128/iai.74.5.2697-2705.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Campylobacter jejuni is a leading bacterial cause of human diarrheal disease in both developed and developing nations. Colonic mucosal invasion and the resulting host inflammatory responses are thought to be the key contributing factors to the dysenteric form of this disease. Dendritic cells (DCs) play an important role in both the innate and adaptive immune responses to microbial infection. In this study, the interaction between human monocyte-derived dendritic cells and C. jejuni was studied. We found that C. jejuni was readily internalized by DCs over a 2-h period. However, after a prolonged infection period (24 or 48 h) with C. jejuni, only a few viable bacteria remained intracellularly. Minimal cytotoxicity of C. jejuni to dendritic cells was observed. C. jejuni induced the maturation of dendritic cells over 24 h, as indicated by up-regulation of cell surface marker proteins CD40, CD80, and CD86. In addition, Campylobacter-infected DCs triggered activation of NF-kappaB and significantly stimulated production of interleukin-1beta (IL-1beta), IL-6, IL-8, IL-10, IL-12, gamma interferon, and tumor necrosis factor alpha (TNF-alpha) compared to uninfected DCs. Active bacterial invasion of DCs was not necessary for the induction of these cytokines, as heat-killed C. jejuni stimulated similar levels of cytokine production as live bacteria. Purified lipooligosaccharide of C. jejuni appears to be the major stimulant for the increased production of cytokines by DCs. Taken together, these data indicate that during infection, Campylobacter triggers an innate inflammatory response through increased production of IL-1beta, IL-6, IL-8, and TNF-alpha and initiates a Th1-polarized adaptive immune response as predicted from the high level of production of IL-12.
Collapse
Affiliation(s)
- Lan Hu
- Laboratory of Enteric and Sexually Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, 29 Lincoln Drive, NIH Campus, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
16
|
Thamm DH, Kurzman ID, King I, Li Z, Sznol M, Dubielzig RR, Vail DM, MacEwen EG. Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: phase I evaluation. Clin Cancer Res 2005; 11:4827-34. [PMID: 16000580 DOI: 10.1158/1078-0432.ccr-04-2510] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetically modified bacteria are a potentially powerful anticancer therapy due to their tumor targeting capacity, inherent antitumor activity, and ability to serve as efficient vectors for gene delivery. This study sought to characterize the acute and short-term toxicities and tumor colonization rates of a genetically modified Salmonella typhimurium (VNP20009) in dogs with spontaneous tumors, in the context of a phase I dose escalation trial. EXPERIMENTAL DESIGN Forty-one pet dogs with a variety of malignant tumors received weekly or biweekly i.v. infusions of VNP20009, at doses ranging from 1.5 x 10(5) to 1 x 10(8) cfu/kg. Vital signs and clinicopathologic variables were monitored regularly. Incisional biopsies were obtained before and 1 week following the first infusion for histopathology and bacterial culture. RESULTS The nominal maximum tolerated dose was 3 x 10(7) cfu/kg, with refractory fever and vomiting being the dose-limiting toxicities. One treatment-related acute death occurred. Bacteria were cultured from tumor tissue in 42% of cases. Thirty-five patients were evaluable for antitumor response. Major antitumor responses were seen in 15% (4 complete response and 2 partial response), and disease stabilization for at least 6 weeks in 10%. CONCLUSIONS Administration of VNP20009 at doses with acceptable toxicity results in detectable bacterial colonization of tumor tissue and significant antitumor activity in tumor-bearing dogs.
Collapse
Affiliation(s)
- Douglas H Thamm
- Department of Medical Sciences and Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA.
| | | | | | | | | | | | | | | |
Collapse
|